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21 Discrete Optimization

Minimum Spanning Tree Problem Traveling Salesperson Problem

Edge weights: (6, 3, 9, 4, 2, 9, ...)
Optimal solution: (0, 1, 0, 0, 1, 0, ...) binary incidence vector of solution

Images from "Combinatorial Optimization" Wikipedia article licensed under CC BY-SA



Scientific Computing Application:
31 Graph Partitioning

Goal: assign computations to two processors to minimize communication

Nodes represent values to be computed,

and edges represent computation

dependencies

• I
.... .00

Minimum Cut: partition into two parts to minimize weight of crossing edges

For more realistic applications, would want to:
(i) partition into k parts
(ii) balance load (comparable sized parts)



I Quantum Algorithms Output Distributions
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I It's Natural to Optimize

Hamiltonian eigenstate problems naturally link quantum mechanics and optimization

Mintp
(11) E ils 1P) 

Hamiltonian, Es Hs, represents energy levels
s of a physical system composed of "local" parts, S

Discrete optimization problem becomes an eigenproblem on a large matrix!

Optimal discrete
optimization solution

Local minimum

Global minimum> 

X
Image from https://en.wikipedia.org/wiki/Metastability

Min-energy
eigenvector

Nature tends towards stable states...
So let nature solve your problems for you?
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61 Hacking Nature to Solve Your Problems

Map solution values to energy levels of a physical system

Realize said physical system

Let Nature relax to a stable low-energy state

Vertices

1 2 3 State
L,L,LE 1000)
L,L,RE 1001)
L,R,LE 1010)
L,R,RE 1011)
R,L,LE 1100)
R,L,RE 1101)
R,R,LE 1110)
R,R,RE 1111)

Left or Right

side of cut
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is licensed under CC BY-SA-NC 

Hamiltonian for cuts on a path with 3 vertices Some cuts on a path with 3 vertices

Minimum eigenstate is of form: lip) = al 000) + 111111), with 0 energy



7 Computational Complexity Considerations
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Hamiltonian is exponentially large, 2Nx2N, for an N-node graph, but

it is a sum of O(N2) local 4x4 Hamiltonians, one for each edge
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Local Hamiltonians are efficient and require manipulating only a constant number of qubits



8 I The Power of Quantum Computing?

Extended Church-Turing Thesis
Any "reasonable" model of computing can be efficiently simulated by a Turing machine

•••

PSPACE problems

NP problems

NP complete

_ _ --------- _

BQ-I5

P problerns )

It would be very surprising if quantum computers could solve NP-complete
problems in quantum polynomial time (BQP).

Yet, there are problems In BQP that are very unlikely to be in classical
polynomial time (P) or even NP!*

Image from https://en.wikipedia.org/wiki/BQP

Using nature to solve optimization problems is an old idea.

In the quantum setting, it is a surprisingly powerful idea

that captures universal quantum computing.

L = 5

a)

L=

b)

L= ,j28

c)

Using soap film to find Steiner Trees
[Datta, Khastgir, & Roy; arXiv 0806.1340 •

*Quantum supremacy: [Preskill; arXiv 1801.00862], [Harrow & Montanaro; arXiv 1809.07442], [Aaronson & Chen; arXiv 1612.05903]



91 Adiabatic Quantum Computing

Explanation 1: No mathematics

1. Confine the system in its lowest-energy configuration in
a way that's easy to do.

2. Evolve the system in a way that keeps it in its lowest-
energy configuration throughout.

Note: harder to do with bigger or more complex systems

3. Read out the final state of the system; the closer the
evolution was to being "adiabatic7 the more probable
it is that the readout is successful.



10 I Adiabatic Quantum Computing

Explanation 2: A bit more mathematical

1. Confine the system in its lowest-energy configuration in
a way that's easy to do.

2. Evolve the system in a way that keeps it in its lowest-
energy configuration throughout.

Note: harder to do with bigger or more complex systems

3. Read out the final state of the system; the closer the
evolution was to being "adiabatic7 the more probable
it is that the readout is successful.

.11( = Ecri)i=1
Initial Hamiltonian

111

2"

IVO 
2n/2 

Eli),=1
Initial ground state

11(s) = (1 — s)Ho + sHl

= ho + hi a(zi) E Jo or 0-(J)
i,j=1

Problem Hamiltonian (e.g. Cut)

Execution time depends on energy gap: T KEIIHIECI)lmax
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Images from https://en.wikipedia.org/wiki/Adiabatic_theorem

0.8 1.0

Adiabatic Quantum Computing: [Farhi et al.; arXiv quant-ph/0001106, 2000]



11 The Power of Adiabatic Quantum Computing

Surprisingly, AQC is a universal model of quantum computing
(equivalent to quantum circuits within a polynomial factor resource overhead)

[Aharonov et al.; arXiv quant-ph/0405098, 2004]

Solving an optimization problem is equivalent to what any quantum computer can do!

Hamiltonian at time s (scaled to lie in [0,1]): H(s) = (1 — s)HI + sHp

What (roughly) happens when this is applied to the current state at time s, 10(s))?

kP(.9 + (5)) = e-"511(s)11P(s))

= e—i8((1—s)111 + sH
P
)
1.0(s))

e-i8(1-s)Hie-i8sHplip(s))
1 IU

unitary operators <=> quantum gates

[State at time s + S, assuming H(s) does not change
Between time s and s + 8, by Schrödinger's equation]

[Reasonable approximation when 6 is small,
By Lie-Suzuki-Trotter decomposition]

What happens if we approximate AQC by alternately applying quantum gates of the form:

eiYHP and eifilii?



12 I Quantum Approximate Optimization Algorithm
mixing cost

operator operator

kW) y)) = ei"IeiYHP IVO
Output state depends on input state is usually

parameters /3 and y easy-to-prepare ground state of H1

[Farhi et al.; arXiv:1411.4028, 2014], [Farhi et al.; arXiv:1412.6062, 2014]

1 

illillii Hill th 
a OPT1

QAOA performance is captured by expected cost:

OM) Y)11/p1110) Y)))
where we seek to optimize the parameters /3, y

QAOAk applies k rounds of the mixing and cost operators:

IOC%) yi) )6'2) y2) ••• )) = eiflkHIetykflp ... eile2III eiY2HP eißlIII etnilp 
100)

J

k iterations

This converges to an optimal solution as k grows



131 Why is QAOA Appealing?

May be viewed as a discretization of Adiabatic Quantum Computing

Results in low-depth quantum circuits, suitable for near-term quantum devices

Generic framework for discrete optimization problems

Can produce quantum states that are hard to sample from classically
(doing something quintessentially quantum?)
[Farhi & Harrow; arXiv:1602.07674, 2016]

Amenable to rigorous analysis, and has outperformed best-known classical
approximation algorithms for certain types of problems

OPT

> a. • OPT

(
Only known quantum approximation algorithm framework

Classical approximation algorithms have been studied since the 1960s

To

D
0



14 I QAOA Application: Max Cut
14

Max Cut is a fundamental NP-hard graph partitioning problem

•
•

•
is

Partition vertices of a(n edge-weighted) graph two parts
to maximize (weight of) crossing edges



15 I Quantum Outperforms Classical (...For Now)

QAOA outperforms best classical algorithm for the Max Cut problem on regular
triangle-free graphs (NP-hard special case)

Researchers Year # Edges guaranteed Type

Shearer 1992 (1 0.177 Classical+ )

1/2 
,_ m
Vci

Hirvonen, Rybicki, Schmid, Suomela 2014 (1 + 0.281) Classical
m

1/2 -V,a

Parekh, Ryan-Anderson 2017 (1 0.303) Quantum

Wang, Hadfield, Jiang, Rieffel

+

1/2 
r_ m

Vci

m = # edges
d = # edges per vertex

Rigorous performance proof: Only known
quantum approximation algorithm outperforming
the best-known classical algorithm

1

1



161 Discrete Optimization for Quantum Physics

Max Cut Hamiltonian:

E(/ — Z,Z1)
Quantum Heisenberg generalization:

Eu -x,x, - KY, -z,z,)

Motivation
The Heisenberg model is fundamental for describing
quantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of

the anti-ferromagnetic Heisenberg model are
notoriously difficult to analyze.

A new classical algorithm produces approximate
solutions for the above quantum model that are

mathematically guaranteed to be relatively close in
quality to optimal quantum solutions.

AL V
V A
A V
V A

Anti-ferromagnetic Heisenberg model: roughly

neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian

for so-called Mott insulators.
[Image: Sachdev, http://arxiv.org/abs/1203.4565]

First nontrivial rigorous approximations for these problems:
0.498-approx via a product state, where 1/2 is best possible for product states

(also 0.649-approx for XY model, where 2/3 is best possible for product states)

[Gharibian & Parekh; 2018]



17 I Take Away

Should not expect quantum computers to solve NP-hard problems in polynomial time

Most quantum optimization approaches are heuristics, though rigorous comparisons
with classical are possible in certain settings

Significant quantum resource advantages over classical for optimization have not
been demonstrated in a satisfying way

Davide will give more examples, including constrained optimization problems, and
discuss implementing QAOA-based algorithms as quantum circuits
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