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Abstract—In this short article, we summarize a step-by-step
methodology to forecast power output from a photovoltaic solar
generator using hourly auto-regressive moving average (ARMA)
models. We illustrate how to build an ARMA model, to use
statistical tests to validate it, and construct hourly samples.
The resulting model inherits nice properties for embedding it
into more sophisticated operation and planning models, while
at the same time showing relatively good accuracy. Additionally,
it represents a good forecasting tool for sample generation for
stochastic energy optimization models.

Index Terms—ARMA, solar power, photovoltaic, forecasting,
scenario generation

I. INTRODUCTION

I NCREASING penetration of renewable energy sources,
such as wind and solar, in the electricity grid requires

an accurate representation of the uncertainty to guarantee
feasibility of the system operations, and for efficiently plan-
ning new transmission lines and generation capacities. To
address these challenges, advanced decision-making models
that lie at the interface of statistics and operation research
have been widely explored. Representation of the uncertainty
in renewable energy is typically done by either using samples
or a set representation from the underlying stochastic process.
The former generally requires forecasting tools for generating
synthetic samples or scenarios that are used for feeding
decision-making optimization models [1]. The latter requires
a simple representation of the stochastic process in order to
embed it into more sophisticated decision-making tools [2]. In
both cases, but especially so in the latter, complex forecasting
models result in models that are hard to integrate.

In this article, we summarize a well-known forecasting
model that is easy-to-embed into more sophisticated decision-
making models, which at the same time also serves as a
tool for generating samples of renewable energy forecasts. In
particular, we focus on forecasting hourly photovoltaic (PV)
solar power generation, but the methodology is not limited
to this technology. Solar power differs from wind power due
to its diurnal nature, and can have much greater ramps than
wind [3].

Forecasting methods for solar power are broadly divided
into two categories: (i) physics-based models—these models
predict solar power from numerical weather predictions and
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solar irradiation data, and (ii) statistical models—these models
forecast solar power directly from historical data. Comparisons
of these two methods are available; see, e.g., [4]. There are
other approaches available as well which combine these two
methods [5]. In this article, we center on statistical methods
alone, and specifically the use of auto-regressive moving
average (ARMA) models to develop our forecasts.

Despite their limitations [6], ARMA models are widely
used to forecast wind power [7], as well as solar power [8],
because of their ease of implementation and parameter se-
lection. Accurate and fast methods to generate solar power
scenarios are often unavailable or significantly complex, and
normal approximations are frequently used; see, e.g., [9].
Here, we describe a summary of the methodology to forecast
solar power using ARMA models. The software codes and
generated scenarios are available on request. The presented
models can be applied either to a local PV generating plant
or to a so-called virtual power plant [10].
The main contribution of this article is to provide a step-

by-step approach and easy-to-implement ARMA model to
forecast PV solar power generation. The proposed model
is able to capture the important statistical features of the
parameters, while maintaining simplicity. The model allows
modelers to embed it into more complex decision-making
structures, statisticians to have an all-in-one place ARMA
model design for PV power generation, and policy makers
and electrical engineers to have a scenario generation tool.

II. METHODOLOGY

By way of illustration, we take hourly year-long historical
solar power output from a site in Australia described in [11].
This zone has an altitude of 595m, a nominal power of
1560 MW, a panel tilt of 36°, and a 38° clockwise panel
orientation from the north. Further installation specifics are
available in zone 1 from Table 1 of [11], while technical
specifications are available in [12]. We use approximately nine
months of data for training. The data does not have any solar
power for the ten hours [20:00-5:00], and hence we restrict
the forecasts in these hours to be zero as well. Equivalently, a
criteria based on the solar zenith angle can be used; i.e., 0° at
sunrise and 90° when the sun is directly overhead. For each of
the remaining 14 hours of the day, we build an ARMA(p, q)
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model. For each hour, we verify the stationarity of the time
series and test a number of ARMA(p, q) models to find the
best one. We use statistical tests on the residuals to validate
the models. Finally, we use Monte Carlo sampling from the
best ARIVIA model, for each hour, to create hourly scenarios.
Fig 1 provides a summary of this process; below we provide
more details.

A. The ARMA model

We recall here the general formulation of ARMA models for
modeling a time series. Given a time series, we can model the
level of its current observation, xt, depending on the level of
its p lagged observations, xt_1, xt_2, . , xt_p, an additional
white noise error term, Et, and, a constant, C. This model is
known as an autoregressive model of order p.

AR(p) : act = OiXt—i + Et = C.

i=1

Next, assume that the level of the current observation is
affected not only by the current white noise error term, but
also by the previous q white noise errors. This model is known
as a moving average model of order q.

MA(q) : xt = Et + GiEt—i •

i=1

An ARMA(p, q) model
MA(q) models as follows.

combines both the AR(p) and

q

ARMA(p, q) : Xt = E OiX t— X + Et + C E GiEt—i
i=1 i=1

Observe that the output variable depends linearly on the cur-
rent and various past values (which is an advantage compared
to other high fidelity forecasting models). An important ques-
tion is how many representative lagged observations should
be considered in order to have good fidelity while keeping the
model as simple as possible. We discuss this in the proceeding
sections.

B. Stationarity

An ARMA model may be a suitable forecasting tool if a
time-series is stationary. We test the hourly data for stationarity
using the Augmented Dickey-Fuller (ADF) test [13]. The ADF
test has a null hypothesis that the series includes a unit root
(or, is non-stationary). We reject the null hypothesis at a level
0.05 if the test-statistic exceeds its 0.95 level quantile. For
all the 14 hours of the day, the null hypothesis is rejected
suggesting the series may be stationary, and hence an ARMA
model may be suitable. If the series were not stationary, an
ARIMA model may be suitable; see, e.g., [14].

C. Selecting parameters of the ARMA model

Next, we estimate the parameters of the ARMA model—
the order of the autoregressive part, p, and, the order of the
moving average part, q. For each hour, we construct 16 models
with both p and q between one and four, and compute the log-
likelihood function value. Larger values of the log-likelihood

indicate better fits, however there is a danger of inflating the
likelihood by choosing a large number of parameters. Thus,
for each hour, we calculate the Bayesian information criteria
(BIC) [15] for the 16 models using p q + 1 parameters.
The BIC penalizes for models with more parameters, and the
smallest value of the BIC gives the best model, for each hour.
Table I provides our estimated p and q values for the 14 hours
of the day. We note that none of the hours have an order value
exceeding two.

TABLE I
ESTIMATED p AND q VALUES FOR ARMA(p, q) MODELS FOR 14 HOURS

OF THE DAY

Hour 6:00 7:00 8:00 9:00 10:00 11:00 12:00
1 1 1 1 2 1 1

q 1 1 1 1 1 1 2

13:00 14:00 15:00 16:00 17:00 18:00 19:00

Pq 11
1
1

1
1

1 1
1

2
1

1
2

D. Prediction

Figure 2a plots a day-ahead prediction using the above
constructed ARMA models; i.e., one hour ahead predictions
from the 14 ARMA models. A number of metrics are available
to evaluate the prediction; see, e.g., [16]. We use a few of them
here. Let the actual and predicted values be denoted by yt and

respectively. Then, the mean absolute error (MAE) and
root mean square error (RMSE) are:

MAE :

RMSE :

k Eji\11
(yi - Yi)2.

The MAE and RIVISE between the actual and the predicted
series is 39.6 1VIW (or, 3.3% of the maximum actual value)
and 61.0 MW (or, 5.1% of the maximum actual value),
respectively.
We further verify autocorrelation in the series, for each hour,

using the Ljung-Box test [17] on the residuals for lags of 5,
10, and 15. The Ljung-Box test has a null hypothesis that the
residuals are uncorrelated up to a given lag. We reject the
null hypothesis at a level 0.05 if its test-statistic exceeds its
0.95 level quantile. For all the 14 hours of the day, the null
hypothesis is not rejected suggesting a zero autocorrelation in
the series, or the model choice may be appropriate.

With increasing penetration of solar power in the electricity
grid, a number of stochastic optimization models for bidding,
storage, and generation have been developed; see, e.g., [18],
[19]. Stochastic optimization models rely on the availability
of a large number of scenarios. We can use Monte Carlo
sampling to generate hourly solar power scenarios. However,
the output from an ARMA model is real valued, and hence can
be negative. In our analysis, we truncate the negative powered
outputs to 0. For the 14 hours of the day, this sampling resulted
in 1.6% of the outputs with estimated power output below -
5MW. Figure 2b plots 2000 day-ahead scenarios as well as
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Fig. 1. Summary of Section II

repeat for all hours

the median, 10 percentile, and 90 percentile values of the
scenarios.

E. Comparison with naive methods

Finally, we compare the developed model against two other
simple forecasting methods. First, we fit a single ARMA
model, as opposed to hour-by-hour, on the entire time series.
Second, we use the Smart-Persistence model of [20], which
assumes the solar power at hour t is the mean of the previous
h hours. We use h = 2 in here. Table II compares the three
models; the proposed model performs better in both of the
chosen metrics.

TABLE II
COMPARISON OF THREE FORECASTING MODELS

Model
Hourly ARMA Single ARMA Smart-Pers

MAE (MW) 39.6 48.2 45.7
RMSE (MW) 61 112.51 102.6

III. CONCLUSIONS

In this article, we summarize a simple and succinct step-
by-step scheme for fitting an ARMA model to historical solar
power data. The steps provide a reference to practitioners in-
terested in using ARMA models for forecasting. The proposed
model provides an easy-to-implement linear tool to forecast fu-
ture hourly scenarios, or for embedding into decision-making
models. We use statistical tests to check the applicability
of various models, identify model parameters, and to finally
forecast scenarios. If significant statistical evidence is not
present in support of a test, the chosen model is not expected
to perform well. This can lead to erroneous conclusions; see,
e.g., [21]. The proposed ARMA model performs better than
a Smart-Persistence model. In summary, the methodology in
this article can be directly applied to historical data, both for
a single PV source and a virtual power plant, to create future
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Fig. 2. Forecasts from the ARMA models of Table I

scenarios for use in stochastic or robust optimization models
for power system operation and planning.
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