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ABSTRACT

Helicity plays a unique role as an integral invariant of a dynamical system. In this paper, the
concept of helicity in the general setting of Hamiltonian dynamics is discussed. It is shown,
through examples, how the conservation of overall helicity can imply a bound on other quantities
of the motion in a nontrivial way.
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1. INTRODUCTION

The total helicity of a vector field has been studied in the past by various authors [1, 2, 3, 4, 5, 6].
The flows (diffeomorphisms in general) for which helicity has been studied have usually been
volume preserving. Under such flows, the total helicity of a vector field is conserved provided that
the manifold on which the vector field is defined is closed or a boundary condition is met [2]. This
has been used to put a lower bound on the enstrophy [3]. A practical application of this has been
to determine the equilibrium magnetic field profile in a reversed field pinch fusion device [4].

A more advanced treatment has been done by others relating helicity to a quadratic asymptotic
linking number of the field lines associated with the vector field [5]. More recently constraints
imposed by a general topological linkage of field lines has been investigated [6].

In this paper, we examine helicity in terms of the Poincaré one and two forms for a single particle.
The state of a continuum system is represented by a graph in the phase space for a single
particle [7]. This graph defines a three dimensional manifold. The helicity of the system is
defined as the integral of a three form over the graph. The evolution of the state of the system (i.e.,
graph) is described by a flow on the phase space. If the flow is Hamiltonian and certain boundary
conditions on the graph are met, helicity is found to be conserved. This allows us to apply helicity
conservation to any Hamiltonian dynamical system, including those with a Hamiltonian which is
time dependent. Under such flows on compact manifolds, with or without boundary, we find that
helicity conservation puts bounds on the related quantities – enstrophy and solenoidal energy.

In Sec. 2, helicity is defined and the conditions under which it is conserved are discussed. The
pullback of helicity into a familiar vector expression appears in Sec. 3. The manner in which
helicity puts bounds on enstrophy and solenoidal energy is shown in Sec. 4. This bound is
determined by the smallest eigenvalue of the curl operator. Section 5 presents solutions to the
eigenvalue problem for two different examples, one without boundary and another with boundary.
Shown in Sec. 6 are various examples of how the dynamics of a continuum system, which has an
infinite number of degrees of freedom, can be related to the evolution of a graph on the phase
space of a single particle. These include a perfect fluid and magnetohydrodynamics (MHD). It is
also shown how cross helicity [8], a concept related to helicity, is conserved under MHD.
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2. BASIC DEFINITIONS AND HELICITY CONSERVATION

We begin by showing how helicity may be defined in a Hamiltonian system. Consider a
dynamical system with an n dimensional configuration manifold Mn, phase space T ∗Mn and the
Poincaré nondegenerate 2-form Ω2 defined on the phase space [9]. Let the dynamical system be
described by the Hamilton function H = H(p,q). The associated equation of motion is

iuΩ
2 =−dH. (2.1)

Here,
Ω

2 ≡ d p∧dq = dΛ
1 (2.2)

is the canonical version of the nondegenerate 2-form, where Λ = pdq is the Poincaré 1-form,
and

u =

[
ṗ
q̇

]
=

d p
dt

∂

∂ p
+

dq
dt

∂

∂q
= up ∂

∂ p
+uq ∂

∂q
(2.3)

is the tangent vector to the flow in phase space. From the Cartan formula (valid for any n-form
ω)

Luω = d(iuω)+ iu(dω), (2.4)

we get that
LuΩ

2 = d(iuΩ
2)+ iu(dΩ

2) = 0 (2.5)

using Eq. 2.1 and the fact that dΩ2 = 0. This is the fundamental expression that Hamiltonian flow
conserves phase space area (“Liouville’s Theorem”). In fact, Ω2 is only the first of a sequence of
invariants (Ω2, Ω2∧Ω2, . . . , Ω2n), where n is the dimension of the configuration space. That each
of these are invariant follows from Eq. 2.5 and the distributive law for the Lie derivative.

We now define the helicity 3-form K3 as

K3 ≡ Λ
1∧Ω

2. (2.6)

Consider now a finite 3-volume V in phase space. The total amount of helicity contained in V is
given by

H ≡
∫

V
K3. (2.7)

The rate of change of H as V is evolved forward with the flow is given by

dH

dt
=
∫

V
LuK3 =

∫
V
(LuΛ

1)∧Ω
2 +Λ

1∧ (LuΩ
2)

=
∫

V

(
iuΩ

2 +d(iuΛ
1)
)
∧Ω

2 =
∫

V
d(iuΛ

1−H)∧Ω
2

=
∫

V
d
[
(iuΛ

1−H)Ω2]= ∫
∂V

(iuΛ
1−H)Ω2 =

∫
∂V

LΩ
2.

(2.8)
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Here, one can declare L to be the Lagrange function. From this equation, we can conclude several
things. If LΩ2 vanishes on the boundary ∂V of the volume V or if V has no boundary, then the
total amount of helicity inside V remains constant as V is carried along with the phase flow. (Note
that the condition that Ω2 vanish on the boundary of V is only an initial condition since
LuΩ2 = 0.) Moreover, K3 is only the first of a sequence of generalized helicities
(K3,K5, . . . ,K2n−1). For each of these, say K2 j+1, the above conservation argument holds when
Ω2 is replaced by Ω2 j and the 3-volume is replaced by a (2 j+1)-volume.
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3. PULLBACK

Locally, we can always specify an integral curve of u by the map from the configuration manifold
M into its phase space T ∗M which assigns to a point q the corresponding momentum p = β (q).
Such a map is shown in Fig. 3-1. To see what helicity conservation looks like inside the
configuration manifold, we pullback the forms from T ∗M down to M with β ∗. Since β ∗ respects
both the exterior differential operator “d” and the wedge product “∧”, we simply have that
β ∗Λ1 = p(q)dq and that, consequently, β ∗Ω2 = d(β ∗Λ1) = d p(q)∧dq. For the special case
where V is inside a 4-dimensional configuration manifold with coordinates q = (t,x,y,z); we get,
in particular,

β
∗
Ω

2 =

(
∂ pz

∂y
−

∂ py

∂ z

)
dy∧dz+

(
∂ px

∂ z
− ∂ pz

∂x

)
dz∧dx+

(
∂ py

∂x
− ∂ px

∂y

)
dx∧dy

+

[(
∂ p0

∂x
− ∂ px

∂ t

)
dx+

(
∂ p0

∂y
−

∂ py

∂ t

)
dy+

(
∂ p0

∂ z
− ∂ pz

∂ t

)
dz
]
∧dt

(3.1)

or get, with notation from 3-space vector analysis,

β
∗
Ω

2 = ω
2
∇×p +

(
ω

1
∇p0−∂tp

)
∧dt, (3.2)

where ω2
a = iavol3 and ω1

a = ∗(iavol3) are the standard representation of vectors as one and
two-forms. The “∗” in the definition of the 1-form ω1 is the Hodge star operator [10].
Consequently,

β
∗K3 =β

∗
Λ

1∧β
∗
Ω

2

=[px (∂y pz−∂z py)+ py (∂z px−∂x pz)+ pz (∂x pyy−∂y px)]vol3

+ p0 [(∂y pz−∂z py)dy∧dz+(∂z px−∂x pz)dz∧dx+(∂x py−∂y px)dx∧dy]∧dt
+[(py∂z p0− pz∂y p0)dy∧dz+(pz∂x p0− px∂z p0)dz∧dx+(px∂y p0− py∂x p0)dx∧dy]∧dt
− [(py∂t pz− pz∂t py)dy∧dz+(pz∂t px− px∂t pz)dz∧dx+(px∂t py− py∂t px)dx∧dy]∧dt

=
(

p ·~∇×p
)

vol3 +
(

ω
2
p0~∇×p+p×~∇p0−p×∂tp

)
∧dt.

(3.3)

In particular, we see that inside 3-space helicity density is the scalar product p ·~∇×p. We wish to
emphasize that p denotes the canonical momentum. It may be relativistic and have a magnetic
component. For the case of a perfect fluid, p = v and helicity density is v ·~∇×v. In MHD,
helicity density is A ·B, formed from the vector potential A and the magnetic field B. We will
discuss this further in Sec. 6.
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Figure 3-1. Graph V in phase space T ∗M.
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4. CONSTRAINED VARIATIONS

In this section, we discuss how the conservation of helicity, as viewed from 3-space, can set
bounds on other global quantities of the motion. In the calculations below, we suppress the
pullback β ∗ operator which is understood to act on all forms. Consider the total enstrophy,
defined as the volume integral over enstrophy density:

N ≡
∫

V
Ω∧∗Ω. (4.1)

To find the extremal value of this quantity, under the constraint of conserved helicity, we perform
a variational calculation with a real parameter µ as a Lagrange multiplier:

0 = δ

∫
V

Ω∧∗Ω−µ Λ∧Ω. (4.2)

Using that Ω = dΛ and the Leibnitz rule d(ap∧bq) = dap∧bq +(−)pap∧dbq, we get that

0 =
∫

V
2δΩ∧∗Ω−µ (δΛ∧Ω+Λ∧δΩ)

=
∫

V
2δΛ∧ (d ∗Ω−µΩ)+d [δΛ∧ (2∗Ω−µΛ)].

(4.3)

We now assume that V is closed or that the second term δΛ∧ (2∗Ω−µΛ) vanishes on the
boundary; the variational condition then gives that enstrophy is extremized when

0 = d ∗Ω−µΩ, (4.4)

i.e., the vector associated with the 2-form Ω must be an eigenvector of the curl operator with
eigenvalue µ .

The meaning of the eigenvalue or Lagrange multiplier µ can be seen by evaluating the enstrophy
when the eigenvalue equation is satisfied:

N =
∫

V
Ω∧∗Ω =

∫
V

Ω∧
(
µd−1

Ω
)
= µ

∫
V

Ω∧Λ = µH . (4.5)

It is the ration µ = N /H .

One can also consider the total energy,

T ≡
∫

V
Λ∧∗Λ, (4.6)
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and its extremal value under the constraint of conserved helicity by a similar variational
calculation:

0 = δ

∫
V

Λ∧∗Λ− 1
µ

Λ∧Ω

=
∫

V
2δΛ∧

(
∗Λ− 1

µ
dΛ

)
+d
(

1
µ

Λ∧δΛ

)
.

(4.7)

We assume that V is closed or Λ∧δΛ vanishes on the boundary; the variational calculation then
gives that energy is extremized when

0 = ∗Λ− 1
µ

dΛ, (4.8)

i.e., the vector associated with the 2-form ∗Λ must be an eigenvector of the curl operator.

The meaning of this eigenvalue µ can be seen by evaluating the energy when the eigenvalue
equation is satisfied:

T =
∫

V
Λ∧∗Λ =

∫
V

Λ∧
(

1
µ

Ω

)
=

1
µ

H . (4.9)

It is the ration µ = H /T .

The problem of extremization of both T and N under the constraint of constant H has now
been reduced to finding eigen 2-forms and eigenvalues of the operator d∗. To do this formally, let
us consider the Hilbert space of all p-forms on a Riemannian Mn, Λp(Mn), with the inner
product

(α p,β p) =
∫

M
α

p∧∗β p. (4.10)

If Mn is compact or α and β have compact support, the adjoint of d can be defined to be

dA ≡−(−)n(p+1) ∗d ∗ . (4.11)

The Hilbert space Λp(Mn) admits the Hodge decomposition [11]

Λ
p(Mn) = dΛ

p−1(Mn)⊕dA
Λ

p+1(Mn)⊕Hp(Mn), (4.12)

where Hp(Mn) is the space of all harmonic p-forms on Mn, dΛp−1(Mn) is the space of all exact
p-forms on Mn, and dAΛp+1(Mn) is the space of all co-exact p-forms on Mn. If one restricts the
domain of dA to dΛp−1(Mn), it can be easily shown by use of the “closed-graph
theorem” [12, 13] that a unique (dA)−1 exists and is bounded so that ∃ m > 0 for which

m‖α p‖ ≤
∥∥∥dA

α
p
∥∥∥ , ∀α p ∈ dΛ

p−1(Mn). (4.13)

Furthermore since ‖α p‖= ‖∗α p‖ and d∗=±∗dA,

m‖α p‖ ≤ ‖d ∗α
p‖ , ∀α p ∈ dΛ

p−1(Mn). (4.14)
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Let us now consider the curl operator restricted to such a domain:

d∗ : dΛ
1(M3)→ dΛ

1(M3). (4.15)

The eigen 2-forms of d∗ restricted to dΛ1(M3) are ζ 2 such that

ζ
2 ∈ dΛ

1(M3) and d ∗ζ
2 = µζ

2. (4.16)

It is now evident from the above remarks that m≤ |µ|. This conclusion that the spectrum of d∗ on
dΛ1(M3) is bounded away from zero (i.e., (d∗)−1 exists and is compact) can now be applied to
the constrained optimization of T and N .

Since by hypothesis Ω = dΛ ∈ dΛ1(M3), one can immediately conclude for the eigen 2-forms of
Eq. 4.4 that |µ| ≥ m or N ≥ m|H |. Enstrophy has a lower bound. It is slightly more
complicated for the case of T . Let us decompose ∗Λ into ∗Λ = dα1 +dAβ 3 +h2, where dα1 is
the solenoidal or transverse component, dAβ 3 is the irrotational or longitudinal component, and
h2 is the harmonic part. Define the solenoidal energy and helicity to be

T0 ≡
∫

V
∗dα ∧dα (4.17)

and

H0 ≡
∫

V
∗dα ∧d ∗dα. (4.18)

Since dα1 ∈ dΛ1(M3), T0 ≤ (1/m) |H0|. Furthermore, the solenoidal part of Λ is the only
component of Λ contribute to the helicity, therefore H = H0 and T0 ≤ (1/m) |H |. The
conclusion that can be drawn is that while the energy T has no bound, the solenoidal energy T0
is bound from above under the constraint of helicity conservation.

One must be careful when applying the bounds on enstrophy and solenoidal energy. While
helicity is conserved regardless of whether Mn is Riemannian or not, the bound on the eigenvalues
of d∗ can only be proved if Mn is Riemannian. This precludes using the eigenvalue bound for
situations which do not have a Riemannian metric (e.g., Minkowski space), unless Mn is always
restricted to a submanifold which has a Riemannian metric (e.g., a volume in Minkowski space
with constant time).

Note what happens to the eigenvalue bound if we extend or restrict the configuration manifold.
Suppose the new manifold M3 is a subset of the old manifold M3

0 , that is, M3 ⊂M3
0 . For every

form α on M3, a form α0 on M3
0 can be chosen so that α0 equals α when restricted to M3. The set

of forms α on M3 such that d ∗α = µα is contained in the set of α0 on M3
0 with d ∗α0 = µα0.

Consequently, the eigenvalue bound m on M3 will be larger than the eigenvalue bound m0 on M3
0 ,

that is,
m≥ m0. (4.19)

A bound on N and T0 associated with flows which change M3 can now be found if M3 is always
a subset of some manifold M3

0 . This is the case for systems required to remain in a “box”.
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A technical detail we now address is how to extend α into α0 on a closed M3
0 . Take the C∞

extension αext of α into N3, a surrounding neighborhood of M3 contained in M3
0 . Multiply this

extension by a C∞ function f which is 1 on M3 and is equal to zero on M3
0 −N3−M3. Now, let

β0 =


α on M3

f αext on N3

0 on M3
0 −N3−M3

. (4.20)

The form β0 can be decomposed into β0 = α0 + γ0 +h0, where α0 is exact, γ0 is co-exact, and h0
is harmonic. The exact component of β0, α0, is equal to α on M3 and, by definition, is an element
of dΛ1(M3

0). This is exactly what we wished to find.

One last technical detail is the fact that β (q) discussed in Sec. 3 is not always single valued. In
this case, shown in Fig. 4-1, separate βi can be defined that are all single valued. Each βi is
defined on the domain V 3

i . One can now define integration over V 3 as∫
V 3

α
3 = ∑

i

∫
V 3

i

β
∗
i α

3. (4.21)

Repeating the variational calculation of Sec. 4, one obtains the following equation for the
extremal 2-forms

d ∗α
2
i = µi ∗α

2
i ∀α2

i on V 3
i . (4.22)

If the dynamics are constrained such that V 3
i ⊂M3

0 ∀i, then by the above extension theorem
|µi|> m0 ∀µi. The bound on enstrophy changes to

N = ∑
i

µiHi ≥ m0 ∑
i
|Hi| ≥ m0|H |, (4.23)

where Hi is the contribution to the helicity from βi on V 3
i . By a similar argument,

T0 ≤
1

m0
|H |. (4.24)
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Figure 4-1. Multivalued graph, V .
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5. EIGENVALUE PROBLEM

The existence of bounds on N and T0 have a simple heuristic explanation. Let the dominant
(initial) contribution to all quantities be at a length scale Li. Now change this dominant length
scale to the (final) value L f . By dimensional analysis, it is evident that

T f /Ti

H f /Hi
∼

L f

Li
and

N f /Ni

H f /Hi
∼ Li

L f
. (5.1)

If H f = Hi, it is obvious that one would like to let L f → ∞ to maximize T0 and minimize N .
Since the size of configuration space is limited in practice to be no larger than some L0, an upper
bound is put on T0 and a lower bound is put on N .

Let us now look at a simple example of a physical system which displays the behavior we have
just discussed. Consider the manifold B3 which is a box with periodic boundary conditions and
sides of length Lx, Ly and Lz. This is a closed manifold with the topology of the three torus:
B3 = S1×S1×S1.

Decompose an arbitrary vector field on B3 into its Fourier components

v(q) = Re

(
∑
kα

Akαakαeiq·k

)
(5.2)

where

k = 2π

(
nx

Lx
,

ny

Ly
,

nz

Lz

)
(5.3)

and nx,ny,nz = 0,1,2, . . . . The vectors akα are complex valued with unit norm and the constants
Akα are complex numbers. We wish to find akα such that pkα = Akαakαeiq·k are eigenvectors of
the curl operator, that is,

~∇×pkα = µkαpkα . (5.4)

This can be reduced to the matrix eigenvalue equation(←→
G k̂−λk̂α

←→
I
)

ak̂α
= 0 (5.5)

where

←→
G k̂ =

 0 −kz ky
kz 0 −kx
−ky kx 0

 , λk̂α
=

µkα

ik
(5.6)
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and k = k (kx,ky,kz) = k k̂ with k2
x + k2

y + k2
z = 1. The eigenvalues and eigenvectors are:

ak̂0 = k̂,
λk̂0 = 0,
µk0 = 0,

ak̂± =
1√

2(1− k2
x)

 k2
x −1

kxky∓ ikz
kxkz± iky

 ,

λk̂± =∓i

and µk± =±k.

(5.7)

The following Hodge decomposition for v on B3 can now be obtained

v(q) = C0 + ∑
n 6=~0

nx,ny,nz ≥ 0

∑
α=0,±

Cnα
~ξnα(q,βnα), (5.8)

where Cnα and βnα are real constants, C0 is a constant vector,

~ξn0(q,βn0) =
√

2 ak̂0 cos(q ·k+βn0) (5.9)

and

~ξn±(q,βn±) =
√

2
[
Re
(
ak̂±
)

cos(q ·k+βn±)− Im
(
ak̂±
)

sin(q ·k+βn±)
]
. (5.10)

It is easy to verify that the vectors ~ξnα are orthogonal,(
~ξnα ,~ξn′α ′

)
= δn,n′ δα,α ′ , (5.11)

with respect to the inner product

(a,b) =
1

LxLyLz

∫
a ·b d3q. (5.12)

In addition, the vector calculus properties of these vectors can be summarized as follows:

~∇ ·C0 = 0,
~∇×C0 =~0,
~∇ ·~ξn0 =−k

√
2sin(q ·k+βn0),

~∇×~ξn0 =~0,
~∇ ·~ξn± = 0

and ~∇×~ξn± =±k~ξn±.

(5.13)

18



The harmonic, irrotational and the solenoidal components of v are respectively:

vh = C0,

vi = ∑
n 6=~0

nx,ny,nz ≥ 0

Cn0
~ξn0(q,βn0)

and vs = ∑
n 6=~0

nx,ny,nz ≥ 0

Cn+ ~ξn+(q,βn+)+Cn− ~ξn−(q,βn−).

(5.14)

If v is restricted to the solenoidal vectors, the minimum eigenvalue of curl is m = 2π/Lmax, where
Lmax = max(Lx,Ly,Lz). Under any Hamiltonian flow on B3, the enstrophy has a lower bound so
that

N ≥ 2π

Lmax
|H |. (5.15)

Written in terms of the pullback of Sec. 3, this condition is∫ (
~∇×p

)2
d3q≥ 2π

Lmax

∣∣∣∣∫ p ·
(
~∇×p

)
d3q
∣∣∣∣ . (5.16)

The solenoidal energy will have an upper bound so that

T0 ≤
Lmax

2π
|H |. (5.17)

The pullback of this condition is∫
p2

s d3q≤ Lmax

2π

∣∣∣∣∫ p ·
(
~∇×p

)
d3q
∣∣∣∣ . (5.18)

Now let us turn our attention to a compact manifold with boundary. Consider a cylinder of radius
a and length L. Because ∂V 6= 0, one must impose a boundary condition if helicity is to be
conserved and the surface terms in the variational calculation are to vanish. A simple way to do
this is to require Ω2|∂V = 0 initially. Since LuΩ2 = 0, Ω2|∂V = 0 for all time. Under this
condition,

dH

dt
=
∫

∂V
(iuΛ−H)∧Ω = 0. (5.19)

Also, the surface term in the variational calculation is∫
∂V

δΛ∧ (2∗Ω−µΛ) =
∫

∂V
µ Λ∧δΛ. (5.20)

The variation is constrained so that δΩ|∂V = d (δΛ|∂V ) = 0 (i.e., δΛ|∂V is closed). We assume
that an additional condition on the topology of ∂V is met. The first Betti number of ∂V is zero.
This is equivalent to all one chains on ∂V being homologous to zero. The cylinder obviously
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meets this condition. The variation δΛ|∂V is therefore exact and can be written as δΛ|∂V = dα0.
We can now further reduce the surface term to∫

∂V
µ Λ∧δΛ = µ

∫
∂V

Λ∧dα
0 = µ

∫
∂V

α
0
Ω−d(α0

Λ) =−µ

∫
∂ (∂V )

α
0
Λ = 0. (5.21)

Since helicity is conserved, we now need to solve the eigenvalue equation for curl on this
manifold under the above boundary condition. A simple way to estimate the bound on the
eigenvalue is to apply the result for B3. Imbed the cylinder in a box with sides of length
Lx = Ly = 2a and Lz = L, and close it into T 3 topology by applying periodic boundary conditions.
We now find that the minimum solenoidal eigenvalue for the cylinder is more than
m0 = 2π/max(2a,L).

To find the minimum solenoidal eigenvalue and the corresponding eigenvector, we need to obtain
solutions to

~∇×a = µa (5.22)

in cylindrical coordinates such that a is solenoidal (i.e., a = ~∇×b for some b). These have been
previously been found [14, 15, 16] to be

amk
r =

−1√
µ2− k2

[
kJ′m(y)+

µm
y

Jm(y)
]

sin(mθ + kz),

amk
θ =

−1√
µ2− k2

[
µJ′m(y)+

mk
y

Jm(y)
]

cos(mθ + kz)

and amk
z = Jm(y)cos(mθ + kz),

(5.23)

where Jm(z) is the Bessel function and y = r
√

µ2− k2.

Applying the boundary condition a|∂V =~0, restricts one to solutions such that m = 0, kL = nπ ,
n 6= 0 and J1(a

√
µ2− k2) = 0. This gives

µpn =±
√(yp

a

)2
+
(nπ

L

)2
, (5.24)

where J1(yp) = 0. The minimum solenoidal eigenvalue is

m = |µ11|=
√(y1

a

)2
+
(

π

L

)2
, (5.25)

which can be shown to be greater than the bound m0 = 2π/max(2a,L) found earlier. As expected
m > m0. This constant m sets the lower bound on enstrophy and the upper bound on solenoidal
energy.
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6. PHYSICAL EXAMPLES

We discuss three examples of Hamiltonian systems, each of increasing complexity.

6.1. Continuous charged dust

The first is a system of “continuous charged dust”. This system consists of many small dust
particles of mass and charge +1. The state of the system is given by the density of the dust n(q, t)
and its velocity v(q, t) as functions of position q = (x,y,z) and time t. For simplicity, we write the
state at time t as

s(t) = (v(q, t),n(q, t)). (6.1)

We will consider only electrostatic interaction so that we can write the Lagrange function as

L[s](q,v, t) =
v2

2
−V0[s](q)−Vext(q, t)−Vc(q), (6.2)

where

V0[s](q) =
∫ n(q′, t)
|q−q′|

dq′ (6.3)

is the potential due to the other dust particles, Vext is an external potential applied to the system,

Vc(q) =
{

0 |q| ≤ q0
∞ |q|> q0

(6.4)

is a potential to contain the system of charges, and

v =
dx
dt

∂

∂x
+

dy
dt

∂

∂y
+

dz
dt

∂

∂ z
= vx ∂

∂x
+ vy ∂

∂y
+ vz ∂

∂ z
(6.5)

is the tangent vector to M. Both V0 and L are functionals of the current state of the system. We
now use a Legendre transformation to obtain the Hamiltonian

H[s](q, p, t) =
p2

2
+V0[s](q)+Vext(q, t)+Vc(q), (6.6)

where p = ∂L/∂v = (px, py, pz) = (vx,vy,vz). The evolution of the system is determined by
Hamilton’s equations

d p
dt

=−∂H
∂q

,

dq
dt

=
∂H
∂ p

,

dH
dt

=
∂H
∂ t

(6.7)
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and mass conservation
dn
dt

=−n~∇ ·v. (6.8)

Given the initial state of the system, s0, we can solve for s(s0, t). We can then substitute into
Eq. 6.6 to get H[s0](q, p, t). Now consider extended phase space where Q = (t,x,y,z) and
P = (−H, px, py, pz) = (−H,vx,vy,vz). The new Hamiltonian is H ′(Q,P) = 0, and the Poincaré
1-form is Λ1 = pdq−H dt. Equations 6.7 can now be rewritten in the familiar form iuΩ = 0. The
flow of a graph V is then generated by the Hamiltonian vector field u (see Fig. 6-1). A point to
note is that u is a functional of s0, but no matter what s0 one picks, the flow is still Hamiltonian.

Figure 6-1. Flow of a graph V on phase space T ∗M.

The implications of this flow in terms of familiar vector expressions are now examined. The
pullback of the Poincaré 2-form and the helicity 3-form are

β
∗
Ω

2 = ω
2
~∇×v

+
(

ω
1
−∂tv−~∇H

)
∧dt (6.9)

and
β
∗K3 =

(
v ·~∇×v

)
vol3−

(
ω

2
H~∇×v+v×~∇H+v×∂tv

)
∧dt. (6.10)

For a graph V with a constant time coordinate; one can write helicity, enstrophy and solenoidal
energy as

H =
∫

v ·
(
~∇×v

)
d3q,

N =
∫ (

~∇×v
)2

d3q

and T0 =
∫

v2
s d3q,

(6.11)

respectively. If ∂V = 0 or L(n̂ ·~∇×v)|∂V = 0, where n̂ is a unit normal to V , we know from Sec. 2
that H is conserved as the graph undergoes the Hamiltonian flow generated by u. Furthermore,
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since the dust is constrained to flow within the box of size q0, we know that enstrophy has a lower
bound of order |H |/q0 and solenoidal energy has an upper bound of order |H |q0. These bounds
are independent of the choice of the external time dependent potential Vext.

6.2. Perfect fluid

A more familiar continuous system that can be written in terms of a Hamiltonian flow is a perfect
fluid [17]. The state of the system is given by the fluid velocity v(q, t), density n(q, t) and pressure
P(q, t) as functions of position q = (x,y,z) and time t, that is,

s(t) = (P(q, t),n(q, t),v(q, t)). (6.12)

The equations which govern the evolution of a perfect fluid are Euler’s Equation

dv
dt

=−1
n
~∇P, (6.13)

the equation of mass conservation,
∂n
∂ t

+~∇ · (nv) = 0, (6.14)

and an equation of state such as:

~∇ ·v = 0 (i.e., incompressible),
d
dt

(
Pn−γ

)
= 0 (i.e., adiabatic)

or
d
dt

(
P
n

)
= 0 (i.e., isothermal).

(6.15)

In order to write Euler’s equation as Hamilton’s equations, we introduce the enthalpy per
particle

µ ≡ 1
n
(P+ e) , (6.16)

where e is the energy density. A thermodynamic identity µ = de/dn shows us that e and µ are not
independent quantities. This allows us to write µ as a functional of P and n with an explicit
dependance on q, that is,

µ = µ[s](q). (6.17)

Now consider the Lagrange function

LF[s](q,v) =
v2

2
−µ[s](q). (6.18)

A Legendre transformation yields the Hamiltonian

HF[s](q, p) =
p2

2
+µ[s](q) (6.19)
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with p = ∂LF/∂v = (px, py, pz) = (vx,vy,vz). To eliminate the functional dependance on s, solve
Eqs. 6.13, 6.14 and 6.15 for s = s(s0, t). Now substitute into Eq. 6.19 to yield

HF[s0](q, p, t) =
p2

2
+µ[s(s0, t)](q). (6.20)

The equations

d p
dt

=−∂HF

∂q

and
dq
dt

=
∂HF

∂ p

(6.21)

can be shown to be equivalent to Euler’s equation. Because of the explicit time dependance of HF,
we must examine the flow of the graph on extended phase space. This evolution is governed by
iuΩ2

F = 0 where Λ1
F = p dq−HF dt. The rest of the analysis is identical to that for the “continuous

charged dust” if the fluid is constrained to move inside a box of size q0.

6.3. MHD

The last example of a system with a conserved helicity is MHD [18]. The state of the system is
given by the density n(q, t), pressure P(q, t), fluid velocity v(q, t), charge density nq(q, t), current
j(q, t), scalar potential ϕ(q, t) and vector potential A(q, t) as functions of position and time, that
is,

s(t) = ( n(q, t),P(q, t),v(q, t),nq(q, t), j(q, t),ϕ(q, t),A(q, t) ). (6.22)

For convenience in writing the MHD equations; we set c = 1, define the magnetic field by

B≡ ~∇×A (6.23)

and define the electric field by

E≡−∂A
∂ t
−~∇ϕ. (6.24)

Two MHD equations which govern the evolution of the system we will examine in further detail.
The first is Ohm’s law

E+v×B =
j
σ
≈ 0 (6.25)

where we have assumed infinite conductivity σ . The second is the equation of force balance

n
dv
dt

= j×B+nqE−~∇P. (6.26)

We also have the equation of mass conservation

∂n
∂ t

+~∇ · (nv) = 0, (6.27)
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the equation of charge conservation
∂nq

∂ t
+~∇ · j = 0, (6.28)

and Maxwell’s equations

~∇ ·E = 4πnq

and ~∇×B = 4πj.
(6.29)

The system of equations is completed by an equation of state such as those which appear in
Eq. 6.15. As with the previous two examples we can solve the system of equations to obtain
s(s0, t).

What we now wish to do is rewrite Ohm’s law and the force balance equations in terms of interior
products of Poincaré 2-forms. The Hamiltonian structure of Ohm’s law can be uncovered by
considering the Lagrangian function

Lem[s0](Q,U) = AaUa, (6.30)

where A = (−ϕ,Ax,Ay,Az) is the covector form of the electromagnetic 4-potential and
Q = (t,x,y,z) is a point in Minkowski space with the metric

((gab)) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (6.31)

and

U = v+
∂

∂ t
(6.32)

is the tangent vector to M. The canonical momentum is P = ∂Lem/∂U = A and the Hamilton
function is

Hem[s0](Q,P) = 0. (6.33)

The Poincaré one form is written as Λ1
em = Aa dQa = A ·dq−ϕ dt. We can now write

Hamiltons’s equations as
iuΩ

2
em = 0. (6.34)

This can be shown to be equivalent to Ohm’s law in the following way. Consider the pullback β ∗

from Λp(T ∗M) to Λp(M). Apply it to Eq. 6.34 to yield

0 = iU
(
β
∗
Ω

2
em
)
, (6.35)

where
β
∗
Ω

2
em = ω

2
B +ω

1
E∧dt (6.36)

is the electromagnetic field 2-form. Further simplification of Eq. 6.35 yields

ω
1
E+v×B−v · (E+v×B)dt = 0. (6.37)
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This equation, when written in vector form, is just Ohm’s law. Since we now have expressed
Ohm’s law in Hamiltonian form, we can say that magnetic helicity will be conserved if ∂V = 0 or
LemΩ2

em|∂V = 0. To relate this conservation to more familiar expressions, we pullback the
magnetic helicity 3-form. The result is

β
∗K3 = (A ·B)vol3−

(
ω

2
ϕB+E×A

)
∧dt. (6.38)

If the graph V has constant time; then magnetic helicity, enstrophy and solenoidal energy are:

H =
∫

A ·B d3q,

N =
∫

B2 d3q

and T0 =
∫

A2
s d3q.

(6.39)

The boundary condition for such a V required for magnetic helicity conservation is ∂V = 0 or
Lem(B · n̂)|∂V = 0.

We now turn our attention to the force balance equation. While we are not able to write this in
terms of Hamilton’s equations, we are able to write it in a form sufficiently close to Hamiltonian
so that a quantity called cross helicity will be conserved if certain boundary conditions are met.
First notice the similarity between the force balance equation and Euler’s equation. The only
difference is the j×B+nqE term in the force balance equation. Inspired by this similarity, we use
the same Poincaré 2-form we used for the fluid Ω2

F to rewrite the force balance equation as

iUΩ
2
F =−iJΩ

2
em, (6.40)

where

J =
j
n
+

nq

n
∂

∂ t
=

nq

n
∂

∂ t
+

jx

n
∂

∂x
+

jy

n
∂

∂y
+

jz

n
∂

∂ z
. (6.41)

We adopt the convention that β ∗em operates on Λ1
em and β ∗F operates on Λ1

F whenever they appear.
This is necessary since Λ1

em and Λ1
F are forms acting on different cotangent bundles which have

the same base manifold M. Therefore, to have expressions such as Λ1
em∧Λ1

F make sense, both
forms must be pulled-back to the same base manifold. The equivalence of Eq. 6.40 and the force
balance equation, Eq. 6.26, can be seen by reducing Eq. 6.40 to

ω
1
d− (v ·d) dt = 0, (6.42)

where
d≡ dv

dt
+

1
n

(
~∇P− j×B−nqE

)
. (6.43)

To express the second term in Eq. 6.42 as it appears, we have used the fact that Ohm’s law is
satisfied.

The 1-form iJΩ2
em need not be exact so that Eq. 6.40 is not in the form of Hamilton’s equations.

Because of the non-exact part of iJΩ2
em, fluid helicity HF =

∫
V Λ1

F∧Ω2
F will not be conserved.

Despite this, we can define the cross helicity

Hc ≡
∫

V
Λ

1
F∧Ω

2
em, (6.44)
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which is conserved if certain boundary conditions are met. Here, V is a volume in Minkowski
space. The reason for this conservation can be seen by taking the time derivative of Hc as
follows:

dHc

dt
=
∫

V
LU
(
Λ

1
F∧Ω

2
em
)

=
∫

V

(
LUΛ

1
F
)
∧Ω

2
em +Λ

1
F∧
(
LUΩ

2
em
)

=
∫

V

(
LUΛ

1
F
)
∧Ω

2
em.

(6.45)

The second term with LUΩ2
em is zero since Ohm’s law is Hamiltonian. We now apply Cartan’s

formula and Stoke’s theorem to Eq. 6.45 and express the time derivative as

dHc

dt
=
∫

∂V

(
iUΛ

1
F
)

Ω
2
em +

∫
V

(
iUΩ

2
F
)
∧Ω

2
em. (6.46)

For the case of a Hamiltonian system, we would substitute −dH for iUΩ2
F. We can not do this

because of the non-exact iJΩ2
em term in the force balance equation. What we can do is substitute

−iJΩ2
em for iUΩ2

F in the second term of Eq. 6.46. By use of Ohm’s law, one can now show that
this term equals zero. This leaves us with

dHc

dt
=
∫

∂V
LF Ω

2
em, (6.47)

where LF ≡ iUΛ1
F. Therefore, if either ∂V = 0 or LF Ω2

em|∂V = 0, cross helicity will be conserved.
The pullback of the cross helicity 3-form is

β
∗K3

c = (v ·B)vol3 +
(
ω

2
−HFB+v×E

)
∧dt. (6.48)

For a graph V with constant time, the cross helicity is

Hc =
∫

V
v ·B d3q. (6.49)

The boundary condition so that cross helicity be conserved on V is ∂V = 0 or LF(B · n̂)|∂V = 0
where n̂ is a unit normal to ∂V .
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7. CONCLUSIONS

We have defined helicity density K3 as the natural 3-form on T ∗M. Under Hamiltonian flow and
certain boundary conditions, helicity,

H ≡
∫

V
K3,

is conserved. This limits the class of configuration obtainable through Hamiltonian flow. The
limited class of configurations has a lower bound on enstrophy and an upper bound on solenoidal
energy. These bounds are set by the minimum solenoidal eigenvalue of the curl operator, d∗, on
the three dimensional manifold. If helicity were not conserved, these bounds would not exist.
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