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Abstract—This paper provides an overview of the open source
analog simulation tool, Xyce, which was designed from the
ground-up to perform large-scale circuit analysis. Current ca-
pabilities of the simulation tool will be discussed, including the
analysis methods, device models, and parallel implementation.
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I. INTRODUCTION

Accurate analog circuit simulation is an important part of
design and verification of electrical and electronic circuits and
systems. At modern technology nodes, analog, SPICE-accurate
simulation can be a prohibitive development bottleneck. Tra-
ditional circuit simulation, such as with SPICE [1], does not
scale well beyond tens of thousands of unknowns, due to a
reliance on direct matrix solver methods.

A recent driver for efficient large-scale analog simulation
is the trend towards digitally-assisted analog/RF, and the
development of Systems On a Chip (SOCs). Another driver
is the challenge of design, verification, and debugging of
mixed-signal systems, which is due to the presence of “analog
issues,” such as variability, noise/interference, nonlinear analog
dynamics, analog waveshapes, and timing/phase lags. Often,
for simulation of mixed-signal systems, simulation of the
analog portions of the system are a significant bottleneck that
cannot be avoided, as verification methods often require analog
simulation results as an input.

This paper contains an overview of the open source analog
circuit simulation tool, Xyce [2], which was designed from
the ground-up to perform large-scale parallel circuit analysis,
primarily using message-passing. Current capabilities of the
simulation tool will be discussed, including the code design
philosophy, analysis methods, and device models. A particular
emphasis is placed on parallel algorithm strategies, with some
recent parallel scaling results.

II. CIRCUIT SIMULATION BACKGROUND

Time-domain (transient) and frequency-domain (HB) analog
circuit simulations are an essential, yet expensive, part of
the computer-aided design (CAD) process. Traditional circuit
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simulators, such as SPICE [1], are based on solving a fully-
coupled nonlinear differential algebraic equation (DAE)

@) + 2EO)

where z(t) € RY is the vector of circuit unknowns, ¢ and
f are functions representing the dynamic and static circuit
elements (respectively), and b(t) € IRY is the input vector.
This set of DAEs is often nonlinear, and is derived from
enforcing Kirchoff’s current and voltage laws on a network
using formulations such as modified nodal analysis (MNA).
The numerical approach employed to compute solutions to
equation (1) is predicated by the analysis type. Common anal-
ysis types for circuit simulation include steady-state, transient,
small-signal frequency domain (generally called AC analysis),
and large-signal frequency domain methods such as harmonic
balance (HB). A circuit simulation solver flow for transient
analysis is shown in Fig. 1. Analogous solver flows exist for
every method.

For transient analysis, the set of equations (1), more gen-
erally expressed as F'(z,2’) = 0, is solved by numerical
integration methods corresponding to the nested solver loop in
Fig. 1. This requires the solution to a sequence of nonlinear
equations, F'(x) = 0. Typically, Newton’s method is used to
solve these nonlinear equations, resulting in a sequence of
linear systems (represented as Az = b in the figure) of the
form:

=b(t). )

(G +Q/6t)dz = —F )

that involve the conductance, G(t) = %(m(t)), and capac-
itance, Q(t) = %(x(t)), matrices. For DC (steady-state)
analysis, the ¢ terms are not present in equation (1), so
the linear system only involves the conductance matrix. The
matrices and vectors of Eq. 2 are constructed from device
model evaluations, the results of which must be assembled by
the simulation framework at each nonlinear solution step.

For harmonic balance (HB), both the f and ¢ terms are
present, but the solution is approximated in the frequency do-
main as a Fourier expansion. After substitution and truncation
(to M harmonics), the frequency-domain system is:

Hpp=0Q (X)+ F(X)-B=0, 3)
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Fig. 1. General circuit simulation flow
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Compared to the linear system, of dimension N, generated by
transient analysis, HB analysis will generate a linear system of
dimension n(2M +1) that is block structured, complex-valued,
and possibly dense.

For all types of analysis, device model evaluations and
matrix solves comprise the bulk of the simulation cost. As
such, any parallel approach should seek to speed up and
parallelize these two phases of the calculation. The device
evaluation phase of circuit simulation typically scales linearly
with problem size. However, matrix solves are another matter.
The traditional solution approaches for solving matrices do
not scale well beyond tens of thousands of unknowns due to a
reliance on a large single matrix that is usually treated by direct
matrix solvers [3], [4]. As a result, the runtime scales super-
linearly with increasing circuit size. For RF simulation, the
can be even worse, because harmonic balance (HB) analysis
generates larger block matrices that lack sparsity for nonlinear
portions of the problem.

The speed penalty of traditional SPICE-accurate simula-
tion can be mitigated by simulating individual modules. It
is also natural to consider techniques that use numerical
approximations at various levels throughout the simulator.
“Fast-SPICE” simulators [5], [6], [7] rely on circuit-level,
hierarchical partitioning algorithms, event-driven simulation

techniques, and efficient surrogate models for devices and/or
sub-circuits to perform faster, large-scale circuit simulations.
While effective in many cases, the numerical approximations
inherent to such algorithms can break down for modern feature
sizes, especially in post-layout simulations.

The development of inexpensive computer clusters, as well
as multi-core technology, resulted in significant interest for
efficient parallel circuit simulation [8]. Parallel “true-SPICE”
circuit simulation at this point has a rich history, dating back
decades [8], [9], [10]. More recent efforts include Frolich [11],
who relied on a multi-level Newton approach in the Titan
simulator; Basermann [12], who used a Schur-complement
based preconditioner; Peng et al. [13] used a domain de-
composition approach and relied on a combination of direct
and iterative solvers; and Benk et al [14] who also used a
domain decomposition approach but with a different partioning
method. At this point, parallel “true-SPICE” circuit simulation
is also well-integrated into several commercial tools [15], [16].

III. THE XYCE PARALLEL SIMULATOR

Xyce is a SPICE-style analog simulation tool [17] designed
to use distributed memory parallelism to address circuit simu-
lation scalability. Additionally, it has been designed with a
modular framework, to facilitate integration of new device
models, solution algorithms and analysis methods. In this
section, the main components and capabilities of Xyce will
be described.

A. Device Model Support

Xyce includes legacy SPICE models, industry standard
models (BSIM, PSP, MEXTRAM, VBIC, e.g.), and non-
traditional models, such as memristors. The extensible de-
sign of the device model package has also enabled Xyce
to be used to simulate other types of networks, including
biological/reaction/neural networks and power grids. To fa-
cilitate model implementation, Xyce can be linked to model
compilers, including ADMS [18], and the Berkeley Model
and Algorithm Prototyping Platform (MAPP) [19], which can
translate a model written in a high level modeling language,
such as Verilog-A to compilable Xyce C++ code.

B. Analysis Capabilities

Xyce was initially developed to perform transient and DC
analysis of analog circuits. The analysis capabilities have been
extended to include AC, single-tone and multi-tone harmonic
balance (HB), multi-time PDE (MPDE), model order reduction
(MOR), direct and adjoint sensitivity analysis, and uncertainty
quantification (UQ) such as Polynomial Chaos Expansion
(PCE) methods.

C. Code Design

Xyce is written in ANSI C++ using modern software
paradigms, which enables Xyce to be a production simulator,
as well as a testbed for parallel algorithm research. Xyce uses
abstract interfaces and runtime polymorphism throughout the
code, which facilitates code reuse and algorithmic flexibility.



Many of the higher-level abstractions, relating to the analysis
type or time integration methods, have implementations that
are contained in Xyce. However, the lower-level numerical
abstractions, related to the nested solver loop in Fig. 1, have
interfaces to the high-performance scientific libraries provided
by Trilinos [20]. The current Trilinos software stack that is
employed by Xyce is illustrated in Fig. 2. Xyce employs
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Fig. 2. Nested solver loop interface to Trilinos

these software abstractions to enable adaptation to future
parallel paradigms and arithmetic precision strategies with
minimal effort. Xyce currently uses MPI with double precision
arithmetic through Essential Petra (Epetra). However, future
computational platforms may require the use of other parallel
paradigms, such as hybrid techniques that combine MPI with
threads, to achieve optimal performance. Many of these future
computational strategies are discussed in reference [21].

D. Scalable Simulation

Achieving scalable parallel circuit simulation often comes
down to striking the right balance of device distribution and
choice of a linear solver. Since the inception of Xyce, the
simulator has been designed to use a separate partition for
devices and the linear solver, as illustrated in Fig. 3. This
is because the cost of evaluating a device model can vary
greatly between device types, and balancing that cost across
processors can result in a matrix that is challenging for
many linear solvers. Furthermore, as the scale of circuits
increase—and assuming a reasonable distribution of devices—
the dominant cost in the analysis quickly becomes the linear
solver. To address this performance bottleneck, new parallel
linear solvers and preconditioners [22], [23], [24] have been
developed that enable the scalable transient simulation of
postlayout ASICs with millions of devices. In the next section,
a brief description of each of these methods is given.
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Fig. 3. Parallel load balance for device evaluation and matrix structure

IV. PARALLEL MATRIX SOLVERS

The Xyce simulator has several direct and iterative ma-
trix solvers, ranging from serial direct [3], [4] and paral-
lel direct [24], to parallel preconditioned iterative [22] and
even hybrid methods, which combine iterative and direct
approaches [23]. Which approach is best for a given circuit
will depend upon the size of the problem, as well as the
circuit connectivity and respective matrix structure. A high
level description of the different matrix solvers in Xyce is
given in this section.

A. Serial and Parallel Direct Solvers

The default linear solver in Xyce for small-to-medium
problems is KLU, a serial direct solver specifically designed
for circuit matrices by Davis [4]. More recently, in refer-
ence [24], a threaded direct solver, Basker, was presented. This
solver relies on hierarchical parallelism and data layouts, and
incorporates the first parallel implementation of the Gilbert-
Peierls algorithm that is the cornerstone for KLU. In the
paper, Basker was compared to KLU, in addition to public-
domain parallel direct solvers, such as Pardiso MKL (PMKL).
The comparisons were conducted on the Florida sparse matrix
collection [25], as well as a large transient Xyce calculation
for which existing preconditioned iterative methods had failed.
Basker was very competitive on matrices will low fill-in
density. On the transient Xyce calculation, a speedup of 5.43x
was achieved when using Basker instead of PMKL and 5.22x
when using Basker instead of KLU.

B. Singleton Removal

A common feature required for the Xyce parallel iterative
solvers (described in sections IV-E, IV-D and IV-C) to work
effectively is a matrix preprocessing step known as singleton
removal. Matrices from circuit simulation are sparse, but typi-
cally contain dense rows and columns. These structural matrix
features are problematic for parallel domain decomposition
(DD) methods, as they have the potential to increase commu-
nication costs dramatically. The crucial observation [12] is that
the dense rows (or columns) correspond to columns (or rows)
with one and only one non-zero entry. A histogram illustrating
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Fig. 4. Example IC connectivity histogram. Highly connected nodes
such as power, and moderately connected nodes such as buses and
clocks cause communication problems for parallel linear solvers. It
is advantageous to eliminate singletons from the matrix graph as an
initial step.

the connectivity for an example integrated circuit (IC) is
depicted in Fig. 4. For this particular example, the power and
ground nodes are connected to more than 10% circuit nodes,
requiring singleton removal for successful parallel solution.

Singleton removal is a successful strategy, but only when the
nodes are connected to ideal sources, and thus can essentially
be removed from the system of equations by inspection. In
practice, highly connected nodes may be non-ideal due to
parasitic elements, and under this circumstance, the singleton
removal algorithm can fail. A mitigation strategy designed
to preserve singleton removal, based on multi-level Newton
methods is presented in reference [17].

C. Block Triangular Factorization Preconditioner

In reference [22], a preconditioner based on block triangular
form (BTF) was presented. The block triangular structure is
determined by permuting the DC matrix in two steps: first
a maximum matching permutation to generate a matrix with
a zero-free diagonal, and second a topological sort which
finds the strongly-connected components of the associated
directed graph. The permutation to BTF is also known as
the Dulmage-Mendelsohn decomposition. Once the matrix has
been permuted, the block structure is partitioned using a hyper-
graph partitioner. This preconditioner works well whenever the
irreducible blocks (strongly connected components) are small,
e.g., for unidirectional circuits; but this property is not satisfied
for all circuits, especially ones based on modern process nodes.

D. Hybrid Schur Complement Preconditioner

In reference [23], a solver/preconditioner known as ShyLU
was presented. ShyLU is a hybrid solver, which makes use
of both course-grained (message-passing) and fine-grained
(threading) parallelism. It is also a hybrid solver in the mathe-
matical sense, in that it uses features from direct and iterative
methods. ShyLU uses Schur complement techniques to bridge
the gap between direct and iterative methods resulting in a

Fig. 5. Graph/Hypergraph based unsymmetric (left) and symmetric
(right) ordering of the sparse linear system for parallelism in ShyLU
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Fig. 6. Speedup of Xyce’s simulation time and linear solve time for
strong scaling experiments with different configurations of MPI Tasks
X Threads per node using ShyLU.

solver that is scalable and robust for large-scale circuits. An
example of the wide separator ordering used by ShyLU is
shown in figure 5. The Schur complement approach used by
ShyLU is similar to approaches used by other parallel circuit
simulators [12], [26], [14]. In some cases, it is used as the
solver directly, and in others it is used as part of a precondi-
tioning strategy. One scaling result from reference [23], for
which ShyLU was used as a preconditioner with Xyce is
shown in figure 6. The circuit used in this study is a CMOS
ASIC consisting of 1.6 million total devices and roughly 2
million unknowns. The test machine was a capacity cluster,
with 272 compute nodes, where each node has a 2.2 GHz
AMD quad socket/quad core processor and 32GB RAM. When
run in serial with the KLU solver this circuit took nearly 2
weeks to complete the simulation. Using optimal partitions
with ShyLU the same simulation took about a day.

E. Other Preconditioners

In addition to the circuit-specific preconditioners described
in sections IV-D and IV-C, Xyce also has available to it,
through the Trilinos framework, various standard precondi-
tioning methods. These include incomplete LU preconditioners
and block Jacobi preconditioners. Despite being more general-



purpose, when combined with the singleton removal prepro-
cessing they can still be effective for some circuits.

V. RECENT PARALLEL SCALING EXAMPLES

In this section, results of a recent parallel scaling study
are presented. Two memory circuits of different sizes are
considered. The first one is an asynchronus memory circuit
consisting of 100K CMOS transistors and the second is a
similar memory circuit, but with 1 million CMOS transistors.
The circuits are described in pre-layout netlists so no parasitic
elements are included. The computer used for these tests is
a large institutional cluster at Sandia. This system has Intel
Xeon E5-2670 8C 2.6GHz processors, 16 cores on each node,
and Infiniband QDR interconnect.

For the smaller 100K device circuit, the most competitive
choice for parallelism was to perform the device evaluations
in parallel, and the linear solve in serial with KLU. As noted
in section III-D, the device evaluation and matrix solve phases
have independent parallel partitioning, and one option under
this design is to only perform one of the two phases in parallel
while leaving the other one in serial. In comparison to iterative
solvers, direct solvers are very robust and will usually be
faster for smaller matrices, and for the 100K problem, this
was the case. With this parallel arrangement, only one of
the two major components will speed up the calculation with
additional processors, which of course limits the potential
overall speedup.

The results for the 100K device circuit using this partial
parallel approach are given in Fig. 7 and Fig. 8. The calcula-
tions are performed 1,4,8 and 16 cores. Fig. 7 shows a strong
scaling result for all the main phases of the simulation, and
Fig. 8 shows runtime comparisons for the same phases. Ideal
strong scaling on this figure would result in a perfectly straight
diagonal line from the lower left had corner of Fig. 7 to the
upper right hand corner. The red line represents the cost of the
residual load, and the blue line represents the Jacobian load.
Combined, these two lines represent the device evaluation
phase, with most of the work (all the actual floating point
calculations) in the residual evaluation. This phase exhibits
good parallel scaling, without much rolloff even at 16 cores.
The linear solve, being serial, doesn’t speed up in parallel
at all and is thus a bottleneck in this calculation. The total
simulation, represented by the cyan line shows a speedup
of about 2x on 4,8 and 16 cores. This suggests, based on
Amdahl’s Law that the two phases of the problem are roughly
comparable in cost, and this is supported by the serial runtime
numbers in Fig. 8.

For the larger 1M device circuit, results are shown in Fig. 9
and Fig. 10. This circuit is large enough that a direct solver was
not competitive. The best choice of matrix solver turned out
to be GMRES with a block Jacobi preconditioner. Tests were
performed for 16, 32, 64, 96 and 128 cores. As the computer
used for this study has 16 cores per node, this calculation
(unlike the 100K case) made use of the interconnect. The
strong scaling result, shown in Fig. 9 exhibits good speedup
in all phases of the problem.
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VI. CONCLUSION

In this paper, an overview of the Xyce parallel circuit
simulator has been presented. With message-passing as the
main parallel programming approach, Xyce has a variety of
parallel algorithm strategies. These were discussed, with a
particular emphasis on the parallel matrix solvers. Finally,
some recent parallel scaling results were presented, which used
simulations from large memory circuits.

VII. LICENSING AND AVAILABILITY

Xyce is open source software, released under the GNU
General Public License, Version 3.0, since the release of
Xyce 6.0 in 2013. More information about the Xyce project,
including software downloads and documentation, can be
found on the website: https://xyce.sandia.gov.
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