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Project Overview @

Goal: Demonstrate and study hole spin qubits in strained
Ge/SiGe Heterostructures

Motivation: Holes in Ge/SiGe provide a compelling
alternate approach to spin based qubits. They maintain
many of the advantages of silicon without valley splitting.

Team:

Dwight Luhman (PI) Near Term Goals:

Tzu-Ming Lu Stable Quantum Dots in Ge/SiGe
Will Hardy Single Spin Readout

Mitchell Brickson Spin Rotations

Better understanding of SOC in Ge dots




Ba S i C | d ea Single valence band of heavy E‘I)

holes with m=4+3/2

= Single Hole confined to lateral £
guantum dot in Ge heterostrucutre
= Spin Qubit States: mj—i3/2 =312 / s
. PR pli=1) < m,=+1/2
= Qubit readout and |n|t.|aI|zat|on | /o /\S’O_ »
through energy selective tunneling to k'
reservoir

= Qubit Control through microwaves
applied to gate

=  QOccupancy detected through nearby
charge sensor

= Strong spin orbit coupling (SOC) is
important. Form is ~k3 in 2DHG.

1. Isolation 2. Accumulation 3. Plunger
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Summary of Previous Results =

Lithographic Dot in Single Layer Devices: Undoped Strained Germanium
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Summary of Previous Results

Lithographic Dot in Three Metal Layer Devices:

SiGe

T sGel
SiGe

Large aspect ratio of quantum dot was likely
causing multiple isolated dots

=

E-beam lithography
ALD oxide

3. Barrier gates Ti/Pt gates

ALD oxide
2. Accumulation gates
ALD oxide
1. Isolation gates
ALD oxide

T094459, idotU
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Nanostructure Yield: 2/8




Device Redesign G

COMSOL calculations

o _ by M. Brickson
Original Design

Central gate
isolates 2DHGs
between upper
and lower dots
and creates
better
confinement for
each dot

New Design
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New 3-layer device design L2

Add horizontal
isolation gate

I 3. Barrier gates

ALD oxide

I . Accumulation gates
ALD oxide

I . Isolation gates
ALD oxide
SiGe
I s Ge

SiGe

ALD Oxide=24 nm Al,O; + 1 nm HfO,
Metal =2 nm Ti + 18 nm Pt
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Device Challenges

First batch of new devices had low vyield
* Gate leakage

* Normally on

* Unstable

* No usable nanostructures: 0/8

~ Normally-on nanostructure

x10”
T
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Lithography had good yield

Something changed between fab runs
e Suspect ALD machine
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Device Challenges

e (Clean ALD Machine
 Fabricate new set of devices
e Nanostructures Yield: 1/8

Nanostructure Threshold curve
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Device unstable and very drifty

x1071¢
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DeVice Cha”enges Continued to work on EBL @F-'ﬁs

Quantum dot is now about 130 x 80 nm

* Implement Forming Gas anneal after every
oxide layer
e 4000 C for 30 minutes
* Fabricate new set of devices
* Nanostructures: 6/8

Nanostructure Threshold

x10°°

T=4K

node | HV W mag @
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idotU
&

Devices look good at T=4 K.
Cooling down in dilution refrigerator now.




Device Challenges Summary ()

* We experienced an abrupt,
S | unexpected fabrication issue in
0.8 kR August 2018
- * The issue seems to be related to
- 06y contamination in the ALD machine
2 05 (next slide)
0.4f * A combination of cleaning the tool
0.3} Jun. 2018 and forming gas anneals appears
0.2} to have improved the issue---new
0.1 device in fridge now
0 * Improved yield

15 2 2.5 3
Processing Run



Atomic Layer Deposition (ALD) M=

ALD Steps

1. Chemisorption of a precursor molecule (H,0 and
trimethyl-aluminum for Al,O,)

2. Dissociation into ions on the surface

3. Diffusion of ions on the surface and association
into a molecule

4. Desorption of the volatile molecule (CH,)

D. Monsma and J. Becker, Material Matters 1, 5 (2006)

ﬁ
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Best Guess for the cause of device challenges O

* Machine is a general purpose tool at the Center for Integrated Technology (CINT)

e Users have introduced TiCl, in the chamber for TiO, growth.

* Metal chloride molecules form as a byproduct

* Chlorine molecules react with H,0 to form HCI, which acts as an additional precursor
* During Al,O, growth, residual HCI strongly bonds with Al and C as the oxide grows

* Incorporation of Cl ions may shift thresholds and form poor oxide

* Forming gas passivates these ions and densifies the oxide

Normal Threshold lehannel HCI contamination -

A A

) ‘
Shifted Threshold

Vgate

» Vgate




Plan for future devices: o

e |Immediate

e Use CINT ALD + Forming gas anneal
e 2-4 Months
* Test a different ALD machine at Sandia
* System dedicated to Al,O,
e Oxide quality needs to assessed
* Longterm
* Acquire and install new ALD machine
 Machine dedicated to sensitive electronic devices

Limited to metal organic precursors
e Access control




Hardware Improvements ()

Mixing chamber

* High Speed lines into dilution
refrigerator 0dB ™
. Ql.Jbit pulsing gates 2{2;052253
* Micro-wave line for qubit
rotations
e Simple packaging solution for
high speed control

Bias tee

Blue coaxial cables from
mixing chamber to sample
board

Mini-SMP connectors to
circuit board



Modeling SOC in Ge QDs ()

Goal: Develop device-level models to guide & interpret experiments

= Challenges
= The form of the SOC Hamiltonian remains ambiguous in Ge quantum dots
= No existing software for device-level modeling with SOC

= Qur trajectory
= Use Rabi oscillation frequency as a connection to experiment
= Calibrate expectations with a simple model
= Enhance device-level modeling tools to accommodate SOC physics
= Use tools to explore various SOC models (e.g., linear vs. cubic)

" |ntegrate more physical details into our theory
Modeling by M. Brickson




Simple Model ®

Rabi frequency [GHz]

Calibrate expectati

= Sandia experiments sus
range for spin-orbit len

100
= Electrostatic calculatior =
gate-dot coupling =1
VAX 'ﬁ ,]m)—v']l.
R —
LSO
= Rabi frequencies O (10!
may be possible in SNL 107®
Vac ImV] s




Laconic software package ="

Andrew Baczewski

PDE-solver designed for accurate solutions of quantum models

e High accuracy needed for multi-scale device models
* Energy resolution across multiple orders of magnitude

* Costly to accurately describe behavior near material barriers or Coulomb
singularities, while accounting for realistic device electrostatics

e Based on a Discontinuous Galerkin (DG) framework

* Relies on a mesh-based description Basis function space can be locally
enriched to capture difficult physics

* Current version implements effective mass theory using interior penalty
DG



Additions to Laconic modeling software ()

= Laconic was updated to include:

= Magnetic vector potential o _ | "
A-V+V-A Test with Harmonic oscillator potentia

" Zeeman term Harmonic: osgillator imr Wi oscillator i magnetic field,
real part.off Istoexa wesall et of 200 excited stale

* Free particle SOC operator
o-pXxXVV ‘
= Momentum operator ' . |
= Computes QD eigenstates . ‘.
subject to realistic electrostatic: “‘
— direct evaluation of Rabi

frequencies




Linear SOC

SOC Hamiltonian

H = ia(6,p- — 6-p4)
fr monotonically increases
with magnetic field

fr peaks with B-field oriented
halfway between z- and xy-
plane

Need to compare to cubic SOC

()
" National
Initial Results: Laboratories

* Confinement by 20 nm QW along z-axis
* Assume SHO potential in xy-plane
* Value of a from literature; 1 mV drive

Rabi Frequencies (GHz)

e 0 B e Le 12 aa

Mmgle freonaeds lradians]




Ongoing and future modeling work =

Implementation of cubic SOC model

Incorporate more microscopic details
= QW band structure as a function of material conditions (effective masses)
= Multi-band effective mass theory (light and heavy hole)
= Static and dynamic noise sources

Understand and optimize single-qubit gate fidelities

Model two-qubit gate




Progress and Outlook e

e Overcame major device fabrication hurdles
e Better understanding of fab process
e Significant increase in yield
* Improved EBL < GRS
* Improved Device Design T ™ Y
Bt fremuenny Gl A3
e Hardware Upgrades

* Dilution Refrigerator ready for qubit

measurements .
 Modeling a5
* Significant advances to capturing the - 7 e
SOC physics in Ge dots LERENKELYEE -

In Progress In Progress

Demonstrate Single Hole Spin Readout Qubit Control
Quantum Dot Occupation & Initialization (EDSR) Characterization
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Hole spins in Ge/SiGe provide a compelling alternative
to electron spin qubits

= Absence of nearly degenerate states (i.e. valley states)
= Low Disorder (heterostructure similar to Si/SiGe)
=  Enhanced Quantum Dot-Quantum Dot coupling due to a small effective mass

= Natural way to electrically control the spin (strong spin-orbit coupling) without additional
components, such as micro-magnets

= Ge and Si have spin free isotopes and can be enriched.

= Potential for weaker hyperfine coupling because p-type wavefunctions vanish at the nucleus.
=  Compatible with silicon processing techniques

= (Can leverage designs and techniques already developed for semiconductor qubits.

= Challenge: Charge Noise




2DHG Properties

— M
Strong Spin-Orbit Coupling Lnbocteon

Weak antilocalization peak
emerges with increasing density
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