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Project Overview

Goal: Demonstrate and study hole spin qubits in strained
Ge/SiGe Heterostructures

Team:

Dwight Luhman (PI)

Tzu-Ming Lu

Will Hardy

Mitchell Brickson
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Motivation: Holes in Ge/SiGe provide a compelling

alternate approach to spin based qubits. They maintain

many of the advantages of silicon without valley splitting.

Near Term Goals:

Stable Quantum Dots in Ge/SiGe

Single Spin Readout

Spin Rotations

Better understanding of SOC in Ge dots
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Basic Idea

• Single Hole confined to lateral
quantum dot in Ge heterostrucutre

• Spin Qubit States: mi=-F3/2

• Qubit readout and initialization
through energy selective tunneling to
reservoir

• Qubit Control through microwaves
applied to gate

• Occupancy detected through nearby
charge sensor

• Strong spin orbit coupling (SOC) is
important. Form is —k3 in 2DHG.
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Summary of Previous Results

Lithographic Dot in Single Layer Devices:
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Undoped Strained Germanium

Quantum Well Heterostructures

TiAu gate (- 150 nm)

A1203 insulator (- 30 nm

Si cap (- lnm)

Sia2Ge0.8 barrier (- 500 nm)

Strained Ge quantum well (- 13 nm)  o I
z

Si0.2Ge0.8 relaxed buffer (- 3 um)

Si02Ge08 graded buffer (- 2 um)

Two-step Ge (- 100 nm)

n-Si (100) substrate

SiolGe0.8
relaxed buffer

Sample holder



Summary of Previous Results
Lithographic Dot in Three Metal Layer Devices:
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Device Redesign

Original Design

New Design
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COMSOL calculations

by M. Brickson

Central gate
isolates 2DHGs
between upper
and lower dots
and creates
better
confinement for
each dot
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New 3-layer device design

Add horizontal
isolation gate
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3. Barrier gates
ALD oxide

2. Accumulation gates
ALD oxide

1. Isolation gates
ALD oxide

SiGe

s-Ge

SiGe

ALD Oxide=24 nm A1203 + 1 nm Hf02

Metal = 2 nm Ti + 18 nm Pt
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Device Challenges
First batch of new devices had low yield
• Gate leakage
• Normally on
• Unstable
• No usable nanostructures: 0/8

Normally-on nanostructure
3 x104
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Something changed between fab runs

• Suspect ALD machine
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Device Challenges
• Clean ALD Machine

• Fabricate new set of devices

• Nanostructures Yield: 1/8

x
Nanostructure Threshold curve_10
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Device Challenges
• Implement Forming Gas anneal after every

oxide layer
• 400° C for 30 minutes

• Fabricate new set of devices
• Nanostructures: 6/8
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Nanostructure Threshold
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U Dot

Continued to work on EBL

Quantum dot is now about 130 x 80 nm
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Devices look good at T=4 K.

Cooling down in dilution refrigerator now.
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Device Challenges Summary
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• We experienced an abrupt,
unexpected fabrication issue in
August 2018

• The issue seems to be related to
contamination in the ALD machine
(next slide)

• A combination of cleaning the tool
and forming gas anneals appears
to have improved the issue---new
device in fridge now

• Improved yield
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Atomic Layer Deposition (ALD)

ALD Steps 
1. Chemisorption of a precursor molecule (H20 and

trimethyl-aluminum for A1203)
2. Dissociation into ions on the surface
3. Diffusion of ions on the surface and association

into a molecule
4. Desorption of the volatile molecule (CH4)
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D. Monsma and J. Becker, Material Matters 1, 5 (2006)



Best Guess for the cause of device challenges

• Machine is a general purpose tool at the Center for Integrated Technology (CINT)
• Users have introduced TiCI4 in the chamber for TiO2 growth.
• Metal chloride molecules form as a byproduct
• Chlorine molecules react with H20 to form HCI, which acts as an additional precursor
• During A1203 growth, residual HCI strongly bonds with Al and C as the oxide grows
• Incorporation of CI ions may shift thresholds and form poor oxide
• Forming gas passivates these ions and densifies the oxide

Normal Threshold
'channel

HCI contamination

Vg ate

Shifted Threshold

'channel
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Plan for future devices:
• Immediate

• Use CINT ALD + Forming gas anneal
• 2-4 Months

• Test a different ALD machine at Sandia

• System dedicated to A1203

• Oxide quality needs to assessed

• Long term

• Acquire and install new ALD machine

• Machine dedicated to sensitive electronic devices

• Limited to metal organic precursors

• Access control

Sandia
National
Laboratories
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Hardware Improvements

• High Speed lines into dilution
refrigerator 0 dB

• Qubit pulsing gates microstrip

attenuators
• Micro-wave line for qubit

rotations
• Simple packaging solution for

high speed control

Sandia
National
Laboratories

Mixing chamber

Bias tee

Blue coaxial cables from

mixing chamber to sample

board

Mini-SMP connectors to

circuit board

16



Modeling SOC in Ge QDs

Goal: Develop device-level models to guide & interpret experiments
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• Challenges
• The form of the SOC Hamiltonian remains ambiguous in Ge quantum dots

• No existing software for device-level modeling with SOC

• Our trajectory
• Use Rabi oscillation frequency as a connection to experiment

• Calibrate expectations with a simple model

• Enhance device-level modeling tools to accommodate SOC physics

• Use tools to explore various SOC models (e.g., linear vs. cubic)

• Integrate more physical details into our theory
Modeling by M. Brickson



Simple Model

Calibrate expectatil

• Sandia experiments suf

range for spin-orbit len

• Electrostatic calculatior
gate-dot coupling

vAx

Lso
• Rabi frequencies 0(101

may be possible in SNL

fR -

moo

2

fireqluency PH4

vac EmAl

Sandia
LaborahmiNational es

18



Laconic software package
Andrew Baczewski

PDE-solver designed for accurate solutions of quantum models

• High accuracy needed for multi-scale device models
• Energy resolution across multiple orders of magnitude

• Costly to accurately describe behavior near material barriers or Coulomb
singularities, while accounting for realistic device electrostatics

• Based on a Discontinuous Galerkin (DG) framework
• Relies on a mesh-based description Basis function space can be locally

enriched to capture difficult physics

• Current version implements effective mass theory using interior penalty
DG
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National
Laboratories

19



Additions to Laconic modeling software

• Laconic was updated to include:

• Magnetic vector potential

A•V+V•A
Test with Harmonic oscillator potential

• Zeeman term 1-TR rrriunin; us.c
wall pan:eV:Wien

• Free particle SOC operator
ory• p x VV

• Momentum operator

• Computes QD eigenstates

subject to realistic electrostatic:

—> direct evaluation of Rabi

frequencies

• •

Sandia
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Linear SOC

• SOC Hamiltonian

= ia(6+13_ — 6-43+)
• fR monotonically increases

with magnetic field

• fR peaks with B-field oriented
halfway between z- and xy-
plane

• Need to compare to cubic SOC

Initial Results:

• Confinement by 20 nm QW along z-axis

• Assume SHO potential in xy-plane

• Value of a from literature; 1 mV drive

1011.
OM OR

Rabi Frequencies (GHz)

AloggkrgownivaimAkil
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Ongoing and future modeling work

• Implementation of cubic SOC model

• Incorporate more microscopic details

• QW band structure as a function of material conditions (effective masses)

• Multi-band effective mass theory (light and heavy hole)

• Static and dynamic noise sources

• Understand and optimize single-qubit gate fidelities

• Model two-qubit gate
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Progress and Outlook
• Overcame major device fabrication hurdles

• Better understanding of fab process

• Significant increase in yield

• Improved EBL

• Improved Device Design 
limmisomm

• Hardware Upgrades

• Dilution Refrigerator ready for qubit

measurements

• Modeling

• Significant advances to capturing the

SOC physics in Ge dots
In Progress

Demonstrate
Quantum Dot
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Hole spins in Ge/SiGe provide a compelling alternative
to electron spin qubits

• Absence of nearly degenerate states (i.e. valley states)

• Low Disorder (heterostructure similar to Si/SiGe)

• Enhanced Quantum Dot-Quantum Dot coupling due to a small effective mass

• Natural way to electrically control the spin (strong spin-orbit coupling) without additional
components, such as micro-magnets

• Ge and Si have spin free isotopes and can be enriched.

• Potential for weaker hyperfine coupling because p-type wavefunctions vanish at the nucleus.

• Compatible with silicon processing techniques

• Can leverage designs and techniques already developed for semiconductor qubits.

• Challenge: Charge Noise
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2DHG Properties

Weak antilocalization peak
emerges with increasing density
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