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Review patch antennas

The U-slot patch antenna historically

Intro CMT & CMA

CMA of the U-slot patch > show CMT is relevant

Design methodology



3 Patch antennas

Attributed to Deschamps in the 50's...

Byron, Howell, Munson developed in the 70's...
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4 Patch antennas

Pros: Low profile, robust, can potentially be integrated w/ RF/microwave circuitry at low cost

Cons: Limited power handling, narrow impedance bandwidth

Thicker patch: lower radiation Q (good!) => wider bandwidth, higher radiation efficiency

Larger substrate Dk: physically/electrically smaller patch => higher radiation Q (bad!)



5 Patch antennas: t-line model
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6 Patch antennas: cavity model
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7 Patch antenna currents/fields example



8 Patch antenna: impedance bandwidth and multi-moding
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9 Multi-mode patches

Stacked patches

Coplanar parasitic patches
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Fig. 1. Stacked circular-disc antenna structure.
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S. Long and M. Walton, "A dual-frequency stacked circular-disc antenna," in IEEE Transactions on Antennas and Propagation, vol. 27, no. 2, March

1
1

G. Kumar and K. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," in IEEE TAP, vol. 32, no. 12, Dec 1984.



10 1 U-slot patches historically

Huynh and Lee, 1995

BW about 30%
lY

2.975"-.4.- 2 .70" -4
a

air or foam

ground plane
coax

patch

patch

Fig. 1 GeoPnetry qf coaxiaily-fed rectcifigalar patch with LI shaped slot Fig. 2 Measured inkpedance for h = 1.06" (--=-0.06,.. at 900 A41-1:7)

T. Huynh and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," in Electronics Letters, vol. 31, no. 16, pp. 1310-1312, 3 Aug. 1995.



11 Previous design guides

DD

Table 10.7. Design para.meters for 2 GEle. U-slot patches, (All dimensions
in mm.)

W L W., L, b c,, = F h. di, Bandwidth

2.33 55.85 40.36 21.71 27.92 6.21 3.11 20.18 12.43 L53 27.13%
4.0 41.84 30.22 16.26 20.94 4.63 2.34 15.13 10.81 0.76 25.18%.
9.8 25.85 18.64 10.04 12.92 2.88 1.44 11.12 9.00 0.36 16.07%

Table 10.8. Design parameters for 3 GHz U-slot patches. (All dimensions
itY nim.)

r L W, L„ b c, = F fx 4 Bandwidth

2,33 37.23 26.90 14,47 18,61 4.14 2.07 13.45 13.45 1.02 27,13%
4,0 27.89 20.15 10,84 13.96 3.09 1.56 9.56 8.2 0.51 20.77%

Y. 17.23 12.43 6,69 8.61 1.92 0.96 734 6.00 0.12 15.95%

Table 10.9. Design parameters for 4 GHz U-slot patches, (All dimension,
in mm.)

E r W b C:i, = Cy F h dp Bandwidth

2.33 27.93 20.18 3.1 1 13.96 3.11 1.55 10.09 6.21 0.76 26%

4.0 20.92 15.11 8.13 10.47 2.31 1.17 6.79 5.5 0.38 24.4%
9.8 12.92 9.32 5.02 6.46 1.44 0.72 5.56 4.5 0.09 15.77%

S. Weigand, G. H. Huff, K. H. Pan and J. T. Bernhard, "Analysis and design of broad-band single

TAP, vol. 51, no. 3, March 2003.

V. Natarajan and D. Chatterjee, 'An Empirical Approach for Design of Wideband, Probe-Fed, U

Grounded Substrates," ACES Journal, vol. 18, no. 3, Nov 2003.

K.F. Lee, K. M. Luk and H. W. Lai, "Broadbanding Techniques II --- The U-slot Patch Antenna"
Scientific, 2018, ch. 10.

-layer rectan

-Slot Microstrip Patch Antennas on Single-layer, Infinite,

in Microstrip patch antennas, 2nd ed., Singapore: World

Du_ PARAMETERS

Offset+

0 
0 

0

ar U-slot microstrip patch antennas," in IEEE



12 Intro to Characteristic Mode Analysis (CMA)

Characteristic modes are sets of currents/fields on a structure that satisfy the boundary conditions...

Similar in concept to waveguide modes, but are suited to radiation/scattering problems
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13 CMA example: 0.5 meter wire dipole
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14 Coupled Mode Theory

CMT analyses the motion of a system of two coupled resonators as the
combination of in-phase and anti-phase modes of motion



1 5 Coupled modes illustration

https://www.youtube.com/watch?v=gbJYK7q5ejY



1 6 Coupled mode frequency splitting
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17 Coupled mode energy exchange
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18 Coupling co-directional modes in space
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19 Coupling contra-directional modes in space

ie 2n-

L J.R. Pierce 'Almost all about waves"



20 Coupled modes: time coupling in the frequency domain
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21 Coupled modes: time coupling in the frequency domain
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22  CMA of the U-slot patch

Using Feko (commercial MoM code)

Model the Huynh & Lee geometry but model round probe as cuboid rather than cylinder

i 
patch

  8'65"  
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0 35
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4 1'

L
T. Huynh and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," in Electronics Letters, vol. 31, no. 16, pp. 1310-1312, 3 Aug. 1995.



23 Which modes?

20

15

10

5

0

5

-10

-15

-20

C haracteristicM ode

Mode index = 1

Mode index = 4

Mode index = 5

Mode index = fi

0 7 0_8 0_9 1.0

Frequency [GHz]

Eigen value - uslot_patch2_cma_eigenvalue_S4_pro6e

1.1 1 2

Mode index = 1

Mode index =4

0.2

0_1

-6_1

-6.2

-6.3

-6.4

1
0 7 1 4

•

,",

-----

-------

-0_5 -r -----
---------

-6.7 -1_4

Impedance - uslot_patch2_cma_eigenvalue_SCLprobe

10

-10
de 5 a 6



24 What are these modes?
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25 More about the modes

Similar broadside radiation patterns, co-polarized

Radiation from slot is likely relatively small
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26 Are they really coupled modes?
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27 If it's synchronous coupling, then what is the other resonator?

Total length of slot is —9" (23cm); gives CM resonance at —640MHz (where slot is —i1/2)...
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28  Uncoupled slot resonator, resonant at —9I2MHz
M.a2nPt r riirrpni [0111 rn]
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29 Equivalent circuit modeling

in-phase anti-phase
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31 Design Methodology

Place resonances

Design uncoupled patch and slot resonators with equal frequency & correct coupling

Combine patch and slot resonators into single structure, simulate & refine
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32 Placing resonances
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33  Designing the uncoupled patch

Q — 2.25 f — 2.25 K
BW

Minimum Q sets constraints on patch
height and substrate Dk

Set L to obtain resonant frequency at band
center: L — À/ 2

Start with W — L/2 and pi — L/2

Probe has no effect at this point, resonant
conductance is very small

L

h

W

I HHd



34 Designing the uncoupled slot

Total length of slot has largest effect on resonant
frequency

Start with Uw — K W

Study of the equivalent circuit shows that proper
resonant conductance is about 40-50mS.

I I

There are several guidelines to obtaining
resonant frequency and conductance; some
parameters affect these more than others.



3 5  Combine uncoupled resonators & refine

Drop uncoupled U-slot geometry onto
patch such that the "U" is centered on
the patch; maintain probe offset po

Run driven sim; impedance locus will
have a loop in the Smith chart

Small adjustments (e.g., to Uo, t, d) can
be made such that loop optimally
resides within VSWR circle on Smith
chart

w

t I-

4 

Uo



0.7 1 .4

36 Example design
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37 Main Conclusions about the U-slot patch

The U-slot patch operates with coupled modes; the patch and slot
modes are equally important over the entire impedance bandwidth

The patch provides the majority of the radiation; the slot
comparatively less

Due to the probe location, the patch mode is not well matched to
50Q but the lumped LC "slot" resonator causes a good match



38 Take-Homes

Coupled mode theory is everywhere in electrical engineering

Characteristic mode analysis is a modal decomposition method
that can provide insight into EM/antenna designs

After a bit of modal deconstruction, sensible guidelines for
designing the U-slot patch antenna can be developed


