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Importance of Bolted Joint Modeling

• Bolted joints are ubiquitous in assembled structures, yet they are poorly
understood and difficult to model.
• Two regions: Microslip and Macroslip
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Well tightened bolts still exhibit regions of slip at the
edge of contact

• Introduces nonlinearity: hysteresis and amplitude
dependent frequency and damping

• Difficult to predict stiffness and damping at the interface
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Modeling through Whole Joint Models

• Whole Joint Models

• Reduce the DOFs for the interface nodes down to a single node using
Multi — Point — Constraints (MPCs)

Only 6 DOF (3 translation, 3 rotation)

• Apply a single elastoplastic model to predict the hysteretic behavior of
the joint

• Multi — Point Constraints (MPCs)

• Constraint equations applied to the stiffness matrix

1. RBar: rigid beam with infinite stiffness

2. RBE3: ties the average displacement and rotation of the surface to a
single point

• issues with MPCs

• Not sure what the best contact area size and MPC type is

• Different types and contact area sizes yield different results

CB Reduction

Nodes

Joint Model

"Virtual" Nodes

RBAR/RBE3

Elements

(MPC)
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Whole Joint Models lwan Model

• A whole joint model that uses four parameters to characterize
the amplitude dependent behavior

• Multiple Jenkin's slider elements in parallel

Fs

KT

x

The force necessary to cause macroslip
(a)
2

Kr

rnicroslip macroslip

K

The tangential stiffness of the Jenkins elements (i.e. the joint stiffness
when no slip occurs)

az
co

The exponent that describes the slope of the energy dissipation curve
to.z

The ratio of the number of Jenkins elements that slip before micro-slip
and then at macroslip

ia

Joint Force

Slope = 3 + X

fi
microslip macroshp

log(Joint Force)

D. J. Segalman, "A Four-Parameter lwan Model for Lap-Type Joints,"
Journal of Applied Mechanics, vol. 72, no. 5, pp. 752-760, Sep. 2005.
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Dynamic and Quasi-Static Analysis of Structures with Joints
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A certain model can capture frequency or damping but not both
• Various studies that have sought to optimize the lwan

parameters to capture QSMA curves have found a Pareto front

• This is thought to arise due to a limitation in the way the joints
are spidered and is explored here.

R. M. Lacayo and M. S. Allen, "Updating Structural
Models Containing Nonlinear lwan Joints Using Quasi-
Static Modal Analysis," Mechanical Systems and Signal
Processing, vol 118, pp. 133-157, 2019.
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Experimental Structure — S4 Beam (S4B)

• Characterized in Sandia's 2017 Nonlinear Mechanics and Dynamics (NOMAD)

Institute

• Two C shaped beams with nominally flat interfaces are used to from a 1.5" x

1.0" x 20" structure

• Two Bolted regions (4 interfaces)

• 6 modes of vibration within 1 kHz

• For this presentation, we will examine Mode 6 forced at 100 N with a bolt

torque of 25.1 Nm.

• Reduced Model: Place a Z Rotation lwan element to capture the slip

Alr, 

• 

Introduction Mir

Shearing mode

First y bending, out of phase

A. Singh et aL, "Experimental Characterization of a new Benchmark Structure for Prediction of Damping
Nonlinearity," presented at the 36th International Modal Analysis Conference (IMAC XXXVI), Orlando, Florida, 2018.
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Modeling the S4 Beam
a.) Full Interface RBAR

RBAR

ZL

c.) Reduced Interface RBAR

/IF
RBAR

• 

Introduction

b.) Full Interface RBE3

Contact area from nonlinear
contact simulation
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d.) Reduced Interface RBE3
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Test Cases
1) Obtain all parameters Fs., Kt,x, and /3 from Monte Carlo Updating. (Following

Lacayo et al. [1])

Monte Carlo
Kt (Linear), F s, x, #

1st Optimization 2nd Optimization

2) Obtain Fs., x, and /3 from Monte Carlo Updating and update Kt through a range
(Pareto fronts)

Monte Carl
Fsfixfiii

1st Optimization
Kt

3) Run secondary optimization loop to iterate on Fs. and K . x and /3 remain at
nominal values (3D Pareto fronts)

Monte Carlo

Lig F
1st Optimization

R. M. Lacayo and M. S. Allen, "Updating Structural Models Containing Nonlinear lwan Joints Using Quasi-Static
Modal Analysis," Mechanical Systems and Signal Processing, vol 118, pp. 133-157, 2019.

•

2nd Optimization
Kt
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Mode 6 Optimization
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RBar 0.4472 2.0773e6
Full

RBE3 0.0945 7.7204e11

RBar 0.0971 4.1480e7
Reduced

RBE3 0.1207 1.8246e7

Acceleration Amplitude

x
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-0.1697 2.3521

-0.112 0.00307

-0.1833 7.589e-5

-0.1905 0.000951

10°

• Most models are relatively
accurate to predict the
amplitude dependency of
frequency and damping

• However, the Reduced
RBar/RBE3 models are on
the verge of macroslip

• As expected, the type of
spider employed DOES
have a significant effect
on the model.

• Most accurate model: Full
RBar — Counter Intuitive
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Goal: Improve nonlinear models while minimizing linear frequency error
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• The RBE3 MPCs require a larger joint stiffness to stiffen the joint to the same caliber as the RBar
MPCs.

• What if we vary the stiffness of the joint?

• Uncertainty from linear optimization that we have a global minimum solution
• 
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Pretzel Fronts E [ Pareto fronts are always
- observed for some range of

• Fs,x,f3 are left at their
optimal values from
nonlinear updating but
Kt is varied
logarithmically between
le-5 to 1e2 times the
nominal value.

• Better solutions are
possible for some of the
models with different Kt
values.
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Solution with optimal Kt
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RBar 0.0971 3.5646e7 -0.1833 7.589e-5

RBE3 0.1207 2.1344e7 -0.1905 0.000951
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1 0o

2nd Optimization

• No models clearly depict
macroslip, but all models
other than Full RBar are
on the verge of macroslip

• This implies that we might
not have the correct slip
force from a Monte —
Carlo Simulation

• Most accurate model: Full
RBar
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Influence of the Slip Force On the Pretzel Front (Full-RBar)
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Optimal Pretzels from Fs and Kt Parameter Sweep
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• All four models depict large tongues past
the pareto front

• Nonetheless, the Full RBar Model shows
the largest tongue that extends to the
lowest errors

• How does this sweep impact the

amplitude dependent curves?
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QSMA Results: Case 3
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RBar 0.3354 3.245e6 -0.1697 2.3521
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2nd Optimization
Kt

All models are nearly
identical and very
accurate in capturing the
nonlinear amplitude
dependency

The only variance is due
to the different x values
from the Monte - Carlo
updating

• Fs and Kt have roughly the
same magnitudes for each
of the models respectively

• Most accurate model for
Case 3: All models
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The effect of the updated stiffness on the natural frequencies

Mode
Experimental
Frequency [Hz]

Linear Model Frequency Error [%] Updated Model Frequency Error [%]

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Full RBar Full RBE3 Red RBAR Red RBE3 Full RBar Full RBE3 Red RBAR Red RBE3

258.01

331.73

478.55

567.69

708.29

851.54 C

0.60 0.43 0.63 0.29

0.37 -1.65 -0.47 -2.12

-0.78 -0.98 -0.87 -0.99

-2.20 -2.24 -2.22 -2.23

-0.78 -0.05 -0.25 -0.12

-0.34 0.33 0.16 0.12

0.60

0.37

-0.78

-2.20

-0.78

43 63 0.29

-1.65 -0.47 -2.12

17 -0.99

-2.2 -2.22 -2.23

-0.05 -0.25 -0.12

2.83 -4.99 -2.81 -3.12

Only this model gave a highly accurate linear
natural frequency and nonlinear characteristics.

.
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Summary

■ The parameters of a model with lwan joints have a coupled and complicated effect on the frequency and
damping of a mode in question.

■ The type of spider used to represent the interface and its spatial extent can affect the ability of the model to
capture measurements. The spider method that gave the best results in this study was counter-intuitive.

■ While prior works had good success using linear updating to determine the linear parameters, and nonlinear
updating to account for nonlinearity, this work shows that the linear stiffness must be carefully chosen or a
Pareto front (pretzel shape) may be observed in which it is not possible to obtain an adequate solution.

■ Fortunately, QSMA speeds up simulations so that the parameter space can be explored:

■ Monte — Carlo Optimization (random parameters): 100,000 iterations at —15 minutes

■ Optimization loop (use nominal parameters from above as seeds): 1 Fs x 50000 Kt Values at —2.8 minutes
Joint stiffnesses are scaled from le-5 to 1e2 times the nominal stiffness from linear updating
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Influence of the Slip Force On the Pretzel Front (Full-RBE3)
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Influence of the Slip Force On the Pretzel Front (Red-RBE3)
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Key finding from Lacayo for

the Brake Reuss Beam (BRB)
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• Lacayo et. al., found that we can accurately capture

• amplitude dependent damping behavior

• OR amplitude dependent frequency shift

• BUT not both for a single parameter set
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R. M. Lacayo and M. S. Allen, "Updating Structural Models Containing Nonlinear lwan Joints Using Quasi-
Static Modal Analysis," Mechanical Systems and Signal Processing, vol 118, pp. 133-157, 2019.
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