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Leveraging Momentum for
Increased Tuning of
Phonon-Polariton Metasurfaces
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Images: Jasco, Goldflam et al. Opt. Exp. (7) 8532. 2018, Goldflam et al. Opt. Expt. (25) 12400. 2017

Problems:
|. Filters not “narrow” enough
2. Filters don’t “tune” enough
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|dea: Phonons for Infrared Optics
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+ | Approach: Make, Measure, Think

UV-

Tools:

Sample: 4H-SiC Nanopillars
- Variables: Nanopillar diameter, Laser wavelength

Vis spectroscopy
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Approach:
Deduce scattering paths
from spectroscopic
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5‘ A Wavelength & Diameter Dependence
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6‘ A Wavelength & Diameter Dependence
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Normalized Scattering (AU)
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The Mie Resonance
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What's Raman

got to do with
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: | Resonance = Surface Sensitivity & Momentum @
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s | An Observation & Gedanken
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o | An Observation & Gedanken
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Some momenta provide greater tuning, q is a “knob”
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+ | Take Home Message
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Dynamic, tunable, infrared sensing at pixel level

Leveraging phonon polaritons for

’

Momentum is a "new’
" — knob for tunable
)~ polaritonics




