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Meshing software, such as Cubit, provide tools to identify dirty geometry and CAD operations  Table shows expected mean error for each trained CAD operation.
to “fix” the issues. Geometry cleanup procedures are interactive and time consuming.

Approach

ML-based defeaturing is currently deployed as part of the Cubit
Wizard tool for preparing geometry for meshing. Pickled data is
loaded once and queried run-time to predict mesh quality at small
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@ Find the most problematic features in the CAD Model . features. Best CAD operations are presented to the user for “fixing’
* Foragiven local topology = Predict local mesh quality 5 issues based on predicted metrics.
= Small Curves = Scaled Jacobian §
= Small Surfaces = |n-Radius =
=  Sharp angles
@ Find solution that yields best mesh quality
= For a given local CAD = Predict local mesh quality after operation
geometry operation = Scaled Jacobian
= Collapse Curve = |n-Radius
= Remove Surface \Q\oo

= Blunt Tangency
= Etc..
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Expert Training Features

geometry (the embedding of those vertices in 3D space), it cannot be angles, and adjacent vertex valences. (shown at left

easily shoehorned into typical machine learning algorithms, which

expect fixed-length feature vectors as inputs. Aggregate Features use statistical methods such as histograms to
reduce arbitrarily-complex meshes to fixed length feature vectors.

Curve Length

e Surface Area

* Angle at vertex

+ Angle at curves The problem is further complicated by questions of locality: when

. Valence at vertex supplying features, should they be based on the entire geometry, a Graph Features explicitly represent the structure of the mesh using
«  Number of loops :h small neighborhood of the geometry, or something in between? undirected graphs with vertex attributes for the geometry. The
* Hydraulic Radius w Ay graphs can be embedded in a relatively low dimension feature space
* Etc. . Good features must be able to work within these constraints while using techniques based on text analysis (node2vec) or spectral graph
Features characterize the local topology for small curves, surfaces and providing useful properties such as position and rotation invariance.  theory. These features can be used for training directly, or with
sharp angles in the model. Features are specific to one of 13 trained We are currently evaluating several types of feature as part of this convolutional neural nets for automated feature generation.
CAD operations work:
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Scaled = Function of angles at vertices
. °  Jacobian Scaled -1.0t0 1.0 = Can we automate the Cubit wizard machine learning approach = Currently representing state as a binary vector describing whether
= |ndependent of mesh size beyond ranking the current options available to the user? a small curve has or has not had operation applied.
1 3 = Analogous to GPS mapping software = For the car, there are 27212 = 4096 states
o , _ = Turn left on Eubank in 100 yds, turn right on Moon in % mile, etc. = Currently representing actions on small curves according to category
2 = Ratio with eqU|Iatera| tet with . |If turn th ron n tions are mad “« n o ” n o u e n u kn
. dge length \ you turn the wrong way, new suggestions are made. remove”, “collapse”, “composite”, “tweak”).
In-Radius target edg |\ = The userisin control, but the software continues to offer instructions. = For the car there are 4*12 = 48 possible actions.
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= Sansitive to mesh size / = To start, we have implemented separate g-learning/cubit python Ran g-learning algorithm for 7,500 iterations.
modules to experiment with automating cubit operations. = Cubit car g-learning
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extracted near small feature as training labels. Metrics are computed learning), or different cubit operations (e.g. small surfaces). @ 400 -
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= |nitial g-learning effort reduced number of tets with Scaled
Jacobian < 0.2 from 40 to 8 using two cubit commands:

" tweak remove topology curve 213 small curve size 0.358497
backoff 3.25907

" remove surface 93 extend
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