

Benchmarking Current and Emerging Approaches to Infrasound

Signal Classification

Sarah Albert^{1, a)} and Lisa Linville¹

Sandia National Laboratories, Albuquerque, NM 87123, USA

salber@sandia.gov,

llinvil@sandia.gov

(Dated: 5 November 2019)

1 **Abstract:** Low frequency sound ≤ 20 Hz, known as infrasound, is
2 generated by a variety of natural and anthropogenic sources. Following
3 an event, infrasonic waves travel through a dynamic atmosphere that
4 can change on the order of minutes. This makes infrasound event
5 classification a difficult problem as waveforms from the same source
6 type can look drastically different. Event classification usually requires
7 ground truth information from seismic or other methods. This is
8 time consuming, inefficient, and does not allow for classification if
9 the event locates somewhere other than a known source, the location
10 accuracy is poor, or ground truth from seismic data is lacking. Here we
11 compare the performance of the state of the art for infrasound event
12 classification, support vector machine (SVM), to the performance
13 of a convolutional neural network (CNN), a method that has been
14 proven in tangential fields such as seismology. For a 2-class catalog of
15 only volcanic activity and earthquake events, the 4-fold average SVM
16 classification accuracy is 75%, while it is 74% when using a CNN.
17 Classification accuracies from the 4-class catalog consisting of the
18 most common infrasound events detected at the global scale are 55%
19 and 56% for the SVM and CNN architectures, respectively. These
20 results demonstrate that using a CNN does not increase performance
21 for infrasound event classification. This suggests that SVM should

22 be the preferred classification method as it is a simpler and more
23 trustworthy architecture and can be tied to the physical properties
24 of the waveforms. The SVM and CNN algorithms described in this
25 paper are not yet generalizable to other infrasound event catalogs. We
26 anticipate this study to be a starting point for development of large
27 and comprehensive, systematically labeled, infrasound event catalogs
28 as such catalogs will be necessary to provide an increase in the value
29 of deep learning on event classification.

30

31 **Keywords:** infrasound, support vector machine, convolutional neural
32 network, classification, global monitoring

© 2019 Acoustical Society of America.

^{a)}Author to whom correspondence should be addressed.

³³ **1. Introduction**

³⁴ Infrasound (≤ 20 Hz) is generated by a variety of natural and anthropogenic sources in-
³⁵ cluding ocean waves, volcanoes, mountains, chemical explosions, mining blasts, and rockets.
³⁶ Infrasonic waves travel through a dynamic atmosphere where temperature, wind speed, and
³⁷ wind direction can change drastically on the order of minutes. A change in atmospheric struc-
³⁸ ture ultimately changes the shape of the recorded waveform, even when the source-receiver
³⁹ path remains the same. Changes in waveform morphology due to atmospheric structure
⁴⁰ have been observed from repeating sources over several days ([Gibbons *et al.*, 2015](#)), down
⁴¹ to 20 minutes ([Kulichkov, 2004](#)). Signal durations and frequency characteristics are also
⁴² dependent on the structure of the waveguide ([Ceranna *et al.*, 2009](#); [Green and Nippes, 2019](#)). Lastly, amplitude attenuation occurs as signals propagate through the atmosphere.
⁴³ This attenuation is highly dependent on the structure of the upper atmosphere ([Smets and](#)
⁴⁴ [Evers, 2014](#)). The dependance of waveform morphology on atmospheric structure results
⁴⁵ in signals from the same source showing a variety of waveform characteristics. This makes
⁴⁶ infrasound signal classification a difficult problem. We are trying to classify a property (the
⁴⁷ source type) that is unaffected by atmospheric propagation. It is nearly impossible for an
⁴⁸ analyst to identify the source type based on the infrasound waveforms alone because of their
⁴⁹ dependence on atmospheric structure. Analysts may be able to use the event location, if
⁵⁰ known, to understand the source (i.e. if the location matches a known source such as a
⁵¹ volcano). However, ground truth information from seismic data is often used to classify
⁵² infrasound signals. This is time consuming, inefficient, and does not allow for a classification
⁵³ of infrasound signals.

54 if the event locates somewhere other than a known source, the location accuracy is poor, or
55 ground truth from seismic data is lacking. For the purposes of this paper we will refer to
56 an infrasound waveform as a “signal”, while a collection of signals resulting from the same
57 source will be referred to as an “event”.

58 Common methods from seismology, such as waveform cross correlation and template
59 matching, work poorly for infrasound signal classification because infrasonic waveforms are so
60 strongly affected by the atmospheric regime through which they travel. [Bowman and Albert](#)
61 ([2018](#)) show that changes in the atmosphere (such as a developing storm) can affect both the
62 amplitude and shape of infrasonic waveforms with the same source-receiver geometry, even
63 when they are only separated in time by 90 minutes. Therefore, it is nearly impossible to
64 distinguish between source types from time-series waveforms alone. However, the physical
65 mechanism for each source type is fundamentally different, so their signals may contain
66 unique frequency components that can be exploited using robust methods.

67 Infrasound signal classification remains of particular interest for national security
68 and hazard mitigation. The International Monitoring System (IMS) was developed by the
69 Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) to monitor for nuclear ex-
70 plosions. It remains under development and will eventually consist of 60 global infrasound
71 stations. At the time of this publication, the IMS infrasound network consists of 52 infra-
72 sound stations, though fewer were present in the past when most of the signals in our catalog
73 were recorded. The International Data Centre (IDC), which is also part of the CTBTO, is
74 responsible for processing all of the IMS data. [Arrowsmith \(2018\)](#) computed a “Genuine

75 False Alarm" (GFA) rate, using the same infrasound event processing method that the IDC
76 uses, by attempting to associate simulated, unassociated, detections on two or more stations.
77 Results suggest a GFA rate of \sim 200 events per day, generating a high false alarm rate and
78 placing a large workload on analysts. However, it is important to note that this is an esti-
79 mate from [Arrowsmith \(2018\)](#). The IDC applies post-processing methods in an attempt to
80 further reduce the false alarm rate. A reliable classification algorithm would allow analysts
81 to focus on events of interest rather than false alarms. From a hazard mitigation standpoint,
82 signal classification could provide eruption warnings in areas where seismic or other data is
83 limited.

84 Machine learning has shown high accuracy in classifying infrasound signals at local
85 (< 15 km), regional (15 - 250 km), and global (> 250 km) distances. For example, [Ham](#)
86 [and Park \(2002\)](#) showed that their neural network (NN) classified infrasound signals as
87 a volcano, mountain associated waves, impulsive, or no event, and were able to achieve
88 accuracies greater than 90%. It is important to note that this study used only signals
89 detected at a single station and the same source-station pairs (signals of a specific class are
90 always detected at the same station) for the volcano and mountain associated-wave classes.
91 Also, for the impulsive events class, many signals were recorded at local distances (100 -
92 1000 m). Therefore, atmospheric structure played a smaller role in waveform morphology
93 and the impulsive signals likely looked very similar. Two previous studies implemented
94 a method using support vector machine (SVM) to reach accuracies of 97.7% and 86.36%,
95 depending on the feature extraction method. They classified infrasound signals as being

96 from an earthquake, volcano, or tsunami (Li *et al.*, 2016; Liu *et al.*, 2014). Both studies use
97 the same catalog, which is also limited to single-station signals, though source-station pairs
98 differ slightly. They use 2, 4, and 3 source-station pairs for volcano, tsunami, and earthquake
99 signals, respectively.

100 These previous studies are the state of the art for classifying infrasound signals, and
101 work well on simple datasets that are limited in geographic area and/or source diversity.

102 It is unclear how well these methods transfer to more complex datasets representative of
103 those encountered in real-time monitoring operations. For example, catalogs consisting of
104 signals detected at a variety of stations and/or multiple source-station pairs. In tangential
105 fields such as seismology, deep neural network (DNN) based approaches to data driven
106 problems have been highly successful (Linville *et al.*, 2018; Perol *et al.*, 2018; Ross *et al.*,
107 2018). However, typically the success of these methods is due to the large and comprehensive
108 datasets available for model training. While the generation of large labeled event catalogs is
109 often standardized in other fields, this has yet to happen within the infrasound community.

110 At many data centers, infrasound data processing is often not done at the same level and only
111 simple catalogs are built. Therefore, many infrasound catalogs are plagued by non-standard
112 labels, automated arrival picks, and/or quick analyst review. There is also no guidance as
113 to how large a catalog must be to be considered comprehensive for deep learning analysis.

114 Despite the inherent difficulties of infrasound signal processing, routine infrasound
115 processing is moving towards realization. Many data centers, including the IDC, are hiring
116 infrasound analysts and building event catalogs. Development of more general methods of

117 source identification may be required for use in these larger scale monitoring environments.
118 Achieving better source generalization through deep learning techniques has previously been
119 inaccessible due to the quantity and quality of event catalogs needed for model training.
120 For this study we obtain a comprehensive labeled event catalog produced by the IDC. With
121 this new catalog we evaluate approaches to automate event classification with consideration
122 for realistic challenges encountered in global scale infrasound event monitoring. We explore
123 classification of the four most common infrasound source types using two data-driven ap-
124 proaches. As a community we currently have limited guidance on what is possible with the
125 quality and size of catalogs and emerging methods for predictive modeling. Therefore, this
126 study provides (1) analysis to benchmark infrasound signal classification methods and (2)
127 cautions and suggestions as we move toward more complete and comprehensive catalogs and
128 the need for automated data processing strategies in the future.

129 **2. Infrasound Event Catalog**

130 We make use of the Infrasound Reference Event Database (IRED) produced by the IDC on
131 July 9, 2010. The catalog contains signals from infrasound events detected at IMS stations
132 found worldwide (Fig. 1). Up to 42 stations were installed, depending on the date, since
133 stations are added over time. It was designed to serve as a reference catalog for analysts and
134 is therefore not comprehensive, but rather contains a subset of events that is representative
135 of the those detected on IMS stations. All events are reviewed by an analyst and have been
136 verified with other ground truth information from seismic data, satellite data, etc. The
137 catalog contains a total of 786 signals from a variety of sources. Table 1 shows the number

138 of signals for each event type. We note that the classes are imbalanced with respect to the
139 number of signals in each one. The classes themselves can also vary considerably in regards
140 to the physical mechanisms generating each event. For example, the anthropogenic activity
141 class contains signals from fireworks *and* trains. Classifying signals as anthropogenic activity
142 then becomes more difficult since the labels are somewhat arbitrary. Splitting the class into
143 two does not fix the problem because there are so few example signals. Therefore, we chose
144 to focus on a subset of the most abundant signals including those from mines and quarries,
145 chemical/accidental explosions, earthquakes, and volcanic activity. This provided us with
146 a total of 615 signals from 519 infrasound events. Of these events, over 10% (69 signals)
147 were detected at more than one station providing 21, 26, 25, and 16 source-station pairs
148 for mines and quarries, volcanic activity, earthquakes, and accidental/chemical explosions,
149 respectively. The average distance from source to sensor is 1185 km, the median is 860
150 km, and the standard deviation is 1492 km. There is considerable variability in source-
151 sensor distances, but most of the signals in the catalog are detected at regional and global
152 distances (15 - 250+ km). Figure 1 shows a map of the source locations and straight-line
153 paths connecting origins to various detecting stations. Note that some locations share paths
154 from multiple events.

155 The IRED catalog is small compared to the size of typical catalogs used to train
156 predictive models in tangential domains. These catalogs benefit from a hundred thousand
157 ([Linville *et al.*, 2019](#)) to a million signals ([Ross *et al.*, 2018](#)) and achieve impressive perfor-
158 mance for limited geographic areas. The IRED catalog by comparison spans local and global

₁₅₉ distance sources, contains a limited number of examples for each source type, and is faced
₁₆₀ with additional complexity from dynamic travel paths.

Table 1. IRED Signals by Class

Source	Number of Signals
Mines and quarries	256
Chemical/accidental explosions	152
Earthquakes	103
Volcanic activity	104
Rocket launch/re-entry	57
Anthropogenic activity	46
Bolides and meteorites	26
Unknown	14
Aircraft	13
Cultural noise	8
Avalanches and landslides	7

₁₆₁ **3. Methods**

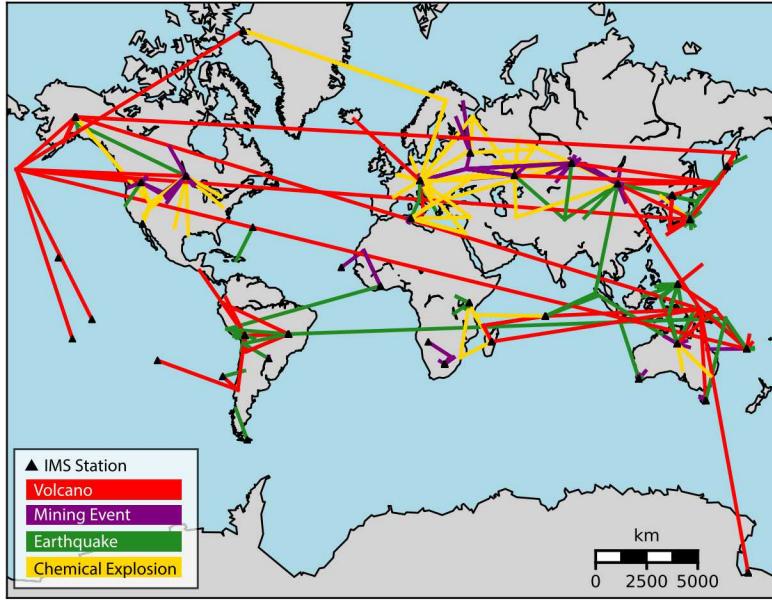


Fig. 1. A map of the infrasound events used in this study. Lines originate from the source location and connect to all stations (black triangles) that detected the event. Note that lines are straight paths and do not represent the actual path traveled by the infrasonic wave. Line colors represent event type. Most of the events are detected at global distances (≥ 250 km). Note that some of the locations correspond to multiple events that may have been detected at a variety of sensor locations.

162 The event catalog used in this study is the largest labeled global infrasound event catalog
 163 currently available. The goal of this publication is to evaluate deep learning strategies from
 164 tangential fields in the context of the state of the art. Therefore, we use a convolutional neural
 165 network (CNN) and compare this to classification accuracies using SVM, which we consider
 166 to be the state of the art classification method for infrasound. We do this comparison for two
 167 types of catalogs. The first is a subset of the larger catalog consisting of only volcanic activity

168 and earthquakes, designed to be similar to the catalog used by [Li *et al.* \(2016\)](#) and [Liu *et al.* \(2014\)](#). This will be referred to as the “2-class” catalog. The second is the “4-class” catalog
169 of mines and quarries, volcanic activity, earthquakes, and accidental/chemical explosions,
170 representing the largest currently available labeled global infrasound event catalog. We
171 classify signals in each catalog using both SVM and CNN, and compare results 1) within
172 each catalog and 2) from each method between the two catalogs.

174 *3.1 Data Preparation*

175 Each station consists of an infrasound array containing four or more infrasound microphones.
176 The catalog entry for each event contains the following information: number of arrivals,
177 duration, backazimuth, and trace velocity for each group of signals at each station that
178 detected the event. These values were derived by the IDC using the Progressive Multi-
179 Channel Cross Correlation (PMCC) detection and location algorithm ([Cansi, 1995](#)). We
180 started by making use of the time-series waveforms and detection information from each
181 signal. First, the waveforms were selected to begin 5 seconds prior to the earliest arrival
182 time for each sensor. The waveforms from each station were then time-aligned based on
183 the detection backazimuth and trace velocity from the reference sensor (given in the catalog
184 metadata), which we will refer to as the “delay-and-sum beam”. The delay-and-sum beam
185 was used to represent the signal from that station. Therefore, events detected at multiple
186 stations were represented by multiple waveforms. Signal durations ranged from 9 seconds
187 to 3.5 hours depending on source variability and the number of arrivals detected by the
188 IDC. For SVM analysis, we used the full duration of each signal and used the delay-and-sum

189 beam as the input for feature extraction. For CNN analysis we used a fixed signal duration of
190 475 seconds (2 std. of median signal length). Some of the signals included multiple arrivals.
191 This was common in the volcanic activity class, where many signals included multiple arrivals
192 corresponding to increased volcanic activity over a period of time. We chose a signal duration
193 of 475 seconds to minimize the risk of including these multiple arrivals in what was considered
194 to be a single example of a signal from the source type. For signal durations less than 475
195 seconds long, we zero-padded the signal out to that time. We detrended the signals and
196 applied a 1% taper for a gradual transition to zero at the edges. The 1% taper on our
197 475 s window only effects out to about 2 s at each edge. This avoids interference with the
198 signal onset since signals were collected 5 seconds prior to the given arrival time. Then we
199 computed a normalized spectrogram from the delay-and-sum beam. While signal length is
200 variable by source and not fixed by class, some classes exhibit characteristic lengths that
201 require caution when used as input for DNNs. We suggest that future studies may benefit
202 from either alternative methods capable of variable signal length learning such as recurrent
203 neural networks, or that secondary arrivals, signals, and noise are included in model input.

204 *3.2 SVM and CNN Architectures*

205 First, we classified signals using the state of the art, SVM. We extracted features using the
206 spectral entropy method developed by [Li *et al.* \(2016\)](#), as well as other, more easily inter-
207 pretable features such as distance from source to sensor, waveform duration, etc. We began
208 with many features and selected eight using the random forest method to determine feature
209 importance ([Brieman, 2001](#)). It is important to note that our analysis show the two most

210 important features are distance from source and waveform duration. This suggests there
211 may be a range dependency on signal classification. Of the original features we selected
212 the top eight: distance from source, waveform duration, wavelet singular spectrum entropy,
213 spectral spread, wavelet energy spectrum entropy, number of zero crossings, energy, and
214 wavelet power spectrum entropy (Fig. 2). Each of the SVM features that include entropy
215 aim to quantitatively capture the uncertainty of the signal energy distribution in various do-
216 main. The values calculated from wavelet singular spectrum entropy reflect the uncertainty
217 of the signal energy distribution in the time-frequency domain. The wavelet power spectrum
218 entropy is calculated using the power spectral density of the signal and therefore reflects the
219 uncertainty of the signal energy distribution in the frequency domain. The wavelet energy
220 spectrum entropy uses the energy spectrogram, reflecting the uncertainty of the signal energy
221 distribution in the time-frequency domains. These features describe physical properties of
222 the waveforms, providing a tangible link to the source and propagation physics, as opposed
223 to the pattern discovery approach as used by a CNN. SVM is a powerful tool for classification
224 because it identifies the hyperplane in a high-dimensional space that maximizes the distance
225 between points within the given classes. When the data is characterized by nonlinear rela-
226 tionships, SVM requires a kernel function to transform the data prior to classification. Once
227 the features were extracted from each waveform, we input them into the SVM algorithm for
228 training and classification using a radial basis function (rbf) kernel (Vapnik, 1995). We chose
229 the rbf kernel because it is widely generalizable and has been proven to provide accurate
230 classifications in other domains.

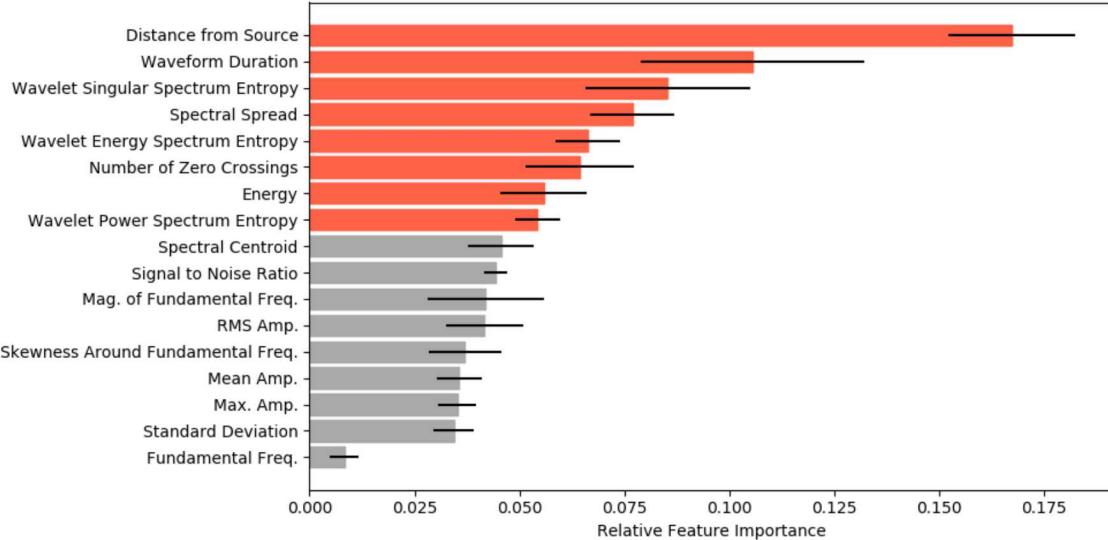


Fig. 2. Feature importance calculated using the random forest method. Features selected in this study are highlighted in red. Note that the two most important features are distance from source and waveform duration, suggesting a range dependency on classification.

231 The training input for our CNN algorithm consists of normalized spectrograms from
 232 each signal, shown in Figure 3. We utilize a 4-layer relu-activated CNN. More information on
 233 this method can be found in [Linville *et al.* \(2019\)](#). We chose a CNN because of demonstrated
 234 success in parallel domains such as discrimination, detection, and location of seismic signals
 235 ([Linville *et al.*, 2018](#); [Perol *et al.*, 2018](#); [Ross *et al.*, 2018](#)). It also has a higher capacity to
 236 model the data as opposed to other algorithms such as SVM. We experimented with adding
 237 gaussian and random noise to balance the classes, increase the dataset size, and augment
 238 the data, but these methods did not result in significant improvement in accuracy. Our
 239 dataset is small compared to others used for CNN classification so it is easy to overfit when

240 augmenting the data. Strong regularization is likely an important requirement in limited
241 data domains, but simple gaussian noise did not make up for the fundamental difficulty we
242 face for infrasound signal classification: atmospheric effects on waveform morphology. There
243 are alternate regularization approaches we did not try, such as aggressive dropout but we
244 did not pursue these based on the observation that ensembles of trained models did little to
245 increase our prediction accuracy.

246 For both methods, we used 4-fold cross validation to determine the accuracy of the
247 data. The total catalog was partitioned into 4 data subsets consisting of 64 examples of
248 mining signals, 38 examples of chemical/accidental explosions, 26 examples of volcanic eruptions,
249 and 25 examples of earthquakes. We train 4 models for each method using 75% (or 3
250 of the 4 partitions, minus a randomly drawn validation set of 1%) of the data for training.
251 We stop training models once the accuracy on the validation data ceases to increase over 10
252 cycles through the training data (epochs). We used the remaining 25% of signals to test the
253 algorithm. We computed test accuracy by dividing the number of correctly classified signals
254 by the total number of signals in the test set for each fold. We computed the 4-fold average
255 accuracy by taking the mean of the accuracies for all of the folds. We then compared test
256 accuracies for each catalog and results from the 2- and 4-class catalogs.

257 **4. Results**

258 First, we compared classification accuracies on the 2-class catalog consisting of only earth-
259 quakes and volcanic activity. When using SVM, we achieved an average 4-fold classification
260 accuracy of 75%. CNN provides a similar result as SVM, giving a 4-fold average accuracy of

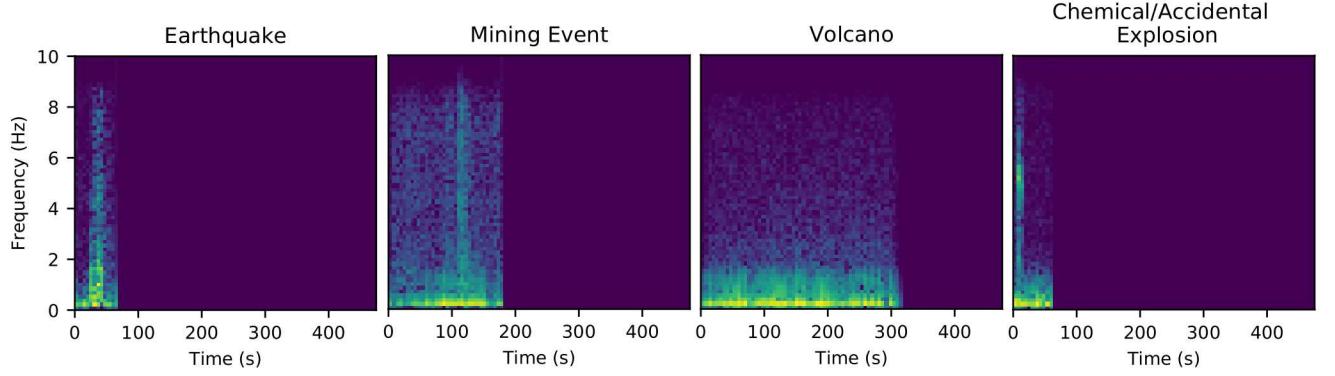


Fig. 3. Examples of spectrograms computed for each class and used to train the CNN algorithm.

These signals are all shorter than 475 s so they include zero padding.

261 74%. However, as we will see with the 4-class catalog, results from the 2-class catalog show
 262 that we are able to achieve higher accuracies on a smaller catalog. Model performance can
 263 be described by a confusion matrix, averaged over all of the data partitions (Table 2). The
 264 confusion matrix shows the mean fraction of the data that is either correctly classified or
 265 misclassified. For example, Table 2 shows two confusion matrices corresponding to classifi-
 266 cation accuracies using the SVM and CNN architectures on the 2-class catalog. If we focus
 267 on the SVM confusion matrix, it shows that 68% of the earthquake signals were correctly
 268 classified, while 32% were misclassified as volcanic activity.

269 Next we compared the classification accuracies of the two architectures on the 4-
 270 class catalog consisting of signals from mines and quarries, chemical/accidental explosions,
 271 earthquakes, and volcanic activity. When using the feature extraction method previously
 272 described with the SVM classification scheme, we achieve a 4-fold average accuracy of 55%.
 273 CNN classification provides only a one percent increase in accuracy, giving a 4-fold average

Table 2. Mean Confusion Matrices for the 2-Class Example

SVM

		Predicted	
		Earthquake	Volcanic Activity
True	Earthquake	0.68	0.32
	Volcanic Activity	0.19	0.81

CNN

		Predicted	
		Earthquake	Volcanic Activity
True	Earthquake	0.80	0.20
	Volcanic Activity	0.32	0.69

274 of 56%. Again, we compare confusion matrices from the two architectures in Table 3. In
 275 both cases the models struggle with classifying earthquakes and volcanoes, but do well
 276 with classifying signals from mines and quarries. When comparing the classification of
 277 earthquakes using the two methods, the CNN algorithm gives a 12% higher accuracy. This
 278 suggests that there are shared feature characteristics between the earthquake class and the
 279 explosions and mines and quarries classes. As can be seen in the 2-class examples, the binary

280 classification of earthquakes and volcanoes can be done with an accuracy of about 75%, but
281 their classification becomes difficult when a more complex catalog is used.

282 **5. Discussion**

283 When comparing the state of the art in infrasound classification (SVM) to CNN, a deep
284 learning method proven in tangential fields, we see that CNN does not outperform SVM.
285 When using the SVM method on the 2-class catalog, we achieved an average 4-fold classi-
286 fication accuracy of 75%. CNN provides a similar result as SVM, giving a 4-fold average
287 accuracy of 74%. For the 4-class catalog, our accuracies are 55% and 56% for SVM and
288 CNN, respectively. Both the SVM and CNN algorithms perform worse than the architec-
289 ture by [Li et al. \(2016\)](#) where they achieve 86% accuracy (though it is unclear how many
290 iterations generated this number). It is important to note, however, that we have limited
291 insight regarding the event catalog of [Li et al. \(2016\)](#). Their publication does not describe
292 the source locations or source-receiver distances. Therefore, we suggest that the performance
293 gap between our results and theirs is due to variation in geographic area and source type
294 diversity. This is somewhat expected since their method was not designed to be generalized.
295 The CNN algorithm outperforms SVM at classifying earthquakes, suggesting the that our
296 features used in SVM do not fully capture the earthquake signal characteristics. Both the
297 SVM and CNN models in our study struggle with classifying earthquakes and volcanoes, but
298 do well in classifying mining activity. This is likely due to shorter propagation distances.
299 Mining activity is recorded at distances of 581 km on average, making the signals less af-
300 fected by propagation (Figure 1). In contrast, chemical/accidental explosion, earthquake,

Table 3. Mean Confusion Matrices for the 4-Class Example

SVM

Predicted

		Earthquake	Explosion	Mines and Quarries	Volcanic Activity
True		Earthquake	0.25	0.37	0.33
		Explosion	0.05	0.54	0.35
		Mines and Quarries	0.04	0.17	0.78
		Volcanic Activity	0.07	0.37	0.34

CNN

Predicted

		Earthquake	Explosion	Mines and Quarries	Volcanic Activity
True		Earthquake	0.47	0.15	0.20
		Explosion	0.09	0.59	0.25
		Mines and Quarries	0.02	0.14	0.79
		Volcanic Activity	0.22	0.16	0.25

301 and volcanic activity signals are recorded at distances of 1571, 1199, and 2084 km, respec-
302 tively. This suggests that if more IMS stations were installed to decrease propagation paths,
303 our algorithms may have performed better. Unfortunately, we could not analyze this idea
304 as we had a limited number of locally recorded signals. However, our feature importance
305 results suggest that distance from source to sensor is the most important feature of the data,
306 supporting the idea that more IMS stations would produce better classifications. Individual
307 mines also set off the same explosive source for every event at that mine, making the source
308 process stable from one event to another.

309 We attempted to identify a distance at which signals are increasingly misclassified. A
310 separation in distance between correctly classified and misclassified signals exists only for the
311 mining events class, where regional signals show the lowest misclassification rate. The other
312 classes do not have such a clear separation. In fact, for the earthquake and volcano classes,
313 signals from all distances are misclassified more frequently than they are correctly classified.
314 This may be due to variance in atmospheric conditions for station-signal pairs, smaller class
315 size, or fundamental source characteristics that are not being adequately captured by our
316 models. More signal examples in each class would likely solve the misclassification problem
317 for these classes.

318 In the 4-class example, CNN generates an increase in accuracy of only 1%. Though
319 both algorithms provide lower accuracies than previous research, we argue that unlike pre-
320 vious studies, we are aiming to solve a more complex problem. For one, we use waveforms
321 from multiple stations that detected the same event. Also, a variety of stations recorded

322 each signal type. Previous studies have used only single-station signals, a small number of
323 source-station pairs, and some have recorded the same source at the same station for all class
324 examples. This reduces the complexity of the problem, making classification an easier task
325 for the model. It also limits the reach of the model, making it less generalizable to other
326 event catalogs.

327 On that same note, it is expected that the 2-class example outperforms the 4-class
328 example. Classifying only two types of signals is a much simpler task than classifying four.
329 The confusion matrices for the 4-class SVM example show that earthquakes and volcanic
330 activity are often classified as explosions and mines and quarries. This is also true for the
331 CNN algorithm, although misclassified events are more equally spread between the other
332 classes. This suggests that the earthquakes and volcanic activity classes share similar features
333 with the explosions and mines and quarries classes (both physical from SVM and discovered
334 using CNN). Therefore, removing those classes provides an accuracy increase.

335 Our algorithms produced lower than expected accuracies, which could possibly be
336 increased by pre-processing the input data in different ways. For example, zero padding
337 of the spectrograms is likely not the best solution because it can elongate a short signal
338 and truncate a long signal. Future studies should consider either including the addition
339 of ambient noise for a fixed signal length or use learning strategies capable of processing
340 variable length signals. It is also important to note that [Green and Nippes \(2019\)](#) show
341 that signal duration generally increases with propagation distance. We use the signal onset
342 time provided in the IRED catalog, though it may be more appropriate to use a 475 s

343 window surrounding the maximum amplitude since we classify signals that have propagated
344 far distances. No pre-processing was performed on the data prior to classification, apart from
345 calculating the delay-and-sum beam. Therefore, it is likely that long-duration microbarom
346 signals, which serve as noise, are contained within the training input. We experimented
347 with filtering waveforms prior to classification though this did not increase accuracy. Using
348 alternate spectral processing methods, such as the Hilbert-Huang Transform ([Huang and](#)
349 [Zhaohua, 2008](#)), for input into the CNN algorithm may have allowed for the algorithm to
350 better discriminate between long period noise and signal. These avenues exist to improve
351 the performance of deep learning methods, though in the absence of an adequate catalog
352 these approaches likely will not increase performance. The catalog used in this study was
353 designed to serve as a reference for analysts so it contains useful examples, but they may
354 not fully capture the variances within each signal class. We also have a limited number of
355 examples in our training data. CNNs usually require orders of magnitude more examples
356 in order to reach high accuracies. Therefore, a much larger labeled catalog is necessary in
357 order to design a generalized method for global infrasound signal classification.

358 We recommend future catalogs use a standardized method that aims to fully capture
359 the complexities of a signal as well as its propagation path. The IRED catalog uses CSS3.0
360 standard static and dynamic tables that hold information about both the station and the
361 signal such as: source label, event identification number, event location, velocity, backaz-
362 imuth, station location, station, and instrument. We recommend including this information
363 in a standardized catalog. Infrasound signals detected at global distances often have gradual

364 onsets that occur some time following the signal's first arrival at the station. Therefore, cap-
365 turing both the timing of the first arrival and the timing of the maximum amplitude ensures
366 the characteristics of both impulsive and gradual-onset signals are captured. We assume
367 that all detections in an infrasound catalog are infrasound. However, infrasound signals are
368 sometimes detected on seismic stations. This should be logged in the catalog using a station
369 flag (examples include 'I' or 'S'). Lastly, we recommend the addition of the nomenclature
370 developed by [Brown *et al.* \(2002\)](#) and expanded by [Hedlin *et al.* \(2018\)](#) to describe any path
371 an infrasonic wave has traveled through the atmosphere. Including this in a standardized
372 catalog would allow users to better understand how the morphology of an individual signal
373 was affected by atmospheric structure.

374 **6. Conclusions**

375 The CNN algorithm gives virtually the same classification accuracy as the SVM algorithm.
376 Therefore, SVM should be the preferred method on datasets such as the ones described
377 in this study because it is the simpler method. SVM is a trustworthy architecture that
378 is physically interpretable - the features relate to physical properties of the waveforms. It
379 also requires less computation time to produce classifications (though the feature extraction
380 process can take a considerable amount of time if complex).

381 The SVM and CNN algorithms discussed in this paper are not yet generalizable
382 for global infrasound event catalogs. Turning these ideas into an operational classification
383 algorithm requires more infrasound data to be collected in systematic ways. An example of
384 how this could be done comes from seismic data centers where large and comprehensive event

385 catalogs are compiled by analysts. Consistent, systematically labeled infrasound data should
386 contain standardized labels, analyst reviewed phase arrival picks, and in-depth data quality
387 review. Generating a global infrasound catalog with these qualities would likely increase
388 the value of deep learning and data driven strategies when used for classification. Until
389 then, deep learning strategies may do little more than overfit small datasets and perform
390 poorly in real use cases. However, the strength of DNNs for infrasound classification lies
391 in their ability to determine the waveform attributes most meaningful for prediction. This
392 is not something we know as infrasound analysts, and may prove to be more beneficial to
393 infrasound classification than using physically derived features. As catalog sizes increase, we
394 expect the performance of SVM and DNN to diverge in favor of DNN. This, however, can
395 only be proven once larger, more refined catalogs are compiled. We encourage readers to refer
396 to this study when motivation is needed for the development of large and comprehensive,
397 systematically labeled, infrasound event catalogs for classification purposes.

398 7. Data and Resources

399 This catalog can be accessed by member states (states that have signed the Comprehensive
400 Nuclear Test Ban Treaty) by requesting it from the IDC through their principal point of
401 contact. More information can be found at the following link:
402 [https://www.ctbto.org/verification-regime/the-international-data-centre/distribution-of-data-
403 and-data-bulletins-to-member-states/](https://www.ctbto.org/verification-regime/the-international-data-centre/distribution-of-data-and-data-bulletins-to-member-states/).

404 **Acknowledgments**

405 The authors would like to thank the International Data Centre for providing the infra-
406 sound event catalog. We would also like to thank Tim Draelos for his helpful and insightful
407 advice. This paper describes objective technical results and analysis. Any subjective views
408 or opinions that might be expressed in the paper do not necessarily represent the views of
409 the U.S. Department of Energy or the United States Government. This research was sup-
410 ported by the Laboratory Directed Research and Development program at Sandia National
411 Laboratories, a multimission laboratory managed and operated by National Technology and
412 Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Interna-
413 tional, Inc., for the U.S. Department of Energy's National Nuclear Security Administration
414 under contract DE-NA-0003525.

415 **References and links**

416

417 Arrowsmith, S. (2018). “False alarms and the ims infrasound network: understanding the
418 factors influencing the creation of false events,” *Geophys. J. Int.* **215**(2), 1322–1337, doi:
419 [10.1093/gji/ggy350](https://doi.org/10.1093/gji/ggy350).

420 Bowman, D., and Albert, S. (2018). “Acoustic event location and background noise charac-
421 terization on a free flying infrasound sensor network in the stratosphere,” *Geophys. J. Int.*
422 **213**(3), 1524–1535, doi: [10.1093/gji/ggy069](https://doi.org/10.1093/gji/ggy069).

423 Brieman, L. (2001). “Random forests,” Machine Learning **45**(1), 5–32.

424 Brown, D., Katz, C., Bras, R. L., Flanagan, M., Wang, J., and Gault, A. (2002). *In-*
425 *frasonic signal detection and source location at the Prototype International Data Centre*
426 (Burkhäuser, Basel).

427 Cansi, Y. (1995). “An automatic seismic event processing for detection and location: The
428 pmcc method.,” Geophys. Res. Lett. **22**(9), 1021–1024, doi: [10.1029/95GL00468](https://doi.org/10.1029/95GL00468).

429 Ceranna, L., Pichon, A. L., Green, D., and Mialle, P. (2009). “The buncefield explosion: a
430 benchmark for infrasound analysis across central europe,” Geophys. J. Int. **177**(2), 491–
431 508, doi: [10.1111/j.1365-246X.2008.03998.x](https://doi.org/10.1111/j.1365-246X.2008.03998.x).

432 Gibbons, S. J., Ashming, V., Eliasson, L., Federoc, A., Fyen, J., Kero, J., Kozlovskaya, E.,
433 Kvaerna, T., Liszka, L., Nasholm, S. P., Raita, T., Roth, M., Tiira, T., and Vinogradov,
434 Y. (2015). “The european arctic: a laboratory for seismoacoustic studies.,” Seismol. Res.
435 Lett. **83**(3), 917–928, doi: [10.1785/0220140230](https://doi.org/10.1785/0220140230).

436 Green, D., and Nippes, A. (2019). “Infrasound signal duration: the effects of propagation
437 distance and waveguide structure,” Geophys. J. Int. **216**(3), 1974–1988, doi: [10.1093/gji/ggy530](https://doi.org/10.1093/gji/ggy530).

439 Ham, F. M., and Park, S. (2002). “A robust neural network classifier for infrasound events
440 using multiple array data,” in *Neural Networks, 2002*, IEEE, Proceedings of the 2002
441 International Joint Conference on, Vol. 3, pp. 2615–2619.

442 Hedlin, M., Drob, D., Walker, K., and deGroot Hedlin, C. (2018). “A study of acoustic prop-
443 agation from a large bolide in the atmosphere with a dense seismic network,” J. Geophys.

444 Res. **115**(B11), doi: [10.1029/2010JB007669](https://doi.org/10.1029/2010JB007669).

445 Huang, N., and Zhaohua, W. (2008). “A review on hilbert huang transform: Method and its
446 applications to geophysical studies,” Rev. Geophys. **46**(2), doi: [10.1029/2007RG000228](https://doi.org/10.1029/2007RG000228).

447 Kulichkov, S. (2004). “Long-range propagation and scattering of low-frequency sound
448 pulses in the middle atmosphere,” Met. Atmos. Phys. **85**(1-3), 47–60, doi: [10.1007/s00703-003-0033-z](https://doi.org/10.1007/s00703-003-0033-z).

450 Li, M., Liu, X., and Liu, X. (2016). “Infrasound signal classification based on spectral
451 entropy and support vector machine,” Applied Acoustics **113**(2016), 116–120, doi: [10.1016/j.apacoust.2016.06.019](https://doi.org/10.1016/j.apacoust.2016.06.019).

453 Linville, L., Pankow, K., and Draelos, T. (2019). “Deep learning models augment analyst
454 decisions for event discrimination,” Geophys. Res. Lett. **46**(7), 3643–3651, doi: [10.1029/2018GL081119](https://doi.org/10.1029/2018GL081119).

456 Linville, L. M., Pankow, K. L., and Kilb, D. L. (2018). “Contour-based frequency-domain
457 event detection for seismic arrays,” Seismol. Res. Lett. **89**(4), 1514–1523, doi: [10.1785/0220170242](https://doi.org/10.1785/0220170242).

459 Liu, X., Li, M., Tang, W., Wang, S., and Wu, X. (2014). “A new classification method of in-
460 frasound events using hilbert-huang transform and support vector machine,” Mathematical
461 Problems in Engineering **2014**, doi: [10.1155/2014/456818](https://doi.org/10.1155/2014/456818).

462 Perol, T., Gharbi, M., and Denolle, M. (2018). “Convolutional neural network for earthquake
463 detection and location,” Sci. Adv. **4**(2), e1700578, doi: [10.1126/sciadv.1700578](https://doi.org/10.1126/sciadv.1700578).

464 Ross, Z. E., Meier, M.-A., and Hauksson, E. (2018). “P-wave arrival picking and first-
465 motion polarity determination with deep learning,” J. Geophys. Res. **123**(6), 5120–5129,
466 doi: [10.1029/2017JB015251](https://doi.org/10.1029/2017JB015251).

467 Smets, P., and Evers, L. (2014). “The life cycle of a sudden stratospheric warming from
468 infrasonic ambient noise observations,” J. Geophys. Res. **119**(21), 12–084, doi: [10.1002/2014JD021905](https://doi.org/10.1002/2014JD021905).

470 Vapnik, V. (1995). *The nature of statistical learning theory* (Springer-Verlag, New York).

471 **8. List of Figure Captions**

472 **Figure 1.** A map of the infrasound events used in this study. Lines originate from the
473 source location and connect to all stations (black triangles) that detected the event. Note
474 that lines are straight paths and do not represent the actual path traveled by the infrasonic
475 wave. Line colors represent event type. Most of the events are detected at global distances
476 (≥ 250 km). Note that some of the locations correspond to multiple events that may have
477 been detected at a variety of sensor locations.

478 **Figure 2.** Feature importance calculated using the random forest method. Features selected
479 in this study are highlighted in red. Note that the two most important features are distance
480 from source and waveform duration, suggesting a range dependency on classification.

481 **Figure 3.** Examples of spectrograms computed for each class and used to train the CNN
482 algorithm. These signals are all shorter than 475 s so they include zero padding.