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Abstract: Low frequency sound < 20 Hz, known as infrasound, is
generated by a variety of natural and anthropogenic sources. Following
an event, infrasonic waves travel through a dynamic atmosphere that
can change on the order of minutes. This makes infrasound event
classification a difficult problem as waveforms from the same source
type can look drastically different. Event classification usually requires
ground truth information from seismic or other methods. This is
time consuming, inefficient, and does not allow for classification if
the event locates somewhere other than a known source, the location
accuracy is poor, or ground truth from seismic data is lacking. Here we
compare the performance of the state of the art for infrasound event
classification, support vector machine (SVM), to the performance
of a convolutional neural network (CNN), a method that has been
proven in tangential fields such as seismology. For a 2-class catalog of
only volcanic activity and earthquake events, the 4-fold average SVM
classification accuracy is 75%, while it is 74% when using a CNN.
(Classification accuracies from the 4-class catalog consisting of the
most common infrasound events detected at the global scale are 55%
and 56% for the SVM and CNN architectures, respectively. These
results demonstrate that using a CNN does not increase performance

for infrasound event classification. This suggests that SVM should
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be the preferred classification method as it is a simpler and more
trustworthy architecture and can be tied to the physical properties
of the waveforms. The SVM and CNN algorithms described in this
paper are not yet generalizable to other infrasound event catalogs. We
anticipate this study to be a starting point for development of large
and comprehensive, systematically labeled, infrasound event catalogs
as such catalogs will be necessary to provide an increase in the value

of deep learning on event classification.

Keywords: infrasound, support vector machine, convolutional neural

network, classification, global monitoring
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1. Introduction

Infrasound (< 20 Hz) is generated by a variety of natural and anthropogenic sources in-
cluding ocean waves, volcanoes, mountains, chemical explosions, mining blasts, and rockets.
Infrasonic waves travel through a dynamic atmosphere where temperature, wind speed, and
wind direction can change drastically on the order of minutes. A change in atmospheric struc-
ture ultimately changes the shape of the recorded waveform, even when the source-receiver
path remains the same. Changes in waveform morphology due to atmospheric structure
have been observed from repeating sources over several days (Gibbons et al., 2015), down
to 20 minutes (Kulichkov, 2004). Signal durations and frequency characteristics are also
dependent on the structure of the waveguide (Ceranna et al., 2009; Green and Nippress,
2019). Lastly, amplitude attenuation occurs as signals propagate through the atmosphere.
This attenuation is highly dependent on the structure of the upper atmosphere (Smets and
Evers, 2014). The dependance of waveform morphology on atmospheric structure results
in signals from the same source showing a variety of waveform characteristics. This makes
infrasound signal classification a difficult problem. We are trying to classify a property (the
source type) that is unaffected by atmospheric propagation. It is nearly impossible for an
analyst to identify the source type based on the infrasound waveforms alone because of their
dependence on atmospheric structure. Analysts may be able to use the event location, if
known, to understand the source (i.e. if the location matches a known source such as a
volcano). However, ground truth information from seismic data is often used to classify

infrasound signals. This is time consuming, inefficient, and does not allow for a classification
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if the event locates somewhere other than a known source, the location accuracy is poor, or
ground truth from seismic data is lacking. For the purposes of this paper we will refer to
an infrasound waveform as a “signal”, while a collection of signals resulting from the same

source will be referred to as an “event”.

Common methods from seismology, such as waveform cross correlation and template
matching, work poorly for infrasound signal classification because infrasonic waveforms are so
strongly affected by the atmospheric regime through which they travel. Bowman and Albert
(2018) show that changes in the atmosphere (such as a developing storm) can affect both the
amplitude and shape of infrasonic waveforms with the same source-receiver geometry, even
when they are only separated in time by 90 minutes. Therefore, it is nearly impossible to
distinguish between source types from time-series waveforms alone. However, the physical
mechanism for each source type is fundamentally different, so their signals may contain

unique frequency components that can be exploited using robust methods.

Infrasound signal classification remains of particular interest for national security
and hazard mitigation. The International Monitoring System (IMS) was developed by the
Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) to monitor for nuclear ex-
plosions. It remains under development and will eventually consist of 60 global infrasound
stations. At the time of this publication, the IMS infrasound network consists of 52 infra-
sound stations, though fewer were present in the past when most of the signals in our catalog
were recorded. The International Data Centre (IDC), which is also part of the CTBTO, is

responsible for processing all of the IMS data. Arrowsmith (2018) computed a “Genuine
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False Alarm” (GFA) rate, using the same infrasound event processing method that the IDC
uses, by attempting to associate simulated, unassociated, detections on two or more stations.
Results suggest a GFA rate of ~200 events per day, generating a high false alarm rate and
placing a large workload on analysts. However, it is important to note that this is an esti-
mate from Arrowsmith (2018). The IDC applies post-processing methods in an attempt to
further reduce the false alarm rate. A reliable classification algorithm would allow analysts
to focus on events of interest rather than false alarms. From a hazard mitigation standpoint,
signal classification could provide eruption warnings in areas where seismic or other data is

limited.

Machine learning has shown high accuracy in classifying infrasound signals at local
(< 15 km), regional (15 - 250 km), and global (> 250 km) distances. For example, Ham
and Park (2002) showed that their neural network (NN) classified infrasound signals as
a volcano, mountain associated waves, impulsive, or no event, and were able to achieve
accuracies greater than 90%. It is important to note that this study used only signals
detected at a single station and the same source-station pairs (signals of a specific class are
always detected at the same station) for the volcano and mountain associated-wave classes.
Also, for the impulsive events class, many signals were recorded at local distances (100 -
1000 m). Therefore, atmospheric structure played a smaller role in waveform morphology
and the impulsive signals likely looked very similar. Two previous studies implemented
a method using support vector machine (SVM) to reach accuracies of 97.7% and 86.36%,
depending on the feature extraction method. They classified infrasound signals as being

6
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from an earthquake, volcano, or tsunami (Li et al., 2016; Liu et al., 2014). Both studies use
the same catalog, which is also limited to single-station signals, though source-station pairs
differ slightly. They use 2, 4, and 3 source-station pairs for volcano, tsunami, and earthquake

signals, respectively.

These previous studies are the state of the art for classifying infrasound signals, and
work well on simple datasets that are limited in geographic area and/or source diversity.
It is unclear how well these methods transfer to more complex datasets representative of
those encountered in real-time monitoring operations. For example, catalogs consisting of
signals detected at a variety of stations and/or multiple source-station pairs. In tangential
fields such as seismology, deep neural network (DNN) based approaches to data driven
problems have been highly successful (Linville et al., 2018; Perol et al., 2018; Ross et al.,
2018). However, typically the success of these methods is due to the large and comprehensive
datasets available for model training. While the generation of large labeled event catalogs is
often standardized in other fields, this has yet to happen within the infrasound community.
At many data centers, infrasound data processing is often not done at the same level and only
simple catalogs are built. Therefore, many infrasound catalogs are plagued by non-standard
labels, automated arrival picks, and/or quick analyst review. There is also no guidance as

to how large a catalog must be to be considered comprehensive for deep learning analysis.

Despite the inherent difficulties of infrasound signal processing, routine infrasound
processing is moving towards realization. Many data centers, including the IDC, are hiring

infrasound analysts and building event catalogs. Development of more general methods of

T
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source identification may be required for use in these larger scale monitoring environments.
Achieving better source generalization through deep learning techniques has previously been
inaccessible due to the quantity and quality of event catalogs needed for model training.
For this study we obtain a comprehensive labeled event catalog produced by the IDC. With
this new catalog we evaluate approaches to automate event classification with consideration
for realistic challenges encountered in global scale infrasound event monitoring. We explore
classification of the four most common infrasound source types using two data-driven ap-
proaches. As a community we currently have limited guidance on what is possible with the
quality and size of catalogs and emerging methods for predictive modeling. Therefore, this
study provides (1) analysis to benchmark infrasound signal classification methods and (2)
cautions and suggestions as we move toward more complete and comprehensive catalogs and

the need for automated data processing strategies in the future.

2. Infrasound Event Catalog

We make use of the Infrasound Reference Event Database (IRED) produced by the IDC on
July 9, 2010. The catalog contains signals from infrasound events detected at IMS stations
found worldwide (Fig. 1). Up to 42 stations were installed, depending on the date, since
stations are added over time. It was designed to serve as a reference catalog for analysts and
is therefore not comprehensive, but rather contains a subset of events that is representative
of the those detected on IMS stations. All events are reviewed by an analyst and have been
verified with other ground truth information from seismic data, satellite data, etc. The
catalog contains a total of 786 signals from a variety of sources. Table 1 shows the number

8
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of signals for each event type. We note that the classes are imbalanced with respect to the
number of signals in each one. The classes themselves can also vary considerably in regards
to the physical mechanisms generating each event. For example, the anthropogenic activity
class contains signals from fireworks and trains. Classifying signals as anthropogenic activity
then becomes more difficult since the labels are somewhat arbitrary. Splitting the class into
two does not fix the problem because there are so few example signals. Therefore, we chose
to focus on a subset of the most abundant signals including those from mines and quarries,
chemical/accidental explosions, earthquakes, and volcanic activity. This provided us with
a total of 615 signals from 519 infrasound events. Of these events, over 10% (69 signals)
were detected at more than one station providing 21, 26, 25, and 16 source-station pairs
for mines and quarries, volcanic activity, earthquakes, and accidental /chemical explosions,
respectively. The average distance from source to sensor is 1185 km, the median is 860
km, and the standard deviation is 1492 km. There is considerable variability in source-
sensor distances, but most of the signals in the catalog are detected at regional and global
distances (15 - 250+ km). Figure 1 shows a map of the source locations and straight-line
paths connecting origins to various detecting stations. Note that some locations share paths

from multiple events.

The IRED catalog is small compared to the size of typical catalogs used to train
predictive models in tangential domains. These catalogs benefit from a hundred thousand
(Linville et al., 2019) to a million signals (Ross et al., 2018) and achieve impressive perfor-
mance for limited geographic areas. The IRED catalog by comparison spans local and global

9



150 distance sources, contains a limited number of examples for each source type, and is faced

1o with additional complexity from dynamic travel paths.

161

Table 1. IRED Signals by Class

Source Number of Signals
Mines and quarries 256
Chemical/accidental explosions 152
Earthquakes 103
Volcanic activity 104
Rocket launch/re-entry 57
Anthropogenic activity 46
Bolides and meteorites 26
Unknown 14
Aircraft 13
Cultural noise 8
Avalanches and landslides 7
3. Methods

10
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Fig. 1. A map of the infrasound events used in this study. Lines originate from the source location
and connect to all stations (black triangles) that detected the event. Note that lines are straight
paths and do not represent the actual path traveled by the infrasonic wave. Line colors represent
event type. Most of the events are detected at global distances (> 250 km). Note that some of
the locations correspond to multiple events that may have been detected at a variety of sensor

locations.

The event catalog used in this study is the largest labeled global infrasound event catalog
currently available. The goal of this publication is to evaluate deep learning strategies from
tangential fields in the context of the state of the art. Therefore, we use a convolutional neural
network (CNN) and compare this to classification accuracies using SVM, which we consider
to be the state of the art classification method for infrasound. We do this comparison for two
types of catalogs. The first is a subset of the larger catalog consisting of only volcanic activity
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and earthquakes, designed to be similar to the catalog used by Li et al. (2016) and Liu et al.
(2014). This will be referred to as the “2-class” catalog. The second is the “4-class” catalog
of mines and quarries, volcanic activity, earthquakes, and accidental/chemical explosions,
representing the largest currently available labeled global infrasound event catalog. We
classify signals in each catalog using both SVM and CNN, and compare results 1) within

each catalog and 2) from each method between the two catalogs.

3.1 Data Preparation

Each station consists of an infrasound array containing four or more infrasound microphones.
The catalog entry for each event contains the following information: number of arrivals,
duration, backazimuth, and trace velocity for each group of signals at each station that
detected the event. These values were derived by the IDC using the Progressive Multi-
Channel Cross Correlation (PMCC) detection and location algorithm (Cansi, 1995). We
started by making use of the time-series waveforms and detection information from each
signal. First, the waveforms were selected to begin 5 seconds prior to the earliest arrival
time for each sensor. The waveforms from each station were then time-aligned based on
the detection backazimuth and trace velocity from the reference sensor (given in the catalog
metadata), which we will refer to as the “delay-and-sum beam”. The delay-and-sum beam
was used to represent the signal from that station. Therefore, events detected at multiple
stations were represented by multiple waveforms. Signal durations ranged from 9 seconds
to 3.5 hours depending on source variability and the number of arrivals detected by the
IDC. For SVM analysis, we used the full duration of each signal and used the delay-and-sum

12
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beam as the input for feature extraction. For CNN analysis we used a fixed signal duration of
475 seconds (2 std. of median signal length). Some of the signals included multiple arrivals.
This was common in the volcanic activity class, where many signals included multiple arrivals
corresponding to increased volcanic activity over a period of time. We chose a signal duration
of 475 seconds to minimize the risk of including these multiple arrivals in what was considered
to be a single example of a signal from the source type. For signal durations less than 475
seconds long, we zero-padded the signal out to that time. We detrended the signals and
applied a 1% taper for a gradual transition to zero at the edges. The 1% taper on our
475 s window only effects out to about 2 s at each edge. This avoids interference with the
signal onset since signals were collected 5 seconds prior to the given arrival time. Then we
computed a normalized spectrogram from the delay-and-sum beam. While signal length is
variable by source and not fixed by class, some classes exhibit characteristic lengths that
require caution when used as input for DNNs. We suggest that future studies may benefit
from either alternative methods capable of variable signal length learning such as recurrent

neural networks, or that secondary arrivals, signals, and noise are included in model input.

3.2 SVM and CNN Architectures

First, we classified signals using the state of the art, SVM. We extracted features using the
spectral entropy method developed by Li et al. (2016), as well as other, more easily inter-
pretable features such as distance from source to sensor, waveform duration, etc. We began
with many features and selected eight using the random forest method to determine feature

importance (Brieman, 2001). It is important to note that our analysis show the two most
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important features are distance from source and waveform duration. This suggests there
may be a range dependency on signal classification. Of the original features we selected
the top eight: distance from source, waveform duration, wavelet singular spectrum entropy,
spectral spread, wavelet energy spectrum entropy, number of zero crossings, energy, and
wavelet power spectrum entropy (Fig. 2). Each of the SVM features that include entropy
aim to quantitively capture the uncertainty of the signal energy distribution in various do-
main. The values calculated from wavelet singular spectrum entropy reflect the uncertainty
of the signal energy distribution in the time-frequency domain. The wavelet power spectrum
entropy is calculated using the power spectral density of the signal and therefore reflects the
uncertainty of the signal energy distribution in the frequency domain. The wavelet energy
spectrum entropy uses the energy spectrogram, reflecting the uncertainty of the signal energy
distribution in the time-frequency domains. These features describe physical properties of
the waveforms, providing a tangible link to the source and propagation physics, as opposed
to the pattern discovery approach as used by a CNN. SVM is a powerful tool for classification
because it identifies the hyperplane in a high-dimensional space that maximizes the distance
between points within the given classes. When the data is characterized by nonlinear rela-
tionships, SVM requires a kernel function to transform the data prior to classification. Once
the features were extracted from each waveform, we input them into the SVM algorithm for
training and classification using a radial basis function (rbf) kernel (Vapnik, 1995). We chose
the rbf kernel because it is widely generalizable and has been proven to provide accurate

classifications in other domains.
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Fig. 2. Feature importance calculated using the random forest method. Features selected in this
study are highlighted in red. Note that the two most important features are distance from source

and waveform duration, suggesting a range dependency on classification.

The training input for our CNN algorithm consists of normalized spectrograms from
each signal, shown in Figure 3. We utilize a 4-layer relu-activated CNN. More information on
this method can be found in Linville et al. (2019). We chose a CNN because of demonstrated
success in parallel domains such as discrimination, detection, and location of seismic signals
(Linville et al., 2018; Perol et al., 2018; Ross et al., 2018). It also has a higher capacity to
model the data as opposed to other algorithms such as SVM. We experimented with adding
gaussian and random noise to balance the classes, increase the dataset size, and augment
the data, but these methods did not result in significant improvement in accuracy. Our

dataset is small compared to others used for CNN classification so it is easy to overfit when
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augmenting the data. Strong regularization is likely an important requirement in limited
data domains, but simple gaussian noise did not make up for the fundamental difficulty we
face for infrasound signal classification: atmospheric effects on waveform morphology. There
are alternate regularization approaches we did not try, such as aggressive dropout but we
did not pursue these based on the observation that ensembles of trained models did little to

increase our prediction accuracy.

For both methods, we used 4-fold cross validation to determine the accuracy of the
data. The total catalog was partitioned into 4 data subsets consisting of 64 examples of
mining signals, 38 examples of chemical/accidental explosions, 26 examples of volcanic erup-
tions, and 25 examples of earthquakes. We train 4 models for each method using 75% (or 3
of the 4 partitions, minus a randomly drawn validation set of 1%) of the data for training.
We stop training models once the accuracy on the validation data ceases to increase over 10
cycles through the training data (epochs). We used the remaining 25% of signals to test the
algorithm. We computed test accuracy by dividing the number of correctly classified signals
by the total number of signals in the test set for each fold. We computed the 4-fold average
accuracy by taking the mean of the accuracies for all of the folds. We then compared test

accuracies for each catalog and results from the 2- and 4-class catalogs.

4. Results
First, we compared classification accuracies on the 2-class catalog consisting of only earth-
quakes and volcanic activity. When using SVM, we achieved an average 4-fold classification

accuracy of 75%. CNN provides a similar result as SVM, giving a 4-fold average accuracy of
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Fig. 3. Examples of spectrograms computed for each class and used to train the CNN algorithm.

These signals are all shorter than 475 s so they include zero padding.

74%. However, as we will see with the 4-class catalog, results from the 2-class catalog show
that we are able to achieve higher accuracies on a smaller catalog. Model performance can
be described by a confusion matrix, averaged over all of the data partitions (Table 2). The
confusion matrix shows the mean fraction of the data that is either correctly classified or
misclassified. For example, Table 2 shows two confusion matrices corresponding to classifi-
cation accuracies using the SVM and CNN architectures on the 2-class catalog. If we focus
on the SVM confusion matrix, it shows that 68% of the earthquake signals were correctly

classified, while 32% were misclassified as volcanic activity.

Next we compared the classification accuracies of the two architectures on the 4-
class catalog consisting of signals from mines and quarries, chemical/accidental explosions,
earthquakes, and volcanic activity. When using the feature extraction method previously
described with the SVM classification scheme, we achieve a 4-fold average accuracy of 55%.
CNN classification provides only a one percent increase in accuracy, giving a 4-fold average
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Table 2. Mean Confusion Matrices for the 2-Class Example

SVM
Predicted
Earthquake Volcanic Activity
True Earthquake 0.68 0.32
Volcanic Activity 0.19 0.81
CNN
Predicted
Earthquake Volcanic Activity
True Earthquake 0.80 0.20
Volcanic Activity 0.32 0.69

of 56%. Again, we compare confusion matrices from the two architectures in Table 3. In
both cases the models struggle with classifying earthquakes and volcanoes, but do well
with classifying signals from mines and quarries. When comparing the classification of
earthquakes using the two methods, the CNN algorithm gives a 12% higher accuracy. This
suggests that there are shared feature characteristics between the earthquake class and the

explosions and mines and quarries classes. As can be seen in the 2-class examples, the binary
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classification of earthquakes and volcanoes can be done with an accuracy of about 75%, but

their classification becomes difficult when a more complex catalog is used.

5. Discussion

When comparing the state of the art in infrasound classification (SVM) to CNN, a deep
learning method proven in tangential fields, we see that CNN does not outperform SVM.
When using the SVM method on the 2-class catalog, we achieved an average 4-fold classi-
fication accuracy of 75%. CNN provides a similar result as SVM, giving a 4-fold average
accuracy of 74%. For the 4-class catalog, our accuracies are 55% and 56% for SVM and
CNN, respectively. Both the SVM and CNN algorithms perform worse than the architec-
ture by Li et al. (2016) where they achieve 86% accuracy (though it is unclear how many
iterations generated this number). It is important to note, however, that we have limited
insight regarding the event catalog of Li et al. (2016). Their publication does not describe
the source locations or source-receiver distances. Therefore, we suggest that the performance
gap between our results and theirs is due to variation in geographic area and source type
diversity. This is somewhat expected since their method was not designed to be generalized.
The CNN algorithm outperforms SVM at classifying earthquakes, suggesting the that our
features used in SVM do not fully capture the earthquake signal characteristics. Both the
SVM and CNN models in our study struggle with classifying earthquakes and volcanoes, but
do well in classifying mining activity. This is likely due to shorter propagation distances.
Mining activity is recorded at distances of 581 km on average, making the signals less af-
fected by propagation (Figure 1). In contrast, chemical/accidental explosion, earthquake,
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Table 3. Mean Confusion Matrices for the 4-Class Example

SVM

True

CNN

True

Predicted
Earthquake| Explosion| Mines and Quarries| Volcanic Activity
Earthquake 0.25 0.37 0.33 0.05
Explosion 0.05 0.54 0.35 0.07
Mines and Quarries| 0.04 0.17 0.78 0.00
Volcanic Activity 0.07 0.37 0.34 0.23
Predicted
Earthquake| Explosion| Mines and Quarries| Volcanic Activity
Earthquake 0.47 0.15 0.20 0.18
Explosion 0.09 0.59 0.25 0.08
Mines and Quarries| 0.02 0.14 0.79 0.04
Volcanic Activity 0.22 0.16 0.25 0.37
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and volcanic activity signals are recorded at distances of 1571, 1199, and 2084 km, respec-
tively. This suggests that if more IMS stations were installed to decrease propagation paths,
our algorithms may have performed better. Unfortunately, we could not analyze this idea
as we had a limited number of locally recorded signals. However, our feature importance
results suggest that distance from source to sensor is the most important feature of the data,
supporting the idea that more IMS stations would produce better classifications. Individual
mines also set off the same explosive source for every event at that mine, making the source

process stable from one event to another.

We attempted to identify a distance at which signals are increasingly misclassified. A
separation in distance between correctly classified and misclassified signals exists only for the
mining events class, where regional signals show the lowest misclassification rate. The other
classes do not have such a clear separation. In fact, for the earthquake and volcano classes,
signals from all distances are misclassified more frequently than they are correctly classified.
This may be due to variance in atmospheric conditions for station-signal pairs, smaller class
size, or fundamental source characteristics that are not being adequately captured by our
models. More signal examples in each class would likely solve the misclassification problem

for these classes.

In the 4-class example, CNN generates an increase in accuracy of only 1%. Though
both algorithms provide lower accuracies than previous research, we argue that unlike pre-
vious studies, we are aiming to solve a more complex problem. For one, we use waveforms
from multiple stations that detected the same event. Also, a variety of stations recorded
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each signal type. Previous studies have used only single-station signals, a small number of
source-station pairs, and some have recorded the same source at the same station for all class
examples. This reduces the complexity of the problem, making classification an easier task
for the model. It also limits the reach of the model, making it less generalizable to other

event catalogs.

On that same note, it is expected that the 2-class example outperforms the 4-class
example. Classifying only two types of signals is a much simpler task than classifying four.
The confusion matrices for the 4-class SVM example show that earthquakes and volcanic
activity are often classified as explosions and mines and quarries. This is also true for the
CNN algorithm, although misclassified events are more equally spread between the other
classes. This suggests that the earthquakes and volcanic activity classes share similar features
with the explosions and mines and quarries classes (both physical from SVM and discovered

using CNN). Therefore, removing those classes provides an accuracy increase.

Our algorithms produced lower than expected accuracies, which could possibly be
increased by pre-processing the input data in different ways. For example, zero padding
of the spectrograms is likely not the best solution because it can elongate a short signal
and truncate a long signal. Future studies should consider either including the addition
of ambient noise for a fixed signal length or use learning strategies capable of processing
variable length signals. It is also important to note that Green and Nippress (2019) show
that signal duration generally increases with propagation distance. We use the signal onset
time provided in the IRED catalog, though it may be more appropriate to use a 475 s
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window surrounding the maximum amplitude since we classify signals that have propagated
far distances. No pre-processing was performed on the data prior to classification, apart from
calculating the delay-and-sum beam. Therefore, it is likely that long-duration microbarom
signals, which serve as noise, are contained within the training input. We experimented
with filtering waveforms prior to classification though this did not increase accuracy. Using
alternate spectral processing methods, such as the Hilbert-Huang Transform (Huang and
Zhaohua, 2008), for input into the CNN algorithm may have allowed for the algorithm to
better discriminate between long period noise and signal. These avenues exist to improve
the performance of deep learning methods, though in the absence of an adequate catalog
these approaches likely will not increase performance. The catalog used in this study was
designed to serve as a reference for analysts so it contains useful examples, but they may
not fully capture the variances within each signal class. We also have a limited number of
examples in our training data. CNNs usually require orders of magnitude more examples
in order to reach high accuracies. Therefore, a much larger labeled catalog is necessary in

order to design a generalized method for global infrasound signal classification.

We recommend future catalogs use a standardized method that aims to fully capture
the complexities of a signal as well as its propagation path. The IRED catalog uses CSS3.0
standard static and dynamic tables that hold information about both the station and the
signal such as: source label, event identification number, event location, velocity, backaz-
imuth, station location, station, and instrument. We recommend including this information
in a standardized catalog. Infrasound signals detected at global distances often have gradual
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onsets that occur some time following the signal’s first arrival at the station. Therefore, cap-
turing both the timing of the first arrival and the timing of the maximum amplitude ensures
the characteristics of both impulsive and gradual-onset signals are captured. We assume
that all detections in an infrasound catalog are infrasound. However, infrasound signals are
sometimes detected on seismic stations. This should be logged in the catalog using a station
flag (examples include ‘I" or ‘S’). Lastly, we recommend the addition of the nomenclature
developed by Brown et al. (2002) and expanded by Hedlin et al. (2018) to describe any path
an infrasonic wave has traveled through the atmosphere. Including this in a standardized
catalog would allow users to better understand how the morphology of an individual signal

was affected by atmospheric structure.

6. Conclusions

The CNN algorithm gives virtually the same classification accuracy as the SVM algorithm.
Therefore, SVM should be the preferred method on datasets such as the ones described
in this study because it is the simpler method. SVM is a trustworthy architecture that
is physically interpretable - the features relate to physical properties of the waveforms. It
also requires less computation time to produce classifications (though the feature extraction

process can take a considerable amount of time if complex).

The SVM and CNN algorithms discussed in this paper are not yet generalizable
for global infrasound event catalogs. Turning these ideas into an operational classification
algorithm requires more infrasound data to be collected in systematic ways. An example of
how this could be done comes from seismic data centers where large and comprehensive event
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catalogs are compiled by analysts. Consistent, systematically labeled infrasound data should
contain standardized labels, analyst reviewed phase arrival picks, and in-depth data quality
review. Generating a global infrasound catalog with these qualities would likely increase
the value of deep learning and data driven strategies when used for classification. Until
then, deep learning strategies may do little more than overfit small datasets and perform
poorly in real use cases. However, the strength of DNNs for infrasound classification lies
in their ability to determine the waveform attributes most meaningful for prediction. This
is not something we know as infrasound analysts, and may prove to be more beneficial to
infrasound classification than using physically derived features. As catalog sizes increase, we
expect the performance of SVM and DNN to diverge in favor of DNN. This, however, can
only be proven once larger, more refined catalogs are compiled. We encourage readers to refer
to this study when motivation is needed for the development of large and comprehensive,

systematically labeled, infrasound event catalogs for classification purposes.

7. Data and Resources

This catalog can be accessed by member states (states that have signed the Comprehensive
Nuclear Test Ban Treaty) by requesting it from the IDC through their principal point of
contact. More information can be found at the following link:

hitps://www. ctbto.org/verification-regime/the-international-data-centre /distribution-of-data-
and-data-bulletins-to-member-states/.
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8. List of Figure Captions

Figure 1. A map of the infrasound events used in this study. Lines originate from the
source location and connect to all stations (black triangles) that detected the event. Note
that lines are straight paths and do not represent the actual path traveled by the infrasonic
wave. Line colors represent event type. Most of the events are detected at global distances
(> 250 km). Note that some of the locations correspond to multiple events that may have
been detected at a variety of sensor locations.

Figure 2. Feature importance calculated using the random forest method. Features selected
in this study are highlighted in red. Note that the two most important features are distance
from source and waveform duration, suggesting a range dependency on classification.
Figure 3. Examples of spectrograms computed for each class and used to train the CNN

algorithm. These signals are all shorter than 475 s so they include zero padding.
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