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Importance of Bolted Joint Modeling

understood and difficult to model.

= Two regions: Microslip and Macroslip

Bolted joints are ubiquitous in assembled structures, yet they are poorly
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(a)

(b) Microslip (©) Near-Macroslip

Well tightened bolts still exhibit regions of slip at the
edge of contact

= |ntroduces nonlinearity: hysteresis and amplitude
dependent frequency and damping

= Difficult to predict stiffness and damping at the interface
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Modeling through Whole Joint Models

=  Whole Joint Models

= Reduce the DOFs for the interface nodes down to a single node using
Multi — Point — Constraints (MPCs)

= Only 6 DOF (3 translation, 3 rotation)

= Apply a single elastoplastic model to predict the hysteretic behavior of
the joint

=  Multi — Point Constraints (MPCs)
= Constraint equations applied to the stiffness matrix
1. RBar:rigid beam with infinite stiffness

2. RBE3: ties the average displacement and rotation of the surface to a
single point

= |Issues with MPCs
=  Not sure what the best contact area size and MPC type is
=  Different types and contact area sizes yield different results
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Whole Joint Models — Iwan Model AN

= A whole joint model that uses four parameters to characterize r q

the amplitude dependent behavior —/NWas

= Multiple Jenkin’s slider elements in parallel K

(a) Fs (b)
5 1he force necessary to cause macroslip I

x>

The tangential stiffness of the Jenkins elements (i.e. the joint stiffness
when no slip occurs)

log(Dissipation/Cycle)

y# The exponent that describes the slope of the energy dissipation curve

Natural Frequency Squared

The ratio of the number of Jenkins elements that slip before micro-slip microslip  ,  macroslip microslip  ,  macroslip

and then at macroslip Joint Force log(Joint Force)

D. J. Segalman, “A Four-Parameter lwan Model for Lap-Type Joints,”
Journal of Applied Mechanics, vol. 72, no. 5, pp. 752-760, Sep. 2005.
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Dynamic and Quasi-Static Analysis of Structures with Joints

EXPERIMENTAL
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A certain model can capture frequency or damping but not both

= Various studies that have sought to optimize the lwan

parameters to capture QSMA curves have found a Pareto front
= This is thought to arise due to a limitation in the way the joints

are spidered and is explored here.
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R. M. Lacayo and M. S. Allen, “Updating Structural
Models Containing Nonlinear Iwan Joints Using Quasi-
Static Modal Analysis,” Mechanical Systems and Signal
Processing, vol 118, pp. 133-157, 2019.
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Shearing mode

Experimental Structure — S4 Beam (S4B)

* Characterized in Sandia’s 2017 Nonlinear Mechanics and Dynamics (NOMAD)
Institute

= Two Cshaped beams with nominally flat interfaces are used to from a 1.5” x

1.0” x 20” structure
= Two Bolted regions (4 interfaces)
= 6 modes of vibration within 1 kHz First y bending, out of phase

= For this presentation, we will examine Mode 6 forced at 100 N with a bolt
torque of 25.1 Nm.

= Reduced Model: Place a Z Rotation Iwan element to capture the slip

A. Singh et al., “Experimental Characterization of a new Benchmark Structure for Prediction of Damping
@ Nonlinearity,” presented at the 36th International Modal Analysis Conference (IMAC XXXVI), Orlando, Florida, 2018.
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Modeling the S4 Beam

a.) Full Interface RBAR

W

RBAR )

I\

c.) Reduced Interface RBAR

Introduction

"

b.) Full Interface RBE3

N

Contact area from nonlinear
contact simulation
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d.) Reduced Interface RBE3
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1)

2)

3)

Modal Analysis,” Mechanical Systems and Signal Processing, vol 118, pp. 133-157, 2019.
B ]

Test Cases

Obtain all parameters E;, K;, ¥, and [ from Monte Carlo Updating. (Following

Lacayo et al. [1])
1st Optimization 2nd Optimization

Obtain E;, ¥, and f from Monte Carlo Updating and update K; through a range

(Pareto fronts)
Monte Carlo 1st Optimization 2nd Optimization
FS, X ﬁ Kt

Run secondary optimization loop to iterate on F; and K;. y and § remain at
nominal values (3D Pareto fronts)

Monte Carlo = Optlmlzatlon 2 Optlmlzatlon
X B

R. M. Lacayo and M. S. Allen, “Updating Structural Models Containing Nonlinear Iwan Joints Using Quasi-Static

Monte Carlo

K, (Linear),Fy, x, B
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Mode 6 Optimization

0.5

Frequency Change Experimental vs. QSMA
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u

RBE3 0.0945 7.7204e11 -0.112

RBar 0.0971 4.1480e7 -0.1833
Reduced

RBE3 0.1207 1.8246e7 -0.1905
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2.3521
0.00307
7.589e-5
0.000951
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Conclusion

2nd Optimization

Most models are relatively
accurate to predict the
amplitude dependency of
frequency and damping

However, the Reduced
RBar/RBE3 models are on
the verge of macroslip

As expected, the type of
spider employed DOES

have a significant effect

on the model.

Most accurate model: Full
RBar - Counter Intuitive

14




Goal: Improve nonlinear models while minimizing linear frequency error
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= The RBE3 MPCs require a larger joint stiffness to stiffen the joint to the same caliber as the RBar
MPCs.

=  What if we vary the stiffness of the joint?
@ = Uncertainty from linear optimization that we have a global minimum solution
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Pretzel Fronts

= K, x, [ are left at their
optimal values from
nonlinear updating but
K; is varied
logarithmically between
le-5 to 1le2 times the
nominal value.

= Better solutions are
possible for some of the
models with different K;
values.

Pareto fronts are always
observed for some range of
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Solution with optimal K,
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2nd Optimization

= No models clearly depict
macroslip, but all models
other than Full RBar are
on the verge of macroslip

= This implies that we might

not have the correct slip
force from a Monte —
Carlo Simulation

= Most accurate model: Full

RBar
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Influence of the Slip Force On the Pretzel Front (Full-RBar)
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Optimal Pretzels from Fs and K; Parameter Sweep

RMS Error Frequency
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= All four models depict large tongues past
the pareto front

= Nonetheless, the Full RBar Model shows
the largest tongue that extends to the
lowest errors

= How does this sweep impact the
amplitude dependent curves?

RMS Error Damping
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2nd Optimization

QSMA Results: Case 3 |t e

K,
I Frequency Chqnge Experimental vs. QSMA N R Shift in DampinglRatio Expelrimentall vs. Q.SMA. R . A” models e nearly
O '~ identical and very
accurate in capturing the
= s ol nonlinear amplitude
< i
5 7 dependency
S 15| E - - =emea | ®m The only variance is due
g 5 Reduced Rar to the different y values
o 9 4 Reduced RBE3
g 2r 10 2 A - from the Monte - Carlo
: : ! : 1
sl il 'El)jﬁer\l,rgerntal I / \ ,'\v' ] Updat|ng
: Full RBE3 Y 1
Reduced RBar ]
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same magnitudes for each

interface | _MPC_| _F, | K. x B __ of the models respectively
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The effect of the updated stiffness on the natural frequencies

Experimental : . )
m Frequency [Hz] Linear Model Frequency Error [%] Updated Model Frequency Error [%)]
T R T

Mode 1 258.01 0.60 0.43 0.63 0.29
Mode 2 331.73 0.37 -1.65 -0.47 -2.12
Mode 3 478.55 -0.78 -0.98 -0.87 -0.99 UNCHANGED
Mode 4 567.69 -2.20 -2.24 -2.22 -2.23
Mode 5 708.29 -0.05 -0.25 -0.12

0.16

-4.99 -2.81 -3.12

a

Only this model gave a highly accurate linear
natural frequency and nonlinear characteristics.

@_
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Summary

= The parameters of a model with lwan joints have a coupled and complicated effect on the frequency and
damping of a mode in question.

= The type of spider used to represent the interface and its spatial extent can affect the ability of the model to
capture measurements. The spider method that gave the best results in this study was counter-intuitive.

=  While prior works had good success using linear updating to determine the linear parameters, and nonlinear
updating to account for nonlinearity, this work shows that the linear stiffness must be carefully chosen or a
Pareto front (pretzel shape) may be observed in which it is not possible to obtain an adequate solution.

= Fortunately, QSMA speeds up simulations so that the parameter space can be explored:
= Monte — Carlo Optimization (random parameters): 100,000 iterations at ~15 minutes

=  QOptimization loop (use nominal parameters from above as seeds): 1 F;, X 50000 K; Values at ~2.8 minutes
Joint stiffnesses are scaled from 1le-5 to 1e2 times the nominal stiffness from linear updating

Introduction Model Updating Parameter Study
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Influence of the Slip Force On the Pretzel Front (Full-RBE3)

1071 ¢

9. —8—05°Fs —8—(0.5Fs
—8—Fs 102 F —6—Fs
8~ é —8— 15'Fs : —8—15'Fs
&— 2'Fs ; O—2Fs

—— 5*F 5 —i—5*F s
6 ~ i {*Fs i {*Fs

Slip Force Scale Values
n
F i
Damping Ermror
=
£

-5
10

Frequency Error 1072 107! 10° 10’ 102
Frequency Error

Damping Error 102 492

@._

Introduction Model Updating L Parameter Study L




Influence of the Slip Force On the Pretzel Front (Red-RBar)
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Influence of the Slip Force On the Pretzel Front (Red-RBE3)
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Key finding from Lacayo for
the Brake Reuss Beam (BRB)

(a) 0

RMSD Frequency Shift

Frequency Shift [Hz]
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Static Modal Analysis,” Mechanical Systems and Signal Processing, vol 118, pp. 133-157, 2019.
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