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2‘ Discrete Optimization

Minimum Spanning Tree Problem Traveling Salesperson Problem
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Edge weights:
Optimal solution:

Images from “Combinatorial Optimization” Wikipedia article licensed under CC BY-SA



Scientific Computing Application:
;1 Graph Partitioning

Goal: assign computations to two processors to minimize communication

Nodes represent values to be computed,
and edges represent computation
dependencies

Minimum Cut: partition into two parts to minimize weight of crossing edges

For more realistic applications, would want to:
(i) partition into k parts
(ii) balance load (comparable sized parts)
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‘ Quantum Algorithms Output Distributions

Sequence of physical manipulations
of the N qubits
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000 001 010 011 100 101 110 111 quantum gates

Probability distribution over
2N binary classical states

000 001 010 011 100 101 110 11

Conceptually

Seek to maximize probability
of good solutions




It’s Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

Minyg (1/) IZSHS

Discrete optimization problem becomes an eigenproblem on a large matrix!

Hamiltonian, ).¢ Hg, represents energy levels
of a physical system composed of “local” parts, S

)

Optimal discrete Min-energy

optimization solution eigenvector

Nature tends towards stable states...

Local minimum So let nature solve your problems for you?

Global minimum
<2

Image from https://en.wikipedia.org/wiki/Metastability 5




.| Hacking Nature to Solve Your Problems

1. Map solution values to energy levels of a physical system

2. Realize said physical system

3. Let Nature relax to a stable low-energy state

This Photo by Unknown Author
is licensed under CC BY-SA-NC
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7‘ Computational Comp
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exity Considerations
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Hamiltonian is exponentially large, 2V x 2V, for an N-node graph, but
it is a sum of O(N?) local 4x4 Hamiltonians, one for each edge
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Local Hamiltonians are efficient and require manipulating only a constant number of qubits




8‘ The Power of Quantum Computing!? ()

Extended Church-Turing Thesis
Any “reasonable” model of computing can be efficiently simulated by a Turing machine

( PSPACE problems )
It would be very surprising if guantum computers could solve NP-complete

ant: problems ) problems in quantum polynomial time (BQP).

NP complete

---------------- Yet, there are problems In BQP that are very unlikely to be in classical

-7 BQP\\\ . °
‘ y | polynomial time (P) or even NP!*

. J :—:
Image from https://en.wikipedia.org/wiki/BQP % %
L=5 L=.27 L=28

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea
that captures universal quantum computing.

Using soap film to find Steiner Trees
[Datta, Khastgir, & Roy; arXiv 0806.1340]

*Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]
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9‘ Adiabatic Quantum Computing

Explanation 1: No mathematics

1. Confine the system in its lowest-energy configuration in
a way that’s easy to do.

2. Evolve the system in a way that keeps it in its lowest-
energy configuration throughout.

Note: harder to do with bigger or more complex systems

3. Read out the final state of the system; the closer the
evolution was to being “adiabatic,” the more probable
it is that the readout is successful.




10‘ Adiabatic Quantum Computing

Explanation 2: A bit more mathematical

1. Confine the system in its lowest-energy configuration in i - (3) 1 - i
a way that’s easy to do. 0 — Z O o) = on/2 E : i
i=1 i=1
Initial Hamiltonian Initial ground state
2. Evolve the system in a way that keeps it in its lowest- H(S) — (1 - S)H() + sH,

energy configuration throughout. n n
Hy=hol+ Z hi o) + Z Jijo) @ )
Note: harder to do with bigger or more complex systems i=1 ij=1

Problem Hamiltonian (e.g. Cut)

3. Read out the final state of the system; the closer the
evolution was to being “adiabatic,” the more probable _7
it is that the readout is successful. m ol

HEllHlEﬂ)lmax

G o3
min 0.0 0.2 04 0.6 0.8 1.0
Magnetic field

Images from https://en.wikipedia.org/wiki/Adiabatic_theorem
Adiabatic Quantum Computing: [Farhi et al.; arXiv quant-ph/0001106, 2000]
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Execution time depends on energy gap: T =




« 1 The Power of Adiabatic Quantum Computing

Surprisingly, AQC is a universal model of quantum computing

(equivalent to quantum circuits within a polynomial factor resource overhead)
[Aharonov et al.; arXiv quant-ph/0405098, 2004]

Solving an optimization problem is equivalent to what any quantum computer can do!

Hamiltonian at time s (scaled to lie in [0,1]): H(s) = (1 — s)H, + sH,
What (roughly) happens when this is applied to the current state at time s, [(s))?

: State at time s + &, assuming H(s) does not change
— ,—I6H(S) [ ’
|1/J(5 +46))=e |1/J(S)> Between time s and s + §, by Schréodinger’s equation]

— e—ié‘((l—s)H, + sHp) |lp(S)>

~ p—i6(1=S)H| ,~i8sH, p(s)) [Reasonable approximation when 6 is small,
I I | By Lie-Suzuki-Trotter decomposition]

unitary operators < quantum gates

What happens if we approximate AQC by alternately applying quantum gates of the form:
e'VHp and e'PH1?




2| Quantum Approximate Optimization Algorithm [

mixing cost
operator operator

[ . P |
[W(B,y)) = ePHieVHp|y)
Output state depends on Input state is usually

parameters # and y easy-to-prepare ground state of H;

[Farhi et al.; arXiv:1411.4028, 2014], [Farhi et al.; arXiv:1412.6062, 2014]

QAOA performance is captured by expected cost:

W V|Hp|p (B, 7)),

where we seek to optimize the parameters 5,y

— CIOPT]

QAOA, applies k rounds of the mixing and cost operators:
— ,iByH; ,lYxH, ,JiB>H; ,iV-H, i1H; ,iY1H
1Y(B1, V1, P2 ¥2, - )) =€ Ptiglitly  oth2H1 ol¥2Hp glh1Hi ol¥1 Plo)

) | JL

k iterations

This converges to an optimal solution as k grows




a1 Why is QAOA Appealing?

*May be viewed as a discretization of Adiabatic Quantum Computing

*Results in low-depth quantum circuits, suitable for near-term quantum devices

*Generic framework for discrete optimization problems

*Can produce quantum states that are hard to sample from classically

(doing something quintessentially qguantum?)
[Farhi & Harrow; arXiv:1602.07674, 2016]

*Amenable to rigorous analysis, and has outperformed best-known classical
approximation algorithms for certain types of problems
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Only known quantum approximation algorithm framework
Classical approximation algorithms have been studied since the 1960s

>

Optimal




w1 QAOA Application: Max Cut

Max Cut is a fundamental NP-hard graph partitioning problem

Partition vertices of a(n edge-weighted) graph two parts
to maximize (weight of) crossing edges




15‘ Quantum Outperforms Classical (...For Now)

QAOA outperforms best classical algorithm for the Max Cut problem on regular
triangle-free graphs (NP-hard special case)

Researchers Year # Edges guaranteed Type

Shearer 1992 (1 0-177) Classical

—+—m

2 d
Hirvonen, Rybicki, Schmid, Suomela 2014 1 0.281 Classical

2 )"

m = # edges

Parekh, Ryan-Anderson 2017 (l " 0-303> Quantum d = # edges per vertex
Wang, Hadfield, Jiang, Rieffel 2 d e

Rigorous performance proof: Only known
guantum approximation algorithm outperforming
the best-known classical algorithm




| Discrete Optimization for Quantum Physics

Max Cut Hamiltonian: Quantum Heisenberg generalization:
(I —Z2iz) — XU = X X; = VY, — Z;Z))

Motivation

The Heisenberg model is fundamental for describing
guantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of |

the anti-ferromagnetic Heisenberg model are
notoriously difficult to analyze.

A new classical algorithm produces approximate Anti-ferromagnetic Heisenberg model: roughly
. neighboring quantum particles aim to align in
solutions for the above quantum model that are opposite directions. This kind of Hamiltonian
mathematically guaranteed to be relatively close in appears, for example, as an effective Hamiltonian
. . . for so-called Mott insulators.
quality to optimal quantum solutions.

[Image: Sachdevy, http://arxiv.org/abs/1203.4565] i

First nontrivial rigorous approximations for these problems: I
0.498-approx via a product state, where 1/2 is best possible for product states
(also 0.649-approx for XY model, where 2/3 is best possible for product states)

[Gharibian & Parekh; 2018]



7| Take Away

*Should not expect quantum computers to solve NP-hard problems in polynomial time

*Most quantum optimization approaches are heuristics, though rigorous comparisons
with classical are possible in certain settings

*Significant quantum resource advantages over classical for optimization have not
been demonstrated in a satisfying way

*Davide will give more examples, including constrained optimization problems, and
discuss implementing QAOA-based algorithms as quantum circuits

| This work was sponsored by the U.S. Department of Energy, Office of
& ENERGY e Science, Office of Advanced Scientific Computing Research, Quantum
Algorithm Teams program.




