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I Abstract: Low frequency sound < 20 Hz, known as infrasound, is

2 generated by a variety of natural and anthropogenic sources. Following

3 an event, infrasonic waves travel through a dynamic atmosphere that

4 can change on the order of minutes. This makes infrasound event

5 classification a difficult problem as waveforms from the same source

6 type can look drastically different. Event classification usually requires

7 ground truth information from seismic or other methods. This is

8 time consuming, inefficient, and does not allow for classification if

9 the event locates somewhere other than a known source, the location

10 accuracy is poor, or ground truth from seismic data is lacking. Here we

11 compare the performance of the state of the art for infrasound event

12 classification, support vector machine (SVM), to the performance

13 of a convolutional neural network (CNN), a method that has been

14 proven in tangential fields such as seismology. For a 2-class catalog of

15 only volcanic activity and earthquake events, the 4-fold average SVM

16 classification accuracy is 75%, while it is 74% when using a CNN.

17 Classification accuracies from the 4-class catalog consisting of the

18 most common infrasound events detected at the global scale are 55%

19 and 56% for the SVM and CNN architectures, respectively. These

20 results demonstrate that using a CNN does not increase performance

21 for infrasound event classification. This suggests that SVM should



22 be the preferred classification method as it is a simpler and more

23 trustworthy architecture and can be tied to the physical properties

24 of the waveforms. The SVM and CNN algorithms described in this

25 paper are not yet generalizable to other infrasound event catalogs. We

26 anticipate this study to be a starting point for development of large

27 and comprehensive, systematically labeled, infrasound event catalogs

28 as such catalogs will be necessary to provide an increase in the value

29 of deep learning on event classification.

30

31 Keywords: infrasound, support vector machine, convolutional neural

32 network, classification, global monitoring
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33 1. Introduction

34 Infrasound (< 20 Hz) is generated by a variety of natural and anthropogenic sources in-

35 cluding ocean waves, volcanoes, mountains, chemical explosions, mining blasts, and rockets.

36 Infrasonic waves travel through a dynamic atmosphere where temperature, wind speed, and

37 wind direction can change drastically on the order of minutes. A change in atmospheric struc-

38 ture ultimately changes the shape of the recorded waveform, even when the source-receiver

39 path remains the same. Changes in waveform morphology due to atmospheric structure

40 have been observed from repeating sources over several days (Gibbons et al., 2015), down

41 to 20 minutes (Kulichkov, 2004). Signal durations and frequency characteristics are also

42 dependent on the structure of the waveguide (Ceranna et al., 2009; Green and Nippress,

43 2019). Lastly, amplitude attenuation occurs as signals propagate through the atmosphere.

44 This attenuation is highly dependent on the structure of the upper atmosphere (Smets and

45 Evers, 2014). The dependance of waveform morphology on atmospheric structure results

46 in signals from the same source showing a variety of waveform characteristics. This makes

47 infrasound signal classification a difficult problem. We are trying to classify a property (the

48 source type) that is unaffected by atmospheric propagation. It is nearly impossible for an

49 analyst to identify the source type based on the infrasound waveforms alone because of their

50 dependence on atmospheric structure. Analysts may be able to use the event location, if

51 known, to understand the source (i.e. if the location matches a known source such as a

52 volcano). However, ground truth information from seismic data is often used to classify

53 infrasound signals. This is time consuming, inefficient, and does not allow for a classification
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54 if the event locates somewhere other than a known source, the location accuracy is poor, or

55 ground truth from seismic data is lacking. For the purposes of this paper we will refer to

56 an infrasound waveform as a "signar , while a collection of signals resulting from the same

57 source will be referred to as an "event" .

58 Common methods from seismology, such as waveform cross correlation and template

59 matching, work poorly for infrasound signal classification because infrasonic waveforms are so

60 strongly affected by the atmospheric regime through which they travel. Bowman and Albert

61 (2018) show that changes in the atmosphere (such as a developing storm) can affect both the

62 amplitude and shape of infrasonic waveforms with the same source-receiver geometry, even

63 when they are only separated in time by 90 minutes. Therefore, it is nearly impossible to

64 distinguish between source types from time-series waveforms alone. However, the physical

65 mechanism for each source type is fundamentally different, so their signals may contain

66 unique frequency components that can be exploited using robust methods.

67 Infrasound signal classification remains of particular interest for national security

68 and hazard mitigation. The International Monitoring System (IMS) was developed by the

69 Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) to monitor for nuclear ex-

70 plosions. It remains under development and will eventually consist of 60 global infrasound

71 stations. At the time of this publication, the IMS infrasound network consists of 52 infra-

72 sound stations, though fewer were present in the past when most of the signals in our catalog

73 were recorded. The International Data Centre (IDC), which is also part of the CTBTO, is

74 responsible for processing all of the IMS data. Arrowsmith (2018) computed a "Genuine
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75 False Alarm" (GFA) rate, using the same infrasound event processing method that the IDC

76 uses, by attempting to associate simulated, unassociated, detections on two or more stations.

77 Results suggest a GFA rate of rs.,200 events per day, generating a high false alarm rate and

78 placing a large workload on analysts. However, it is important to note that this is an esti-

79 mate from Arrowsmith (2018). The IDC applies post-processing methods in an attempt to

80 further reduce the false alarm rate. A reliable classification algorithm would allow analysts

81 to focus on events of interest rather than false alarms. From a hazard mitigation standpoint,

82 signal classification could provide eruption warnings in areas where seismic or other data is

83 limited.

84 Machine learning has shown high accuracy in classifying infrasound signals at local

85 (< 15 km), regional (15 - 250 km), and global (> 250 km) distances. For example, Ham

86 and Park (2002) showed that their neural network (NN) classified infrasound signals as

87 a volcano, mountain associated waves, impulsive, or no event, and were able to achieve

88 accuracies greater than 90%. It is important to note that this study used only signals

89 detected at a single station and the same source-station pairs (signals of a specific class are

90 always detected at the same station) for the volcano and mountain associated-wave classes.

91 Also, for the impulsive events class, many signals were recorded at local distances (100 -

92 1000 m). Therefore, atmospheric structure played a smaller role in waveform morphology

93 and the impulsive signals likely looked very similar. Two previous studies implemented

94 a method using support vector machine (SVM) to reach accuracies of 97.7% and 86.36%,

95 depending on the feature extraction method. They classified infrasound signals as being
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96 from an earthquake, volcano, or tsunami (Li et al., 2016; Liu et al., 2014). Both studies use

97 the same catalog, which is also limited to single-station signals, though source-station pairs

98 differ slightly. They use 2, 4, and 3 source-station pairs for volcano, tsunami, and earthquake

99 signals, respectively.

100 These previous studies are the state of the art for classifying infrasound signals, and

101 work well on simple datasets that are limited in geographic area and/or source diversity.

102 It is unclear how well these methods transfer to more complex datasets representative of

103 those encountered in real-time monitoring operations. For example, catalogs consisting of

104 signals detected at a variety of stations and/or multiple source-station pairs. In tangential

105 fields such as seismology, deep neural network (DNN) based approaches to data driven

106 problems have been highly successful (Linville et al., 2018; Perol et al., 2018; Ross et al.,

107 2018). However, typically the success of these methods is due to the large and comprehensive

108 datasets available for model training. While the generation of large labeled event catalogs is

109 often standardized in other fields, this has yet to happen within the infrasound community.

110 At many data centers, infrasound data processing is often not done at the same level and only

111 simple catalogs are built. Therefore, many infrasound catalogs are plagued by non-standard

112 labels, automated arrival picks, and/or quick analyst review. There is also no guidance as

113 to how large a catalog must be to be considered comprehensive for deep learning analysis.

114 Despite the inherent difficulties of infrasound signal processing, routine infrasound

115 processing is moving towards realization. Many data centers, including the IDC, are hiring

116 infrasound analysts and building event catalogs. Development of more general methods of
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117 source identification may be required for use in these larger scale monitoring environments.

118 Achieving better source generalization through deep learning techniques has previously been

119 inaccessible due to the quantity and quality of event catalogs needed for model training.

120 For this study we obtain a comprehensive labeled event catalog produced by the IDC. With

121 this new catalog we evaluate approaches to automate event classification with consideration

122 for realistic challenges encountered in global scale infrasound event monitoring. We explore

123 classification of the four most common infrasound source types using two data-driven ap-

124 proaches. As a community we currently have limited guidance on what is possible with the

125 quality and size of catalogs and emerging methods for predictive modeling. Therefore, this

126 study provides (1) analysis to benchmark infrasound signal classification methods and (2)

127 cautions and suggestions as we move toward more complete and comprehensive catalogs and

128 the need for automated data processing strategies in the future.

129 2. Infrasound Event Catalog

130 We make use of the Infrasound Reference Event Database (IRED) produced by the IDC on

131 July 9, 2010. The catalog contains signals from infrasound events detected at IMS stations

132 found worldwide (Fig. 1). Up to 42 stations were installed, depending on the date, since

133 stations are added over time. It was designed to serve as a reference catalog for analysts and

134 is therefore not comprehensive, but rather contains a subset of events that is representative

135 of the those detected on IMS stations. All events are reviewed by an analyst and have been

136 verified with other ground truth information from seismic data, satellite data, etc. The

137 catalog contains a total of 786 signals from a variety of sources. Table 1 shows the number
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138 of signals for each event type. We note that the classes are imbalanced with respect to the

139 number of signals in each one. The classes themselves can also vary considerably in regards

140 to the physical mechanisms generating each event. For example, the anthropogenic activity

141 class contains signals from fireworks and trains. Classifying signals as anthropogenic activity

142 then becomes more difficult since the labels are somewhat arbitrary. Splitting the class into

143 two does not fix the problem because there are so few example signals. Therefore, we chose

144 to focus on a subset of the most abundant signals including those from mines and quarries,

145 chemical/accidental explosions, earthquakes, and volcanic activity. This provided us with

146 a total of 615 signals from 519 infrasound events. Of these events, over 10% (69 signals)

147 were detected at more than one station providing 21, 26, 25, and 16 source-station pairs

148 for mines and quarries, volcanic activity, earthquakes, and accidental/chemical explosions,

149 respectively. The average distance from source to sensor is 1185 km, the median is 860

150 km, and the standard deviation is 1492 km. There is considerable variability in source-

151 sensor distances, but most of the signals in the catalog are detected at regional and global

152 distances (15 - 250+ km). Figure 1 shows a map of the source locations and straight-line

153 paths connecting origins to various detecting stations. Note that some locations share paths

154 from multiple events.

155 The IRED catalog is small compared to the size of typical catalogs used to train

156 predictive models in tangential domains. These catalogs benefit from a hundred thousand

157 (Linville et al., 2019) to a million signals (Ross et al., 2018) and achieve impressive perfor-

158 mance for limited geographic areas. The IRED catalog by comparison spans local and global
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159 distance sources, contains a limited number of examples for each source type, and is faced

160 with additional complexity from dynamic travel paths.

Table 1. IRED Signals by Class

Source Number of Signals

Mines and quarries 256

Chemical/accidental explosions 152

Earthquakes 103

Volcanic activity 104

Rocket launch/re-entry 57

Anthropogenic activity 46

Bolides and meteorites 26

Unknown 14

Aircraft 13

Cultural noise 8

Avalanches and landslides 7

161 3. Methods
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Fig. 1. A map of the infrasound events used in this study. Lines originate from the source location

and connect to all stations (black triangles) that detected the event. Note that lines are straight

paths and do not represent the actual path traveled by the infrasonic wave. Line colors represent

event type. Most of the events are detected at global distances (> 250 km). Note that some of

the locations correspond to multiple events that may have been detected at a variety of sensor

locations.

162 The event catalog used in this study is the largest labeled global infrasound event catalog

163 currently available. The goal of this publication is to evaluate deep learning strategies from

164 tangential fields in the context of the state of the art. Therefore, we use a convolutional neural

165 network (CNN) and compare this to classification accuracies using SVM, which we consider

166 to be the state of the art classification method for infrasound. We do this comparison for two

167 types of catalogs. The first is a subset of the larger catalog consisting of only volcanic activity
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168 and earthquakes, designed to be similar to the catalog used by Li et al. (2016) and Liu et al.

169 (2014). This will be referred to as the "2-class" catalog. The second is the "4-class" catalog

170 of mines and quarries, volcanic activity, earthquakes, and accidental/chemical explosions,

171 representing the largest currently available labeled global infrasound event catalog. We

172 classify signals in each catalog using both SVM and CNN, and compare results 1) within

173 each catalog and 2) from each method between the two catalogs.

174 3.1 Data Preparation

175 Each station consists of an infrasound array containing four or more infrasound microphones.

176 The catalog entry for each event contains the following information: number of arrivals,

177 duration, backazimuth, and trace velocity for each group of signals at each station that

178 detected the event. These values were derived by the IDC using the Progressive Multi-

179 Channel Cross Correlation (PMCC) detection and location algorithm (Cansi, 1995). We

180 started by making use of the time-series waveforms and detection information from each

181 signal. First, the waveforms were selected to begin 5 seconds prior to the earliest arrival

182 time for each sensor. The waveforms from each station were then time-aligned based on

183 the detection backazimuth and trace velocity from the reference sensor (given in the catalog

184 metadata), which we will refer to as the "delay-and-sum beam". The delay-and-sum beam

185 was used to represent the signal from that station. Therefore, events detected at multiple

186 stations were represented by multiple waveforms. Signal durations ranged from 9 seconds

187 to 3.5 hours depending on source variability and the number of arrivals detected by the

188 IDC. For SVM analysis, we used the full duration of each signal and used the delay-and-sum
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189 beam as the input for feature extraction. For CNN analysis we used a fixed signal duration of

190 475 seconds (2 std. of median signal length). Some of the signals included multiple arrivals.

191 This was common in the volcanic activity class, where many signals included multiple arrivals

192 corresponding to increased volcanic activity over a period of time. We chose a signal duration

193 of 475 seconds to minimize the risk of including these multiple arrivals in what was considered

194 to be a single example of a signal from the source type. For signal durations less than 475

195 seconds long, we zero-padded the signal out to that time. We detrended the signals and

196 applied a 1% taper for a gradual transition to zero at the edges. The 1% taper on our

197 475 s window only effects out to about 2 s at each edge. This avoids interference with the

198 signal onset since signals were collected 5 seconds prior to the given arrival time. Then we

199 computed a normalized spectrogram from the delay-and-sum beam. While signal length is

200 variable by source and not fixed by class, some classes exhibit characteristic lengths that

201 require caution when used as input for DNNs. We suggest that future studies may benefit

202 from either alternative methods capable of variable signal length learning such as recurrent

203 neural networks, or that secondary arrivals, signals, and noise are included in model input.

204 3.2 SVM and CNN Architectures

205 First, we classified signals using the state of the art, SVM. We extracted features using the

206 spectral entropy method developed by Li et al. (2016), as well as other, more easily inter-

207 pretable features such as distance from source to sensor, waveform duration, etc. We began

208 with many features and selected eight using the random forest method to determine feature

209 importance (Brieman, 2001). It is important to note that our analysis show the two most
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210 important features are distance from source and waveform duration. This suggests there

211 may be a range dependency on signal classification. Of the original features we selected

212 the top eight: distance from source, waveform duration, wavelet singular spectrum entropy,

213 spectral spread, wavelet energy spectrum entropy, number of zero crossings, energy, and

214 wavelet power spectrum entropy (Fig. 2). Each of the SVM features that include entropy

215 aim to quantitively capture the uncertainty of the signal energy distribution in various do-

216 main. The values calculated from wavelet singular spectrum entropy reflect the uncertainty

217 of the signal energy distribution in the time-frequency domain. The wavelet power spectrum

218 entropy is calculated using the power spectral density of the signal and therefore reflects the

219 uncertainty of the signal energy distribution in the frequency domain. The wavelet energy

220 spectrum entropy uses the energy spectrogram, reflecting the uncertainty of the signal energy

221 distribution in the time-frequency domains. These features describe physical properties of

222 the waveforms, providing a tangible link to the source and propagation physics, as opposed

223 to the pattern discovery approach as used by a CNN. SVM is a powerful tool for classification

224 because it identifies the hyperplane in a high-dimensional space that maximizes the distance

225 between points within the given classes. When the data is characterized by nonlinear rela-

226 tionships, SVM requires a kernel function to transform the data prior to classification. Once

227 the features were extracted from each waveform, we input them into the SVM algorithm for

228 training and classification using a radial basis function (rbf) kernel (Vapnik, 1995). We chose

229 the rbf kernel because it is widely generalizable and has been proven to provide accurate

230 classifications in other domains.
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Distance from Source -

Waveform Duration -

Wavelet Singular Spectrum Entropy -

Spectral Spread -

Wavelet Energy Spectrum Entropy -

Number of Zero Crossings -

Energy -

Wavelet Power Spectrum Entropy -

Spectral Centroid -

Signal to Noise Ratio -

Mag. of Fundamental Freq. -

RMS Amp. -

Skewness Around Fundamental Freq. -

Mean Amp. -

Max. Amp. -

Standard Deviation -

Fundamental Freq. -

0.000 0.025 0.050 0.075 0.100 0.125

Relative Feature Importance

0.150 0.175

Fig. 2. Feature importance calculated using the random forest method. Features selected in this

study are highlighted in red. Note that the two most important features are distance from source

and waveform duration, suggesting a range dependency on classification.

231 The training input for our CNN algorithm consists of normalized spectrograms from

232 each signal, shown in Figure 3. We utilize a 4-layer relu-activated CNN. More information on

233 this method can be found in Linville et al. (2019). We chose a CNN because of demonstrated

234 success in parallel domains such as discrimination, detection, and location of seismic signals

235 (Linville et al., 2018; Perol et al., 2018; Ross et al., 2018). It also has a higher capacity to

236 model the data as opposed to other algorithms such as SVM. We experimented with adding

237 gaussian and random noise to balance the classes, increase the dataset size, and augment

238 the data, but these methods did not result in significant improvement in accuracy. Our

239 dataset is small compared to others used for CNN classification so it is easy to overfit when
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240 augmenting the data. Strong regularization is likely an important requirement in limited

241 data domains, but simple gaussian noise did not make up for the fundamental difficulty we

242 face for infrasound signal classification: atmospheric effects on waveform morphology. There

243 are alternate regularization approaches we did not try, such as aggressive dropout but we

244 did not pursue these based on the observation that ensembles of trained models did little to

245 increase our prediction accuracy.

246 For both methods, we used 4-fold cross validation to determine the accuracy of the

247 data. The total catalog was partitioned into 4 data subsets consisting of 64 examples of

248 mining signals, 38 examples of chemical/accidental explosions, 26 examples of volcanic erup-

249 tions, and 25 examples of earthquakes. We train 4 models for each method using 75% (or 3

250 of the 4 partitions, minus a randomly drawn validation set of 1%) of the data for training.

251 We stop training models once the accuracy on the validation data ceases to increase over 10

252 cycles through the training data (epochs). We used the remaining 25% of signals to test the

253 algorithm. We computed test accuracy by dividing the number of correctly classified signals

254 by the total number of signals in the test set for each fold. We computed the 4-fold average

255 accuracy by taking the mean of the accuracies for all of the folds. We then compared test

256 accuracies for each catalog and results from the 2- and 4-class catalogs.

257 4. Results

258 First, we compared classification accuracies on the 2-class catalog consisting of only earth-

259 quakes and volcanic activity. When using SVM, we achieved an average 4-fold classification

260 accuracy of 75%. CNN provides a similar result as SVM, giving a 4-fold average accuracy of
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Fig. 3. Examples of spectrograms computed for each class and used to train the CNN algorithm.

These signals are all shorter than 475 s so they include zero padding.

261 74%. However, as we will see with the 4-class catalog, results from the 2-class catalog show

262 that we are able to achieve higher accuracies on a smaller catalog. Model performance can

263 be described by a confusion matrix, averaged over all of the data partitions (Table 2). The

264 confusion matrix shows the mean fraction of the data that is either correctly classified or

265 misclassified. For example, Table 2 shows two confusion matrices corresponding to classifi-

266 cation accuracies using the SVM and CNN architectures on the 2-class catalog. If we focus

267 on the SVM confusion matrix, it shows that 68% of the earthquake signals were correctly

268 classified, while 32% were misclassified as volcanic activity.

269 Next we compared the classification accuracies of the two architectures on the 4-

270 class catalog consisting of signals from mines and quarries, chemical/accidental explosions,

271 earthquakes, and volcanic activity. When using the feature extraction method previously

272 described with the SVM classification scheme, we achieve a 4-fold average accuracy of 55%.

273 CNN classification provides only a one percent increase in accuracy, giving a 4-fold average
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Table 2. Mean Confusion Matrices for the 2-Class Example

SVM

True

CNN

True

Predicted

Earthquake Volcanic Activity

Earthquake

Volcanic Activity

0.68 0.32

0.19 0.81

Predicted

Earthquake Volcanic Activity

Earthquake

Volcanic Activity

0.80 0.20

0.32 0.69

274 of 56%. Again, we compare confusion matrices from the two architectures in Table 3. In

275 both cases the models struggle with classifying earthquakes and volcanoes, but do well

276 with classifying signals from mines and quarries. When comparing the classification of

277 earthquakes using the two methods, the CNN algorithm gives a 12% higher accuracy. This

278 suggests that there are shared feature characteristics between the earthquake class and the

279 explosions and mines and quarries classes. As can be seen in the 2-class examples, the binary
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280 classification of earthquakes and volcanoes can be done with an accuracy of about 75%, but

281 their classification becomes difficult when a more complex catalog is used.

282 5. Discussion

283 When comparing the state of the art in infrasound classification (SVM) to CNN, a deep

284 learning method proven in tangential fields, we see that CNN does not outperform SVM.

285 When using the SVM method on the 2-class catalog, we achieved an average 4-fold classi-

286 fication accuracy of 75%. CNN provides a similar result as SVM, giving a 4-fold average

287 accuracy of 74%. For the 4-class catalog, our accuracies are 55% and 56% for SVM and

288 CNN, respectively. Both the SVM and CNN algorithms perform worse than the architec-

289 ture by Li et al. (2016) where they achieve 86% accuracy (though it is unclear how many

290 iterations generated this number). It is important to note, however, that we have limited

291 insight regarding the event catalog of Li et al. (2016). Their publication does not describe

292 the source locations or source-receiver distances. Therefore, we suggest that the performance

293 gap between our results and theirs is due to variation in geographic area and source type

294 diversity. This is somewhat expected since their method was not designed to be generalized.

295 The CNN algorithm outperforms SVM at classifying earthquakes, suggesting the that our

296 features used in SVM do not fully capture the earthquake signal characteristics. Both the

297 SVM and CNN models in our study struggle with classifying earthquakes and volcanoes, but

298 do well in classifying mining activity. This is likely due to shorter propagation distances.

299 Mining activity is recorded at distances of 581 km on average, making the signals less af-

300 fected by propagation (Figure 1). In contrast, chemical/accidental explosion, earthquake,
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Table 3. Mean Confusion Matrices for the 4-Class Example

SVM

True

CNN

True

Predicted

Earthquake Explosion Mines and Quarries Volcanic Activity

Earthquake 0.25 0.37 0.33 0.05

Explosion 0.05 0.54 0.35 0.07

Mines and Quarries 0.04 0.17 0.78 0.00

Volcanic Activity 0.07 0.37 0.34 0.23

Predicted

Earthquake Explosion Mines and Quarries Volcanic Activity

Earthquake 0.47 0.15 0.20 0.18

Explosion 0.09 0.59 0.25 0.08

Mines and Quarries 0.02 0.14 0.79 0.04

Volcanic Activity 0.22 0.16 0.25 0.37
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301 and volcanic activity signals are recorded at distances of 1571, 1199, and 2084 km, respec-

302 tively. This suggests that if more IMS stations were installed to decrease propagation paths,

303 our algorithms may have performed better. Unfortunately, we could not analyze this idea

304 as we had a limited number of locally recorded signals. However, our feature importance

305 results suggest that distance from source to sensor is the most important feature of the data,

306 supporting the idea that more IMS stations would produce better classifications. Individual

307 mines also set off the same explosive source for every event at that mine, making the source

308 process stable from one event to another.

309 We attempted to identify a distance at which signals are increasingly misclassified. A

310 separation in distance between correctly classified and misclassified signals exists only for the

311 mining events class, where regional signals show the lowest misclassification rate. The other

312 classes do not have such a clear separation. In fact, for the earthquake and volcano classes,

313 signals from all distances are misclassified more frequently than they are correctly classified.

314 This may be due to variance in atmospheric conditions for station-signal pairs, smaller class

315 size, or fundamental source characteristics that are not being adequately captured by our

316 models. More signal examples in each class would likely solve the misclassification problem

317 for these classes.

318 In the 4-class example, CNN generates an increase in accuracy of only 1%. Though

319 both algorithms provide lower accuracies than previous research, we argue that unlike pre-

320 vious studies, we are aiming to solve a more complex problem. For one, we use waveforms

321 from multiple stations that detected the same event. Also, a variety of stations recorded
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322 each signal type. Previous studies have used only single-station signals, a small number of

323 source-station pairs, and some have recorded the same source at the same station for all class

324 examples. This reduces the complexity of the problem, making classification an easier task

325 for the model. It also limits the reach of the model, making it less generalizable to other

326 event catalogs.

327 On that same note, it is expected that the 2-class example outperforms the 4-class

328 example. Classifying only two types of signals is a much simpler task than classifying four.

329 The confusion matrices for the 4-class SVM example show that earthquakes and volcanic

330 activity are often classified as explosions and mines and quarries. This is also true for the

331 CNN algorithm, although misclassified events are more equally spread between the other

332 classes. This suggests that the earthquakes and volcanic activity classes share similar features

333 with the explosions and mines and quarries classes (both physical from SVM and discovered

334 using CNN). Therefore, removing those classes provides an accuracy increase.

335 Our algorithms produced lower than expected accuracies, which could possibly be

336 increased by pre-processing the input data in different ways. For example, zero padding

337 of the spectrograms is likely not the best solution because it can elongate a short signal

338 and truncate a long signal. Future studies should consider either including the addition

339 of ambient noise for a fixed signal length or use learning strategies capable of processing

340 variable length signals. It is also important to note that Green and Nippress (2019) show

341 that signal duration generally increases with propagation distance. We use the signal onset

342 time provided in the IRED catalog, though it may be more appropriate to use a 475 s
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343 window surrounding the maximum amplitude since we classify signals that have propagated

344 far distances. No pre-processing was performed on the data prior to classification, apart from

345 calculating the delay-and-sum beam. Therefore, it is likely that long-duration microbarom

346 signals, which serve as noise, are contained within the training input. We experimented

347 with filtering waveforms prior to classification though this did not increase accuracy. Using

348 alternate spectral processing methods, such as the Hilbert-Huang Transform (Huang and

349 Zhaohua, 2008), for input into the CNN algorithm may have allowed for the algorithm to

350 better discriminate between long period noise and signal. These avenues exist to improve

351 the performance of deep learning methods, though in the absence of an adequate catalog

352 these approaches likely will not increase performance. The catalog used in this study was

353 designed to serve as a reference for analysts so it contains useful examples, but they may

354 not fully capture the variances within each signal class. We also have a limited number of

355 examples in our training data. CNNs usually require orders of magnitude more examples

356 in order to reach high accuracies. Therefore, a much larger labeled catalog is necessary in

357 order to design a generalized method for global infrasound signal classification.

358 We recommend future catalogs use a standardized method that aims to fully capture

359 the complexities of a signal as well as its propagation path. The IRED catalog uses CSS3.0

360 standard static and dynamic tables that hold information about both the station and the

361 signal such as: source label, event identification number, event location, velocity, backaz-

362 imuth, station location, station, and instrument. We recommend including this information

363 in a standardized catalog. Infrasound signals detected at global distances often have gradual
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364 onsets that occur some time following the signal's first arrival at the station. Therefore, cap-

365 turing both the timing of the first arrival and the timing of the maximum amplitude ensures

366 the characteristics of both impulsive and gradual-onset signals are captured. We assume

367 that all detections in an infrasound catalog are infrasound. However, infrasound signals are

368 sometimes detected on seismic stations. This should be logged in the catalog using a station

369 flag (examples include 'I' or ̀ S'). Lastly, we recommend the addition of the nomenclature

370 developed by Brown et al. (2002) and expanded by Hedlin et al. (2018) to describe any path

371 an infrasonic wave has traveled through the atmosphere. Including this in a standardized

372 catalog would allow users to better understand how the morphology of an individual signal

373 was affected by atmospheric structure.

374 6. Conclusions

375 The CNN algorithm gives virtually the same classification accuracy as the SVM algorithm.

376 Therefore, SVM should be the preferred method on datasets such as the ones described

377 in this study because it is the simpler method. SVM is a trustworthy architecture that

378 is physically interpretable - the features relate to physical properties of the waveforms. It

379 also requires less computation time to produce classifications (though the feature extraction

380 process can take a considerable amount of time if complex).

381 The SVM and CNN algorithms discussed in this paper are not yet generalizable

382 for global infrasound event catalogs. Turning these ideas into an operational classification

383 algorithm requires more infrasound data to be collected in systematic ways. An example of

384 how this could be done comes from seismic data centers where large and comprehensive event
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385 catalogs are compiled by analysts. Consistent, systematically labeled infrasound data should

386 contain standardized labels, analyst reviewed phase arrival picks, and in-depth data quality

387 review. Generating a global infrasound catalog with these qualities would likely increase

388 the value of deep learning and data driven strategies when used for classification. Until

389 then, deep learning strategies may do little more than overfit small datasets and perform

390 poorly in real use cases. However, the strength of DNNs for infrasound classification lies

391 in their ability to determine the waveform attributes most meaningful for prediction. This

392 is not something we know as infrasound analysts, and may prove to be more beneficial to

393 infrasound classification than using physically derived features. As catalog sizes increase, we

394 expect the performance of SVM and DNN to diverge in favor of DNN. This, however, can

395 only be proven once larger, more refined catalogs are compiled. We encourage readers to refer

396 to this study when motivation is needed for the development of large and comprehensive,

397 systematically labeled, infrasound event catalogs for classification purposes.

398 7. Data and Resources

399 This catalog can be accessed by member states (states that have signed the Comprehensive

400 Nuclear Test Ban Treaty) by requesting it from the IDC through their principal point of

401 contact. More information can be found at the following link:

402 https://www.ctbto.org/verification-regime/the-international-data-centre/distribution-of-data-

403 and-data-bulletins-to-member-states/.
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471 8. List of Figure Captions

472 Figure 1. A map of the infrasound events used in this study. Lines originate from the

473 source location and connect to all stations (black triangles) that detected the event. Note

474 that lines are straight paths and do not represent the actual path traveled by the infrasonic

475 wave. Line colors represent event type. Most of the events are detected at global distances

476 (> 250 km). Note that some of the locations correspond to multiple events that may have

477 been detected at a variety of sensor locations.

478 Figure 2. Feature importance calculated using the random forest method. Features selected

479 in this study are highlighted in red. Note that the two most important features are distance

480 from source and waveform duration, suggesting a range dependency on classification.

481 Figure 3. Examples of spectrograms computed for each class and used to train the CNN

482 algorithm. These signals are all shorter than 475 s so they include zero padding.
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