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Introduction: Process failures in gas-solid flow systems

Agglomerations

Tube Failures

Refractory Failures

Process Failure
• General term for anything that creates a process/ 

quality/safety abnormality that necessitates a plant 
shutdown and/or production slow-down

• Many possible causes
• Fatigued/failed components
• Off-nominal operating conditions (pressure, 

temperature, etc)

The objective of this study was to test the feasibility of using 
Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA) 
as a means of detecting some process failure conditions.
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Recurrence Plots

• Compares each point in the data series to every other point.

• Diagonal lines denote periodicity

• Vertical/horizontal lines indicate that the state of the system is 
unchanging, or changing slowly.

• Uncorrelated noise represented by patterns of single black dots.

• Process can be deterministic if diagonal lines exist beside single 
isolated points.

• Process can be chaotic if diagonal lines are periodic (represents 
unstable periodic orbits).

• Used in a variety of science and medical fields:

• Cardiac and neuroscience 

• Financial exchange rates

• Damage detection

• Fluidized bed regime identification

𝑅 𝑖, 𝑗 = ቊ
1, 𝑖𝑓 Ԧ𝑥(𝑖) − Ԧ𝑥(𝑗) ≤ 𝜀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Very sensitive

Marwan, N.; Romano, M.C.; Thiel, M.;Kurths, J. (2007) Recurrence plots for the analysis of 
complex systems, Physics Reports, Vol. 438, pp. 237-329.
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Recurrence Quantification Analysis (RQA)
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• Recurrence Rate (RR)
• Percentage of  recurrence points that fall within the specified tolerance.

• Determinism (DET)
• Percentage of  recurrence points that form diagonal lines (low for stochastic systems, 

high for periodic systems)

• Divergence (DIV)
• Inverse of  the maximum diagonal line length.

• Laminarity (LAM)
• Percentage of  recurrence points that form vertical lines of  specified length.  (vertical 

lines denote a state that is either unchanging, or changing slowly)

• Trapping Time (TT)
• Average length of  vertical lines which are equal to or greater in length to a specified 

minimum length. Represents the average time the system is “trapped” in a specific 
state.

• Entropy (Entropy)
• Measurement of  the complexity of  the system. (uncorrelated noise will have low 

entropy values)

𝐸𝑁𝑇𝑅 = − 

𝑙=𝑙𝑚𝑖𝑛
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Inspiration: Spouted Bed Reactor Failure
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Small Spouted Bed: Experimental Setup

Rectangular spouted bed with a 
interchangeable cone section 

• Bed cross-section - 4” x 1 3/16”

• Upper section height – 24”

• Cone angles (from horizontal)
• 45°, 60°, 75°

• 3-D Printed Nozzles of various sizes.

• Swage-lok valves added to side and 
top to simulate air leaks.

• Hepa filtration of exhaust gas.

Side Valve

Top Valve
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Small Spouted Bed Results:
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Nominal Side Valve Open

Top Valve Open Klinker Added
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Small Spouted Bed Results:
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Small Spouted Bed Results:

• The klinker case is easily distinguishable from 
the nominal and side/top leakage cases.

• The non-klinker cases are harder to distinquish.
• The side valve/leak case is readily visible when 

considering the entropy of vertical lines metric.
• The top valve/leak case is mostly 

indistinguishable from the nominal condition, 
except for in the LAM/DET figure.
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Sensitivity to Klinker Addition: Bubbling Bed
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Bubbling Bed Test Results

Spectral energy decreasing with increasing nylon massAs nylon mass increases, distributions get wider
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Bubbling Bed Test Results

Generally, the recurrence rate increases 
with increasing nylon mass

However, very sensitive to radius.

𝑅 𝑖, 𝑗 = ቊ
1, 𝑖𝑓 Ԧ𝑥(𝑖) − Ԧ𝑥(𝑗) ≤ 𝜀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝑅 =
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Preliminary process failure data was obtained from both spouted 
and bubbling fluidized beds and compared to non-failure, or 
nominal, states.

• Recurrence Plots and Recurrence Quantification Analysis are shown to 
be sensitive to changes in system dynamics.

• Addition of  large klinkers/agglomerations of  solids is easily seen in 
nearly all RQA parameters.

• Gas leakage is harder to detect when the leak does not significantly 
change the system dynamics.

• Physical failures (such as blown rupture discs), can lead to large changes 
in system dynamics, and RQA results.

Conclusions
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