Submitted to Inorganic Chemistry

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Synthesis, Crystal and Electronic Structures of the Titaniumrich Bismuthides AE3Ti8Bi10 (AE = Sr, Ba, Eu)

Journal:	Inorganic Chemistry
Manuscript ID	ic-2018-01952a.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ovchinnikov, Alexander; University of Delaware, Chemistry and Biochemistry Bobev, Svilen; University of Delaware, Chemistry and Biochemistry

SCHOLARONE™ Manuscripts

Synthesis, Crystal and Electronic Structures of the Titanium-rich Bismuthides AE_3 Ti₈Bi₁₀ (AE = Sr, Ba, Eu)

Alexander Ovchinnikov and Svilen Bobev*

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States KEYWORDS bismuthides, crystal structure, electronic structure, metal-metal bonding, titanium

Supporting Information Placeholder

ABSTRACT: Three isotypic compounds with the chemical formula AE_3 Ti₈Bi₁₀ (AE = Sr, Ba, Eu) have been obtained via both high-temperature solid state and flux growth reactions. Their crystal structure, representing a new type (space group $P6_3/mmc$, Pearson symbol hP42), features an open framework composed of interlinked TiBi₅ square pyramids and TiBi₆ octahedra. The Ti–Bi substructure is penetrated by infinite columns of facesharing AE_6 polyhedra centered by Bi atoms. First-principle calculations and physical property measurements indicate metallic behavior and absence of localized magnetic moments on the Ti atoms. Analysis of the chemical bonding reveals strong Ti–Bi and Ti–Ti bonds. The latter demonstrate classic two-center, as well as multicenter interactions.

INTRODUCTION

Solid compounds of transition metals (TM) with the group 15 elements (pnictogens, Pn) represent a vast class of materials, commonly referred to as pnictides. They adopt a plethora of crystal structure types and display a wide variety of physical properties. The large diversity of experimentally observed atomic arrangements results from different kinds of chemical bonding: covalent interactions between the TM and Pn atoms, formation of oligomeric or polymeric Pn units, metal—metal bonding, and electron transfer onto the anionic substructure from electropositive metals, such as alkali, alkalineearth, or rare-earth metals, in multinary compounds with partially ionic bonding.

Combinations of distinct chemical bonding not only provide conditions for realization of varying crystal structures but can also engender notable structural complexity. The interplay of chemical composition and peculiar bonding frequently gives rise to interesting properties in transition metal pnictides. Some of these compounds have been proposed as potential thermoelectric materials owing to their appropriate electronic properties, coupled with low thermal conductivity, e.g.,

Yb₁₄MnSb₁₁⁷ or ATM₄Pn₁₂, where A is an alkali, alkaline-earth, or rare-earth metal.⁸ The binary manganese bismuthide MnBi has been studied as a promising permanent magnet.⁹ More recently, the discovery of superconductivity in iron arsenides hallmarked a whole new era in pnictide research.¹⁰

Despite the considerable advances in pnictide chemistry of late transition metals, the field of early transition metal pnictides remains scarcely explored, especially when multinary compounds are concerned. Compositions bearing electropositive metals A, e.g. alkali, alkaline-earth or rare-earth metals, are of particular interest since they often show an amalgamation of metal and salt-like features, due to the significant polarization of the A-Pn bonds. Remarkable structural complexity is observed in the alkali metal–Nb–As systems, boasting As_n olygomers and mixed-valent Nb species. 11,12 Considering the heavier pnictogens Sb and Bi, a number of crystalline phases showing complex combinations of extended Ti-Ti and Pn-Pn bonding are known in the AE-Ti-Pn and RE-Ti-Pn systems, where AE and REstand for alkaline-earth and rare-earth metal, respectively. 13-16 Interestingly, despite a high chemical affinity of Ti to Bi, reflected in high mutual solubility in the liquid state and the formation of several binary phases, structurally characterized multinary titanium bismuthides in the discussed systems are limited to the Heusler-type $\text{Li}_{3\text{--x}}\text{Ti}_x\text{Bi},^{17}$ $\text{La}_3\text{TiBi}_5,^{18,19}$ displaying one dimensional linear Bi chains and face-sharing TiBi₆ columns, and $AE_5Ti_{12}Bi_{19+x}$ (AE = Sr, Ba, Sr+Eu) with a complex three-dimensional Ti-Bi substructure. 20

In this contribution, we present a new family of ternary titanium bismuthides $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu). These compounds crystallize in their own structure type and show an intricate chemical bonding pattern.

EXPERIMENTAL DETAILS

Synthesis. All manipulations were performed in an argon-filled glovebox. Polycrystalline samples of $AE_3Ti_8Bi_{10}$ (AE = Sr, Eu) were prepared by direct combination of the elements in Nb tubes, weld-shut under

high-purity argon. Stoichiometric mixtures of *AE*, Ti, and Bi (Alfa Aesar, all with purity >99.9 wt. % metal basis) were heated up to 923 K with 200 K/h, held at this temperature for 48 h and cooled down to room temperature with 50 K/h. After that, the obtained product was ground, pelletized, and subjected to a second annealing with the same temperature profile. Ba₃Ti₈Bi₁₀ could not be prepared from the elements at any temperature between 773 K and 1023 K, but it was produced in single-crystalline form by the metal flux method described next.

Single crystals of $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu) were grown from liquid lead. For AE = Sr, Eu, mixtures of the elements with the ratio AE: Ti : Bi : Pb = 3 : 8 : 10 : 50 were loaded in alumina crucibles topped with quartz wool and sealed in evacuated fused silica tubes. The tubes were heated to 1273 K with 200 K/h, kept at this temperature for 24 h and cooled down to 823 K with 2 K/h. At this temperature, the ampules were taken out of the furnace and the liquid Pb flux was removed by centrifugation. The quartz tubes were crack-opened in the glovebox and the crystals of $AE_3Ti_8Bi_{10}$ (AE = Sr, Eu), having predominantly rod-like morphology, were mechanically extracted from the crucibles. The Eu sample contained a small amount of EuBi₃, crystallized as intergrown cubes. The crystalline rods of AE₃Ti₈Bi₁₀ were up to 0.3 mm in width and 2 mm in length. In the case of Ba, the above-described procedure resulted in $Ba_5Ti_{12}Bi_{19+x}^{20}$ as the major phase. With an optimized synthetic protocol, sub-millimeter-sized single crystals of Ba₃Ti₈Bi₁₀ were grown from the initial composition Ba : Ti : Bi : Pb = 3 : 8 : 10 : 160. The mixture was heated up to 973 K with 200 K/h, annealed at this temperature for 30 h and cooled down to 823 K with 5 K/h, where the Pb flux was centrifuged out.

Powder X-ray diffraction (PXRD). PXRD patterns of the prepared samples were recorded in reflection mode on a Rigaku Miniflex diffractometer (Cu K_{α} radiation, λ = 1.5418 Å) operating inside a nitrogen-filled glovebox to prevent deterioration of the samples in ambient atmosphere. Data were collected between 5° and 75° with a step size of 0.05° and 2 s/step counting time. Qualitative Rietveld refinements were performed using the JANA2006 software.

Single-crystal X-ray diffraction (SCXRD). Suitable single crystals of $AE_3\mathrm{Ti}_8\mathrm{Bi}_{10}$ were cut under dry Paratone N oil and mounted on low-background plastic loops. To prevent degradation of the samples, the loops were placed in a cold nitrogen stream at 200 K, which froze the oil with the embedded crystal. Data collection was done on a Bruker APEX DUO CCD diffractometer equipped with monochromated Mo K_α radiation (λ = 0.71073 Å). The raw data were integrated using the SAINT software. Semiempirical absorption correction was introduced using SADABS. Crystal structures were solved by direct methods and refined by full matrix

least-squares methods on F^2 using SHELXL.²⁴ Atomic coordinates were standardized using STRUCTURE TIDY.²⁵ Details of the data collection, and selected crystallographic parameters are summarized in Tables 1 and 2

Table 1. Data collection details and selected crystallographic data for $AE_3Ti_8Bi_{10}$ (AE=Sr, Ba, Eu; space group $P6_3/mmc, Z=2, T=200 \text{ K}, Mo K_{\alpha} \lambda=0.71073 \text{ Å})$

Chemical formula	Sr ₃ Ti ₈ Bi ₁₀	Ba ₃ Ti ₈ Bi ₁₀	Eu ₃ Ti ₈ Bi ₁₀
fw/ g mol ⁻¹	2735.86	2885.02	2928.88
a/ Å	10.986(2)	11.108(2)	10.966(1)
c/ Å	10.183(2)	10.285(2)	10.136(1)
V / $Å^3$	1064.3(4)	1099.1(5)	1055.5(3)
$ ho_{ m calc}$ / g cm $^{-3}$	8.54	8.72	9.22
$\mu_{\mathrm{MoK}\alpha}/\mathrm{cm}^{-1}$	925.4	876.8	945.7
$R_1 [I > 2\sigma(I)]^a$	0.035	0.024	0.030
$wR_2 [I > 2\sigma(I)]^a$	0.071	0.051	0.059
R ₁ [all data] ^a	0.051	0.031	0.041
wR ₂ [all data] ^a	0.077	0.053	0.064
$ ho_{ m max,min}$ / e Å $^{-3}$	2.09, -2.41	1.53, -1.27	1.95, -1.88

^a R₁= $\sum ||F_o|-|F_c||/\sum |F_o|$; $wR_2=[\sum [w(F_o^2-F_c^2)^2]/\sum [w(F_o^2)^2]]^{1/2}$, where w = $1/[\sigma^2F_o^2+(AP)^2+(BP)]$, and $P=(F_o^2+2F_c^2)/3$; A, B are the respective weight coefficients (see CIF in the supporting information). CIFs have also been deposited with reference CSD numbers 1855587–89.

First-principle calculations. Electronic structure calculations were performed for Sr₃Ti₈Bi₁₀ and Ba₃Ti₈Bi₁₀ within the density functional theory framework using the TB-LMTO-ASA code.²⁶ The Von Barth-Hedin implementation of the local density approximation (LDA) functional was employed²⁷ and the Brillouin zone was sampled by a 16×16×16 k-point grid after checking for convergence. To satisfy the atomic sphere approximation (ASA), an introduction of empty spheres was necessary. Chemical bonding was studied using the Crystal Orbital Hamilton Population analysis (COHP) and Electron Localization Function (ELF), as implemented in TB-LMTO-ASA. For the Bi–Bi contacts in the structure, the two shortest symmetrically independent distances were analyzed.

Physical property measurements. Four-contact electrical resistivity measurements were done for the $Sr_3Ti_8Bi_{10}$ and $Eu_3Ti_8Bi_{10}$ samples on a Quantum Design Physical Property Measurement System (PPMS) in the temperature range 3–300 K. Metal wires were attached to rod-like single crystals with a length of approximately 1.5–2.0 mm using a conductive silver paint. Temperature dependence of the magnetization was measured for the $AE_3Ti_8Bi_{10}$ samples (AE = Sr, Ba, Eu) on the PPMS in

the temperature range 3–300 K under external fields between 20 Oe and 70 kOe. The measured samples, consisting of several randomly oriented single crystals, were enclosed in low-background gel-cap holders stuffed with quartz wool. For comparison, similar magnetic measurements were conducted on sintered pellets of $AE_3Ti_8Bi_{10}$ (AE = Sr, Eu), yielding results consistent with the hand-picked crystals. A Honda-Owen correction was applied to the data to take possible ferromagnetic contributions into account. ^{28,29}

Table 2. Atomic coordinates and equivalent displacement parameters (\mathring{A}^2) for $AE_3Ti_8Bi_{10}$

Atom	Site	х	у	z	$U_{ m eq}^{a}$		
	Sr ₃ Ti ₈ Bi ₁₀						
Sr	6 <i>h</i>	0.1276(1)	2x	1/4	0.023(1)		
Ti1	6 <i>h</i>	0.5818(2)	2x	1/4	0.016(1)		
Ti2	6g	1/2	0	0	0.015(1)		
Ti3	4 <i>f</i>	1/3	2/3	0.0285(5)	0.018(1)		
Bi1	12 <i>k</i>	0.19335(3)	2x	0.57097(5)	0.017(1)		
Bi2	6 <i>h</i>	0.43588(5)	2x	1/4	0.016(1)		
Bi3	2a	0	0	0	0.023(1)		
	$\mathbf{Ba_3Ti_8Bi_{10}}$						
Ba	6 <i>h</i>	0.12725(6)	2x	1/4	0.020(1)		
Ti1	6 <i>h</i>	0.5824(2)	2x	1/4	0.017(1)		
Ti2	6g	1/2	0	0	0.017(1)		
Ti3	4 <i>f</i>	1/3	2/3	0.0340(4)	0.018(1)		
Bi1	12 <i>k</i>	0.19622(2)	2x	0.57144(5)	0.017(1)		
Bi2	6 <i>h</i>	0.43709(3)	2x	1/4	0.017(1)		
Bi3	2a	0	0	0	0.021(1)		
	$Eu_3Ti_8Bi_{10}$						
Eu	6 <i>h</i>	0.12788(6)	2x	1/4	0.024(1)		
Ti1	6 <i>h</i>	0.5826(2)	2x	1/4	0.012(1)		
Ti2	6g	1/2	0	0	0.017(1)		
Ti3	4 <i>f</i>	1/3	2/3	0.0281(4)	0.018(1)		
Bi1	12 <i>k</i>	0.19219(3)	2x	0.57042(5)	0.017(1)		
Bi2	6 <i>h</i>	0.43647(4)	2x	1/4	0.017(1)		
Bi3	2 <i>a</i>	0	0	0	0.021(1)		

 $^{^{\}rm a}$ $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized $U_{\rm ij}$ tensor

Thermal analysis. Simultaneous thermo-gravimetric differential scanning calorimetry measurements (TG/DSC) were conducted on a SDT Q600 analyzer, supplied by TA Instruments. The samples were loaded in capped alumina pans. After equilibration at 323 K, the temperature was raised to 1273 K with 10 K/min. The samples were kept at this point for 1 min and then

cooled down to 373 K with 10 K/min. To prevent oxidation, the measurements were done under a constant flow (100 mL/min) of high-purity argon.

RESULTS AND DISCUSSION

Synthesis. Upon systematic exploratory work of the AE-Ti-Bi ternary systems, a new compound, Eu₃Ti₈Bi₁₀ was serendipitously discovered from an experiment aimed at the preparation of the hitherto unknown Eu₅Ti₁₂Bi_{19+x}.²⁰ Direct synthesis of Eu₃Ti₈Bi₁₀ from the elements produced an almost phase-pure material according to PXRD (Figure S1). A small amount of a Eu-Bi₃ impurity³⁰ was detected in the sample. Variation of the annealing temperature or longer annealing times led to an increase in the impurity content. The best polycrystalline sample was produced after annealing the reaction mixture at 923 K for 96 h with an intermediate regrinding. Using the same synthetic procedure, we were able to obtain a powder sample of Sr₃Ti₈Bi₁₀. The latter always contained small amounts of the cubic Sr₅Ti₁₂Bi_{19+x} phase,²⁰ which could not be completely eliminated by changing the synthetic conditions (Figure S1). In contrast to the Sr and Eu phases, Ba₃Ti₈Bi₁₀ did not form under these reactions. The major product of the reactions carried out in the temperature range 773–1023 K was the cubic Ba₅Ti₁₂Bi_{19+x}.²⁰

Our previous experience indicates that liquid bismuth appears to be in equilibrium with the cubic $AE_5Ti_{12}Bi_{19+r}$ (AE = Sr, Ba) and with the orthorhombic EuTi₃Bi₄ phases in a wide temperature and compositional range.²⁰ Hence, single crystals of the ternary AE₃Ti₈Bi₁₀ compounds could not be grown from a bismuth flux. We used molten lead instead, which allowed the growth of reasonably large AE₃Ti₈Bi₁₀ single crystals that were suitable for transport measurements in the case of AE =Sr and Eu, by cooling down the reaction mixture from 1273 K to 823 K with 2 K/h. Increasing the amount of the AE metal in the starting mixture in comparison with the composition given in the Experimental section had a positive effect on the crystal size but resulted in the simultaneous formation of the binary phases $Sr_{11}Bi_{10}^{31}$ and EuBi₃, or respectively. The latter impurity was also observed in the Eu samples with the stoichiometric Eu: Ti : Bi ratio. EuBi₃ can be completely eliminated if the annealing temperature is lowered to 973 K, albeit at the cost of the Eu₃Ti₈Bi₁₀ crystal size. The almost perfectly cubic EuBi₃ single crystals can be easily distinguished from the rod-like Eu₃Ti₈Bi₁₀ crystals. In the samples with an excess of Ti, a formation of the plumbide Ti₆Pb_{5-x} was observed.³² The Ba representative Ba₃Ti₈Bi₁₀ could only be prepared in high yields from a lead flux when the annealing temperature was not higher than 973 K and the cooling rate was 5 K/h. Increasing the temperature or decreasing the cooling rate always produced $Ba_5Ti_{12}Bi_{19+x}$ as the main phase.

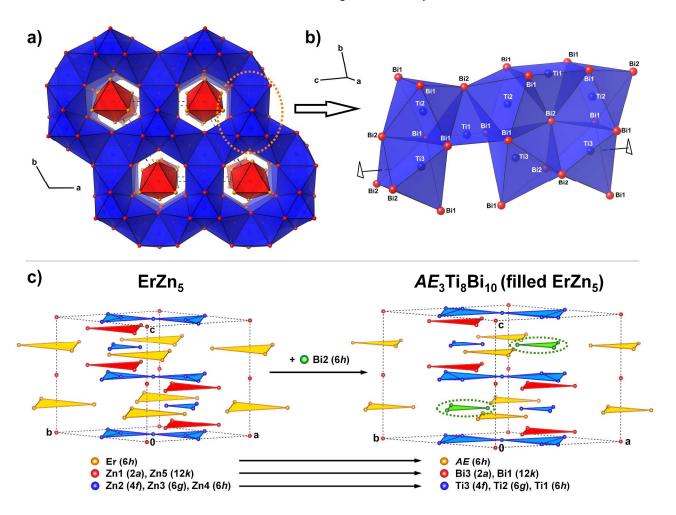


Figure 1. (a) Crystal structure of $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu) drawn along [001]. (b) Part of the Ti–Bi framework showing the polyhedra interconnections. A three-fold rotation axis is indicated. (c) Crystallographic relationship between the ErZn₅ and $AE_3Ti_8Bi_{10}$ crystal structures.

Our TG/DSC measurements performed on the single crystals of $AE_3\mathrm{Ti_8Bi_{10}}$ ($AE=\mathrm{Sr}$, Ba, Eu) did not indicate any intrinsic thermal events up to 1273 K (Figure S2), suggesting that the samples are thermally stable in this temperature range. However, given the fact that $\mathrm{Ba_3Ti_8Bi_{10}}$ could not be prepared from the elements and that the powder samples of $AE_3\mathrm{Ti_8Bi_{10}}$ ($AE=\mathrm{Sr}$, Eu) were always contaminated by competing compounds, it is likely that $AE_3\mathrm{Ti_8Bi_{10}}$ ($AE=\mathrm{Sr}$, Ba, Eu) are not thermodynamically stable phases, but rather kinetically arrested at the synthetic conditions.

Crystal structure. The AE_3 Ti₈Bi₁₀ phases (AE = Sr, Ba, Eu) crystallize isostructurally in the hexagonal space group $P6_3/mmc$ (No. 194) with two formula units per unit cell. The structure constitutes a new structure type with Pearson symbol hP42. Titanium atoms in the crystal structure are five-fold and six-fold coordinated by Bi atoms forming a three-dimensional framework of fused TiBi₅ square pyramids and TiBi₆ octahedra. This framework contains large, one-dimensional channels running along the crystallographic c direction. These channels, in turn, accommodate infinite columns of face-shared AE_6

polyhedra which are Bi-centered (Figure 1a). The connectivity mode of the TiBi_x polyhedra is rather complex and boasts varying linkage fashions (Figure 1b). The Ti1Bi₅ square pyramids are interconnected by common edges and share vertices and faces with the Ti2Bi₆ octahedra. The Ti3Bi₆ octahedra are linked to the Ti1Bi₅ pyramids through common vertices and edges. The Ti2Bi₆ and Ti3Bi₆ octahedra connect to the adjacent identical octahedra exclusively by corner- and facesharing, respectively, whereas their interconnection is realized by face-sharing. Both symmetrically independent Bi atoms residing within the Ti-Bi framework, Bil and Bi2, are bonded to five adjacent Ti atoms. Altogether, taking into account the described linking patterns, the comprehensive formula of the discussed compounds can be given as $(AE_{6/2}Bi)[TiBi_{5/5}]_3[TiBi_{6/5}]_3[TiBi_{6/5}]_2$ (AE = Sr, Ba, Eu).

The Ti–Bi distances in AE_3 Ti₈Bi₁₀ range between 2.78 Å and 3.05 Å (Table 3), which is in good agreement with typical bond lengths in other titanium bismuthides. ^{19,20,33,34} The Ti–Ti interatomic separations extend from 2.77 Å to 3.34 Å. Although, the longer side of

this distribution lies beyond the bond lengths in elemental Ti, these distances are within the range of bonding contacts in other Ti-rich intermetallic compounds.³⁵ The emergence of metal-metal bonding is also evidenced by our first-principle calculations (*vide infra*).

Table 3. Selected interatomic distances (Å) in $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu)

Ator	n Pairs	AE = Sr	AE = Ba	AE = Eu
AE	—Bi2 × 2	3.391(2)	3.4338(9)	3.379(1)
	—Bi1 × 2	3.500(1)	3.5625(9)	3.4698(8)
	—Bi3 × 2	3.517(2)	3.5505(8)	3.5100(8)
	—Bi1 × 4	3.7176(8)	3.7917(8)	3.6974(6)
Ti1	—Bi2	2.776(5)	2.795(3)	2.775(3)
	—Bi1 × 4	2.9539(7)	2.9469(7)	2.9612(6)
	—Ti1 × 2	2.797(8)	2.809(5)	2.767(6)
	—Ti2 \times 2	2.984(2)	3.020(2)	2.980(2)
	—Ti3 × 2	3.264(5)	3.341(4)	3.240(4)
Ti2	—Bi2 × 2	2.8230(6)	2.8420(6)	2.8066(4)
	—Bi1 × 4	3.0377(5)	3.0533(5)	3.0381(4)
	—Ti1 × 2	2.984(2)	3.020(2)	2.980(2)
	—Ti3 × 2	3.1847(5)	3.2257(4)	3.1783(4)
Ti3	—Bi1 × 3	2.850(2)	2.852(2)	2.861(2)
	—Bi2 \times 3	2.982(4)	2.987(3)	2.982(3)
	$-Ti2 \times 3$	3.1847(5)	3.2257(4)	3.1783(4)
	—Ti1 × 3	3.264(5)	3.341(4)	3.240(4)
Bi2	—Bi2 × 2	3.380(2)	3.458(1)	3.393(1)

The shortest Bi–Bi contact is observed for the regular triangle of Bi2 atoms on the Ti3Bi₆ octahedron face. The corresponding distance ranges from 3.38 Å to 3.46 Å on going from Sr₃Ti₈Bi₁₀ to Ba₃Ti₈Bi₁₀, respectively, which is far above the contacts between single-bonded Bi atoms (the Pauling radius $r_{\text{Bi}} = 1.52 \text{ Å}^{36}$). Nevertheless, similarly long Bi-Bi bonds are found in hypervalent anionic species, e.g. in the linear $\left[Bi_3\right]^{7-}$ moieties in AE_{14} MgBi₁₁ and AE_{14} MnBi₁₁ (AE = Ca, Sr, Ba, Eu, Yb)³⁷⁻⁴² and Ba₂Mn_{1-x}Bi₂.⁶ In pnictides, hypervalent interactions are realized as a result of chemical bonding optimization in electron-rich polyanionic subunits, such as olygomers, ^{37–41,43} chains, ^{13,19,43–45} or planes. ^{43,46–48} After the Bi2-Bi2 contacts, the shortest distance between the Bi atoms in $AE_3Ti_8Bi_{10}$ is the Bi1-Bi1 pair between the corners of the adjacent TilBi₆ octahedra along the c direction. This distance, however, exceeds 3.60 Å for all representatives and, as indicated by the

chemical bonding analysis (vide infra), displays a negligible bonding interaction.

The crystal structure of $AE_3\mathrm{Ti}_8\mathrm{Bi}_{10}$ ($AE = \mathrm{Sr}$, Ba, Eu) can be also viewed as a stuffed derivative of the ErZn_5 type (Figure 1c). The atomic positions in the latter follows the Wyckoff sequence kh2gfa. By replacing the Er atoms by AE ($AE = \mathrm{Sr}$, Ba, Eu) and "coloring" the Zn substructure according to the scheme in Figure 1c, the composition of the unit cell transforms from $\mathrm{Er}_6\mathrm{Zn}_{30}$ (= ErZn_5) to $AE_6\mathrm{Ti}_{16}\mathrm{Bi}_{14}$. The overall crystal structure is completed upon insertion of additional Bi atoms in position 6h, yielding the final composition $AE_6\mathrm{Ti}_{16}\mathrm{Bi}_{20}$ (= $AE_3\mathrm{Ti}_8\mathrm{Bi}_{10}$). Since such insertion leads to an expansion of the unit cell in the ab plane, the c/a ratio for $AE_3\mathrm{Ti}_8\mathrm{Bi}_{10}$ drops down to 0.92–0.93 in comparison with ErZn_5 -type compounds, exhibiting c/a values of 1.03–1.04.

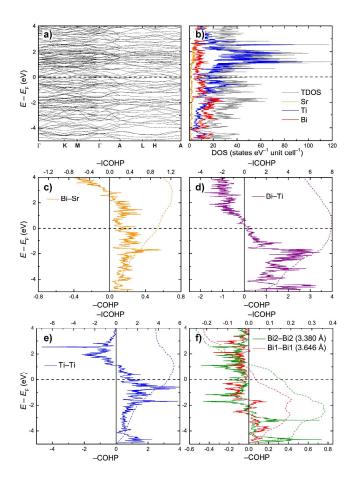


Figure 2. Electronic structure and chemical bonding in Sr₃Ti₈Bi₁₀. (a) Band structure along selected directions. (b) Total and projected densities of states. (c)–(f) COHP curves for selected interatomic contacts.

Electronic structure and chemical bonding. The electronic band structure and density of states (DOS) for $Sr_3Ti_8Bi_{10}$ are shown in Figure 2a and b, respectively. The manifold of electronic bands crossing the Fermi level (E_F) results in a considerable density of states at

 $E_{\rm F}$. The dispersion of the bands along the high-symmetry directions of the Brillouin zone indicates an essentially three-dimensional metallic behavior. Similar picture is observed for the Ba counterpart (Figure S3). Spin-polarized calculations converged to zero magnetic moments on the Ti atoms.

Crystal Orbital Hamilton Population analysis (COHP) reveals that the Bi-Sr, Bi-Ti and Ti-Ti contacts show bonding interactions below the Fermi level (Figure 2c, d, e). The negative integrated COHP (-ICOHP) values for the symmetrically independent Bi-Sr pairs range from 0.15 to 0.39 eV/bond. The corresponding interactions are underoptimized at $E_{\rm F}$ since unpopulated bonding states are available above the Fermi level up to $E - E_{\rm F} =$ 3.0 eV. In contrast, the Bi-Ti bonds are fully optimized. The majority of the bonding states for these contacts are located below $E-E_{\rm F}=-1.0$ eV, where the strong Ti(3d)-Bi(6p) hybridization occurs. These interactions provide the main contribution to the structural stability with the individual -ICOHP addends of 1.07-1.67 eV/bond. Similarly high –ICOHP values of 0.82–1.95 eV/bond are calculated for the Ti-Ti contacts, which remain faintly underoptimized at $E_{\rm F}$. As it is evident from the COHP curve, the Ti-Ti bonding interactions are responsible for the high DOS peaks of Ti(3d) character in the close vicinity of the Fermi level.

Unlike the above-mentioned atomic pairs, the two shortest Bi–Bi contacts in the structure show a combination of bonding and antibonding states below the Fermi level (Figure 2f). The overall interaction results in a bonding situation at $E_{\rm F}$ in both cases with the –ICOHP values of 0.15 and 0.03 eV/bond for the Bi2–Bi2 and Bi1–Bi1 contacts, respectively. Whereas the latter value is negligible, the former number is close to the corresponding measure for some of the Bi–Sr bonds. As was discussed above, the Bi2–Bi2 distance falls in the range typical for hypervalent Bi–Bi bonds. Indeed, the sharp peaks of low-lying bonding states and antibonding states located just under the Fermi level, as observed for the Bi2–Bi2 pair, appear to be a hallmark of electron-rich (hypervalent) bonds in polyanionic structures. 19,43,50

Since the Ti–Ti interactions have the strongest effect on the total DOS at the Fermi level, it is worthy to discuss the chemical bonding within the Ti framework in more detail. The pattern of interconnected Ti atoms is shown in Figure 3a. The repeating fragment of the Ti substructure is a trigonal bipyramid Ti1₃Ti3₂ with all six lateral edges capped by Ti2 atoms. Alternatively, this moiety can be viewed as two interpenetrating Ti3Ti2₃ tetrahedra pointing in opposite directions and intersecting along the Ti1₃ triangle. These building blocks are interconnected by corner-sharing via Ti2 atoms. Visualization of the electron localization function (ELF) reveals a localized domain inside the principal building block in the center of the triangular base (Figure 3b). This feature points toward multicenter bonding involving the three

Ti1 atoms and the two Ti3 atoms as can be seen from the section of the ELF (Figure 3c). The latter picture demonstrates flattening of the ELF around Ti3 atoms in the direction of the triangular base, which is a sign of chemical bonding interactions. The Ti1-Ti2 and Ti3-Ti2 bonds appear to be two-center as indicated by ELF maxima on the lines connecting these atoms and the corresponding deformation of the ELF distribution.

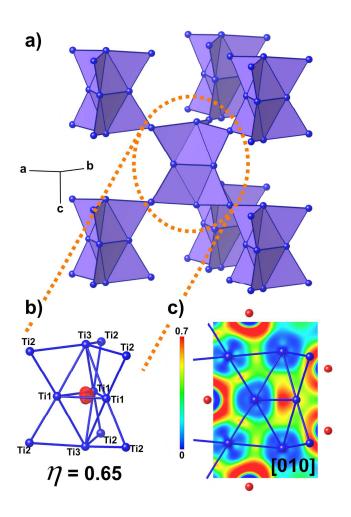


Figure 3. (a) Ti substructure in $AE_3\text{Ti}_8\text{Bi}_{10}$. (b) ELF isosurface ($\eta = 0.65$) inside the Ti skeleton in $\text{Sr}_3\text{Ti}_8\text{Bi}_{10}$. (c) ELF section through the repeating building block of the Ti framework in $\text{Sr}_3\text{Ti}_8\text{Bi}_{10}$.

Physical properties. Electrical resistivity measurements on the AE_3 Ti₈Bi₁₀ (AE = Sr, Eu) single crystals revealed metallic behavior (Figure 4 top). The resistivity of the Eu representative was found to be approximately three times higher than that of the Sr compound, likely due to additional magnetic scattering. Below ≈ 7.5 K, a superconducting transition of the remaining Pb flux is observed. Although Pb could not be completely removed from the crystal surface, its contribution to the electrical resistivity above T_c is negligible as can be judged from the absolute values of $\rho(T)$. Magnetization measure-

ments on a sintered Sr₃Ti₈Bi₁₀ pellet in external fields as low as 20 Oe did not indicate any intrinsic superconducting transitions down to 3 K.

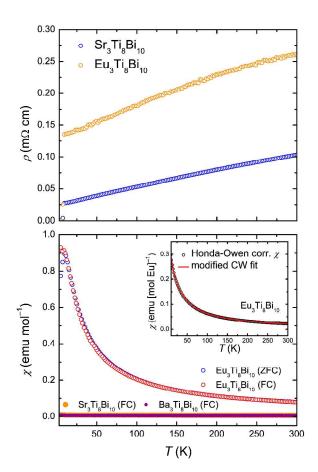


Figure 4. (top) Temperature dependence of electrical resistivity for $AE_3\mathrm{Ti}_8\mathrm{Bi}_{10}$ ($AE=\mathrm{Sr}$, Eu). (bottom) Temperature dependence of magnetic susceptibility (H=5 kOe) for $AE_3\mathrm{Ti}_8\mathrm{Bi}_{10}$ ($AE=\mathrm{Sr}$, Ba, Eu). Inset: Honda-Owen corrected magnetic susceptibility for $\mathrm{Eu}_3\mathrm{Ti}_8\mathrm{Bi}_{10}$ (circles) with a modified Curie-Weiss fit (red line).

Temperature dependence of the magnetic susceptibility for $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu) is shown in Figure 4 bottom. In accordance with our first-principle calculations, the Ti atoms in $AE_3Ti_8Bi_{10}$ do not carry localized magnetic moments. Measurements on $Sr_3Ti_8Bi_{10}$ and $Ba_3Ti_8Bi_{10}$ revealed an almost temperature-independent paramagnetic response on the order of 10^{-3} emu/mol, indicating the prevalence of the Pauli paramagnetic contribution.

Eu₃Ti₈Bi₁₀ displays localized paramagnetic behavior at high temperatures. A fit of the magnetic susceptibility curve with a modified Curie-Weiss expression yields the effective magnetic moment of 7.82 μ_B , close to the theoretical value of 7.94 μ_B for free-ion Eu²⁺ (4f⁷), and the Weiss constant $\Theta = -16.8$ K. The negative value points toward antiferromagnetic leading exchange interaction. At around 8.5 K, an antiferromagnetic transition occurs.

It is worthwhile to note that this ordering temperature is close to the Néel temperature of the binary EuBi₃ ($T_N = 7.5$), which was occasionally found as an impurity in our samples. However, a PXRD analysis of the ground Eu₃Ti₈Bi₁₀ crystals used for the measurements did not indicate any presence of EuBi₃, which suggests that the discussed transition is likely intrinsic.

CONCLUSIONS

A novel family of ternary titanium bismuthides, $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu), has been discovered and characterized. The crystal structure of these compounds can be described as an open framework of fused TiBi₅ square pyramids and TiBi₆ octahedra. Face-sharing Bicentered BiAE₆ distorted octahedra occupy channels in the Ti-Bi substructure forming infinite one-dimensional columns. Whereas the main structure-stabilizing factor is the covalent bonding between the Ti and Bi atoms, another considerable contribution stems from Ti-Ti interactions of two-center and multicenter character. The strong hybridization of the Ti(3d) states leads to a sizeable electronic DOS at the Fermi level. However, no associated electronic or magnetic instabilities are observed in the physical property data down to 3 K. The $AE_3Ti_8Bi_{10}$ samples display metallic conductivity and no local magnetic moments on the Ti atoms in the whole measured temperature range. Eu₃Ti₈Bi₁₀ demonstrates Curie-Weiss-type paramagnetic behavior consistent with Eu²⁺ (4f⁷) and a sign of antiferromagnetic ordering of the Eu²⁺ moments below 8.5 K. In summary, the presented compounds provide an evidence of rich and yet scarcely explored structural chemistry in pnictides of early transition elements. More detailed analysis of the phase field may uncover new compounds with possibly interesting physical properties.

ASSOCIATED CONTENT

Supporting Information. Powder X-ray diffraction patterns for the $AE_3\mathrm{Ti_8Bi_{10}}$ sintered pellets ($AE=\mathrm{Sr}$, Eu), TG/DSC data, electronic structure calculations for $\mathrm{Ba_3Ti_8Bi_{10}}$. This material (all supplied in PDF), as well as the crystallographic information files (CIF) are available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* Prof. Svilen Bobev, bobev@udel.edu. Phone: (302)-831-8720. Fax: (302)-831-6335.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

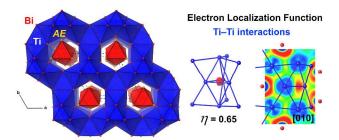
Funding Sources

US Department of Energy, Office of Science, Basic Energy Sciences.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0008885.

REFERENCES


- (1) Stoyko, S. S.; Blanchard, P. E. R.; Mar, A. Ternary rareearth iron arsenides $RE_{12}Fe_{57.5}As_{41}$ (RE = La, Ce). *Inorg. Chem.* **2010**, 49, 2325–2333.
- (2) Xiong, D.-B.; Zhao, Y.; Schnelle, W.; Okamoto, N. L.; Inui, H. Complex alloys containing double-Mackay clusters and (Sb_{1- δ}Zn_{δ})₂₄ snub cubes filled with highly disordered zinc aggregates: Synthesis, structures, and physical properties of ruthenium zinc antimonides. *Inorg. Chem.* **2010**, *49*, 10788–10797.
- (3) He, H.; Tyson, C.; Bobev, S. New compounds with $[As_7]^{3-}$ clusters: Synthesis and crystal structures of the Zintl phases Cs_2NaAs_7 , Cs_4ZnAs_{14} and Cs_4CdAs_{14} . Crystals **2011**, 1 (3), 87–98.
- (4) Suen, N.-T.; Wang, Y.; Bobev, S. Synthesis, crystal structures, and physical properties of the new Zintl phases $A_{21}Zn_4Pn_{18}$ (A = Ca, Eu; Pn =As, Sb)—versatile arrangements of [ZnPn₄] tetrahedra. *J. Solid State Chem.* **2015**, *227*, 204–211.
- (5) Lo, C.-W. T.; Ortiz, B. R.; Toberer, E. S.; He, A.; Svitlyk, V.; Chernyshov, D.; Kolodiazhnyi, T.; Lidin, S.; Mozharivskyj, Y. Synthesis, structure, and thermoelectric properties of α -Zn₃Sb₂ and comparison to β-Zn₁₃Sb₁₀. *Chem. Mater.* **2017**, *29*, 5249–5258.
- (6) Ovchinnikov, A.; Saparov, B.; Xia, S.-Q.; Bobev, S. The ternary alkaline-earth metal manganese bismuthides Sr_2MnBi_2 and $Ba_2Mn_{1-x}Bi_2$ ($x\approx0.15$). *Inorg. Chem.* **2017**, *56*, 12369–12378.
- (7) Brown, S. R.; Kauzlarich, S. M.; Gascoin, F.; Snyder, G. J. Yb₁₄MnSb₁₁: New high efficiency thermoelectric material for power generation. *Chem. Mater.* **2006**, *18*, 1873–1877.
- (8) Rull-Bravo, M.; Moure, A.; Fernández, J. F.; Martín-González, M. Skutterudites as thermoelectric materials: Revisited. *RSC Adv.* **2015**, *5*, 41653–41667.
- (9) Guo, X.; Chen, X.; Altounian, Z.; Ström-Olsen, J. O. Magnetic properties of MnBi prepared by rapid solidification. *Phys. Rev. B* **1992**, *46*, 14578–14582.
- (10) Stewart, G. R. Superconductivity in iron compounds. *Rev. Mod. Phys.* **2011**, *83*, 1589–1652.
- (11) Gascoin, F.; Sevov, S. C. Niobium-arsenic Zintl phases: A₆NbAs₅ (A = K, Rb, Cs), K₆NbTlAs₄, and K₈NbPbAs₅ with edgebridged niobium-centered tetrahedra of arsenic, [NbAs₄M]ⁿ⁻ where M = As, Tl, Pb. *Inorg. Chem.* **2002**, *41*, 2820–2825.
- (12) Gascoin, F.; Sevov, S. C. Synthesis and characterization of K₃₈Nb₇As₂₄ and Cs₉Nb₂As₆: The first mixed-valence transition-metal Zintl phases. *Inorg. Chem.* **2002**, *41*, 5920–5924.
- (13) Bollore, G.; Ferguson, M. J.; Hushagen, R. W.; Mar, A. New ternary rare-earth transition-metal antimonides RE₃MSb₅ (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb). *Chem. Mater.* **1995**, 7, 2229–2231.
- (14) Bie, H.; Devon Moore, S. H.; Piercey, D. G.; Tkachuk, A. V.; Zelinska, O. Y.; Mar, A. Ternary rare-earth titanium antimonides: Phase equilibria in the RE–Ti–Sb (RE = La, Er) systems and crystal structures of $RE_2Ti_7Sb_{12}$ (RE = La, Ce, Pr, Nd) and $RETi_3(Sn_xSb_{1-x})_4$ (RE = Nd, Sm). *J. Solid State Chem.* **2007**, *180*, 2216–2224.
- (15) Bie, H.; Mar, A. Ternary rare-earth titanium antimonides $RE_2Ti_{11-x}Sb_{14+x}$ (RE = Sm, Gd, Tb, Yb). *Inorg. Chem.* **2008**, 47, 6763–6770.
- (16) Bie, H.; Mar, A. Ba₅Ti₁₂Sb_{19+x}, a polar intermetallic compound with a stuffed γ -brass structure. *J. Solid State Chem.* **2009**, *182*, 3131–3137.
- (17) Adam, A.; Schuster, H.-U. Ternäre intermetallische Phasen des Lithiums mit Elementen der 4. Neben- und 5. Hauptgruppe mit statistischer Metallverteilung im "Kationen"-Teilgitter. *Z. Anorg. Allg. Chem.* **1991**, *597*, 33–39.

- (18) Murakami, T.; Yamamoto, T.; Takeiri, F.; Nakano, K.; Kageyama, H. Hypervalent bismuthides La₃MBi₅ (M = Ti, Zr, Hf) and related antimonides: Absence of superconductivity. *Inorg. Chem.* **2017**, *56*, 5041–5045.
- (19) Ovchinnikov, A.; Bobev, S. Undistorted linear Bi chains with hypervalent bonding in La₃TiBi₅ from single-crystal X-ray diffraction. *Acta Crystallogr. C* **2018**, *74*, 618–622.
- (20) Ovchinnikov, A.; Bobev, S. Synthesis, crystal and electronic structure of the titanium bismuthides $Sr_5Ti_{12}Bi_{19+x}$, $Ba_5Ti_{12}Bi_{19+x}$, and Sr_5 – δ Eu $_\delta$ Ti $_{12}Bi_{19+x}$ ($x\approx 0.5$ –1.0; $\delta\approx 2.4$, 4.0). *Eur. J. Inorg. Chem.* **2018**, 2018, 1266–1274.
- (21) Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. *Z. Kristallogr. Cryst. Mater.* **2014**, *229*, 345–352.
- (22) SAINT; Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- (23) SADABS; Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- (24) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8.
- (25) Gelato, L. M.; Parthé, E. *STRUCTURE TIDY* a computer program to standardize crystal structure data. *J. Appl. Crystallogr.* **1987**, *20*, 139–143.
- (26) Jepsen, O.; Andersen, O. K. The Stuttgart TB-LMTO-ASA program, version 4.7; Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany.
- (27) Barth, U. von; Hedin, L. A local exchange-correlation potential for the spin polarized case. I. J. Phys. C 1972, 5, 1629–1642.
- (28) Honda, K. The thermomagnetic properties of the elements. *Ann. Phys.* **1910**, *32*, 1027–1063.
- (29) Owen, M. Magnetochemical testings. The thermomagnetic properties of elements II. *Ann. Phys.* **1912**, *37*, 657–699.
- (30) Nakamura, A.; Hiranaka, Y.; Hedo, M.; Nakama, T.; Tatetsu, Y.; Maehira, T.; Miura, Y.; Mori, A.; Tsutsumi, H.; Hirose, Y.; Mitamura, K.; Sugiyama, K.; Hagiwara, M.; Honda, F.; Takeuchi, T.; Haga, Y.; Matsubayashi, K.; Uwatoko, Y.; Onuki, Y. Fermi surface and magnetic properties of antiferromagnet EuBi₃. *J. Phys. Soc. Jpn.* **2013**, *82*, 124708.
- (31) Derrien, G.; Tillard-Charbonnel, M.; Manteghetti, A.; Monconduit, L.; Belin, C. Synthesis and crystal structure of $M_{11}X_{10}$ compounds, M = Sr, Ba and X = Bi, Sb. Electronic requirements and chemical bonding. *J. Solid State Chem.* **2002**, *164*, 169–175.
- (32) Kleinke, H. Extraordinarily short Pb-Pb bonds in the new binary intermetallic Ti₆Pb_{4.8}. *J. Solid State Chem.* **2001**, *159*, 134–138.
- (33) Richter, C. G.; Jeitschko, W. Preparation and crystal structure of the titanium and hafnium bismuthides Ti_8Bi_9 and Hf_8Bi_9 . *J. Solid State Chem.* **1997**, *134*, 26–30.
- (34) Watanabe, K.; Yamane, H. Crystal Structure of TiBi₂. *Acta Crystallogr. E* **2016**, *72*, 1254–1256.
- (35) Lütjering, G.; Williams, J. C. *Titanium*; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007.
- (36) Pauling, L. *The Nature of the Chemical Bond*; Cornell University Press: Ithaca, NY, 1960.
- (37) Tan, W.; Wu, Z.; Zhu, M.; Shen, J.; Zhu, T.; Zhao, X.; Huang, B.; Tao, X.; Xia, S. $A_{14}MgBi_{11}$ (A = Ca, Sr, Eu): Magnesium bismuth based Zintl phases as potential thermoelectric materials. *Inorg. Chem.* **2017**, *56*, 10576–10583.
- (38) Hu, Y.; Kauzlarich, S. M. Yb₁₄MgBi₁₁: Structure, thermoelectric properties and the effect of the structure on low lattice thermal conductivity. *Dalton Trans* **2017**, *46*, 3996–4003.
- (39) Webb, D. J.; Kuromoto, T. Y.; Kauzlarich, S. M. New ternary magnets (Ca, Sr, Ba)₁₄MnBi₁₁. *J. Magn. Magn. Mater.* **1991**, *98*, 71–75.
- (40) Chan, J. Y.; Wang, M. E.; Rehr, A.; Kauzlarich, S. M.; Webb, D. J. Synthesis, structure, and magnetic properties of the rare-earth Zintl compounds $Eu_{14}MnPn_{11}$ and $Eu_{14}InPn_{11}$ (Pn = Sb, Bi). *Chem. Mater.* **1997**, *9*, 2131–2138.
- (41) Chan, J. Y.; Olmstead, M. M.; Kauzlarich, S. M.; Webb, D. J. Structure and ferromagnetism of the rare-earth Zintl compounds: Yb₁₄MnSb₁₁ and Yb₁₄MnBi₁₁. *Chem. Mater.* **1998**, *10*, 3583–3588.

- (42) Ovchinnikov, A.; Prakash, J.; Bobev, S. Crystal chemistry and magnetic properties of the solid solutions $Ca_{14-x}RE_xMnBi_{11}$ (RE = La–Nd, Sm, and Gd–Ho; $x\approx0.6$ –0.8). Dalton Trans. **2017**, 46, 16041–16049.
- (43) Papoian, G.; Hoffmann, R. Hypervalent bonding in one, two, and three dimensions: Extending the Zintl-Klemm concept to nonclassical electron-rich networks. *Angew. Chem. Int. Ed.* **2000**, *39*, 2408–2448.
- (44) Ferguson, M. J.; Hushagen, R. W.; Mar, A. Crystal structures of La₃ZrSb₅, La₃HfSb₅, and LaCrSb₃. Structural relationships in ternary rare-earth antimonides. *J. Alloys Compd.* **1997**, 249, 191–198.
- (45) Tkachuk, A. V.; Muirhead, C. P. T.; Mar, A. Structure and physical properties of ternary uranium transition-metal antimonides U₃MSb₅ (M = Zr, Hf, Nb). *J. Alloys Compd.* **2006**, *418*, 39–44.
- (46) Papoian, G.; Hoffmann, R. Building up complexity from strips and sheets: The electronic structure of the La₁₂Mn₂Sb₃₀ alloy. *J. Solid State Chem.* **1998**, *139*, 8–21.
- (47) Raju, N. P.; Greedan, J. E.; Ferguson, M. J.; Mar, A. LaCrSb₃: A new itinerant electron ferromagnet with a layered structure. *Chem. Mater.* **1998**, *10*, 3630–3635.
- (48) Ovchinnikov, A.; Makongo, J. P. A.; Bobev, S. Yet again, new compounds found in systems with known binary phase diagrams. Synthesis, crystal and electronic structure of Nd₃Bi₇ and Sm₃Bi₇. *Chem. Commun.* **2018**, *54*, 7089–7092.
- (49) Villars, P.; Calvert, L. D. *Pearson's handbook of crystallo-graphic data for intermetallic phases. 2nd ed.*; American Society for Metals: Materials Park, OH, 1991.
- (50) Ovchinnikov, A.; Bobev, S. On the effect of Ga and In substitutions in the $Ca_{11}Bi_{10}$ and $Yb_{11}Bi_{10}$ bismuthides crystallizing in the tetragonal $Ho_{11}Ge_{10}$ structure type. *Acta Crystallogr. C* **2018**, *74*, 269–273.
- (51) Kohout, M.; Wagner, F. R.; Grin, Y. Electron localization function for transition-metal compounds. *Theor. Chem. Acc.* **2002**, *108*, 150–156.

For Table of Contents Only

A new family of ternary titanium bismuthides, $AE_3Ti_8Bi_{10}$ (AE = Sr, Ba, Eu), has been discovered and characterized. Physical property measurements and first principle calculations indicate metallic behavior and absence of localized magnetism on the Ti atoms. The Ti substructure shows an extensive framework of two-center and multicenter metal-metal interactions.

