

1       **Pore-scale analysis of calcium carbonate precipitation and dissolution kinetics in a**  
2       **microfluidic device**  
3

4       **Hongkyu Yoon<sup>1,\*</sup>, Kirsten N. Chojnicki<sup>1</sup>, and Mario J. Martinez<sup>2</sup>**

5       <sup>1</sup>Geoscience Research and Applications, Sandia National Laboratories, Albuquerque, NM, USA

6       <sup>2</sup>Fluid and Reactive Processes Department, Engineering Sciences, Sandia National Laboratories,  
7       Albuquerque, NM, USA

8       \* Corresponding author

9       **ABSTRACT**

10      In this work we have characterized the calcium carbonate ( $\text{CaCO}_3$ ) precipitates over time caused  
11     by reaction-driven precipitation and dissolution in a micromodel. Reactive solutions were  
12     continuously injected through two separate inlets, resulting in transverse-mixing induced  
13     precipitation during the precipitation phase. Subsequently, a dissolution phase was conducted by  
14     injecting clean water ( $\text{pH} = 4$ ). The evolution of precipitates was imaged in two- and three-  
15     dimensions (2-, 3-D) at selected times using optical and confocal microscopy. With estimated  
16     reactive surface area, effective precipitation and dissolution rates can be quantitatively compared  
17     to results in the previous works. Our comparison indicates that we can evaluate the spatial and  
18     temporal variations of effective reactive areas more mechanistically in the microfluidic system  
19     only with the knowledge of local hydrodynamics, polymorphs, and comprehensive image analysis.  
20     Our analysis clearly highlights the feedback mechanisms between reactions and hydrodynamics.  
21     Pore-scale modeling results during the dissolution phase were used to account for experimental  
22     observations of dissolved  $\text{CaCO}_3$  plumes with dissolution of unstable phase of  $\text{CaCO}_3$ . Mineral  
23     precipitation and dissolution induces complex dynamic pore structures, thereby impacting pore-  
24     scale fluid dynamics. Pore-scale analysis of the evolution of precipitates can reveal the significance  
25     of chemical and pore structural controls on reaction and fluid migration.

26  
27

28 **INTRODUCTION**

29 Reactive transport processes are critically important to control precipitation and dissolution of  
30 minerals relevant to energy-related activities and environmental problems in the subsurface<sup>1, 2</sup>.  
31 Reactive transport is often impacted by mineral composition, pore geometry, and environmental  
32 conditions. It is now well-recognized that pore-scale physics can significantly impact porosity and  
33 permeability relationships<sup>3</sup> and thereby influence model predictive capabilities<sup>4, 5</sup>. Over the past  
34 decade pore-scale reactive transport processes have been vigorously investigated to delineate the  
35 impact of geochemical reactions on the change of hydrogeological properties (e.g., porosity and  
36 permeability) and their feedback on reaction rates<sup>6-8</sup>. In particular, mineral growth and dissolution  
37 have been investigated under flowing conditions using various techniques: crystal growth using  
38 atomic force microscopy<sup>9-11</sup>, precipitation dynamics in microfluidics using optical microscopy<sup>12-</sup>  
39 <sup>14</sup> and in small columns using X-ray computed microtomography<sup>15-18</sup> among many others. This  
40 body of work demonstrates the importance of reactive surface area on the predictability of the  
41 reactive transport system<sup>19-24</sup>.

42

43 The fluid-solid interfaces can change due to chemical reactions such as mineral precipitation and  
44 dissolution processes, leading to an evolving and heterogeneous pore-network, complex reactive  
45 transport, and hydrological and mechanical flow processes. Recent multiscale image analysis  
46 combined with dissolution experimental work shows that the knowledge on both pore-accessible  
47 mineral surface areas and highly reactive mineral phases are required to match the core flood  
48 experimental results<sup>24</sup>. In particular, several recent studies<sup>20, 23-25</sup> emphasize that the effective  
49 surface area in contact with reactive fluid is important to properly account for the impact of mineral  
50 geometries and local hydrodynamics on the relationship between reactive surface areas and bulk  
51 reaction rates. This effective surface area that accounts for actual surface area contributing to fluid-  
52 solid reactions needs to be distinguished from geometric and/or specific surface areas commonly  
53 used in traditional means of estimating reactive surface area in order to develop reliable models  
54 for evolving and heterogeneous pore networks.

55

56 For carbonate precipitation, polymorphs of calcium carbonate also influence the reactive surface  
57 area and precipitate sizes, thereby impacting reaction rates. In particular, highly super-saturated  
58 experimental conditions can lead to the formation of nano-size amorphous calcium carbonate

59 (ACC) that may attach to the surface of minerals, resulting in successive calcium carbonate  
60 crystallization. The transformation of thermodynamically less stable forms of calcium carbonate  
61 into more stable crystalline forms has also been investigated over variable timeframes<sup>26-29</sup>.  
62 Interfacial reactive processes involving mineral precipitation/dissolution and biogeochemical  
63 processes have been studied using pore-scale experimental and modeling efforts with different  
64 geochemical compositions<sup>14, 30-32</sup>, flow rates<sup>30, 33</sup>, and pore configurations<sup>34</sup>. In addition, recent  
65 studies highlight the importance of surface roughness at pore and molecular scales on upscaling of  
66 reaction rates<sup>20, 25</sup>.

67

68 The objective of this work is to quantify the change of two- and three-dimensional (2-D and 3-D)  
69 reactive surface area over time to evaluate how to estimate precipitation and dissolution reaction  
70 rates in a micromodel. Both optical and laser scanning confocal microscopy (LSCM) were used  
71 to obtain 2-D and 3-D images of precipitates at different resolutions and image analysis results  
72 were used to compare the effective surface area with the geometry-based surface area for  
73 evaluating how to define reactive surface area correctly. Dissolved ion transport observed during  
74 dissolution phase is compared to results from a 2-D pore-scale reactive transport model to  
75 account for the mechanism of dissolution process in the micromodel. Implications of  $\text{CaCO}_3$   
76 precipitation and dissolution are discussed to highlight the importance of reactive surface area on  
77 reactive transport in the subsurface.

78

## 79 MATERIALS and METHODS

### 80 Chemicals

81 Two influent solutions of calcium chloride ( $\text{CaCl}_2$ , >97% Sigma Aldrich) and sodium carbonate  
82 ( $\text{Na}_2\text{CO}_3$ , >99.5% Sigma Aldrich) were prepared at a concentration of 10 mM. For all testing  
83 nanopure water (Barnstead NANOpure Diamond, 18.2 m $\Omega$ /cm) was used. The measured pH  
84 values were ~6 and 11 for  $\text{CaCl}_2$  and  $\text{Na}_2\text{CO}_3$  solutions during precipitation, respectively, and 4  
85 for water solution (adjusted with HCl) during dissolution.

86

### 87 Micromodel and Experimental Setup

88 Experiments were conducted in a microfluidic pore network (i.e., micromodel) that was fabricated  
89 using standard photolithograph techniques and inductively coupled plasma-deep reactive ion

90 etching (ICP-DRIE) on a silicon wafer. The micromodel fabrication and assembly processes were  
91 previously reported in the literature<sup>14, 35</sup>. The micromodel consisted of a homogeneous pore  
92 network that is 2-cm long, 1-cm wide, and 10- $\mu\text{m}$  deep (Figure S1). The pore network contains a  
93 staggered array of cylindrical posts, 300- $\mu\text{m}$  in diameter, separated by pore bodies and throats with  
94 dimensions of 180  $\mu\text{m}$  and 40  $\mu\text{m}$ , respectively (Figure S1). The pore network porosity was  $\sim$ 0.39.  
95 The micromodel contains two inlets and one outlet, each with a NanoPort Assembly (IDEX Health  
96 Science, N-333). The micromodel was cleaned and saturated with nanopure water prior to the  
97 injection of chemicals. For the precipitation phase each solution ( $\text{CaCl}_2$  and  $\text{Na}_2\text{CO}_3$ ) was injected  
98 into a separate inlet using a syringe pump (Harvard apparatus, model PHD2000) at a volumetric  
99 flow rate of 50  $\mu\text{L}/\text{h}$  (Darcy velocity = 1.67 cm/min). All of the solution exited the micromodel  
100 through one outlet that was open to the atmosphere and a clean nanopore water solution with a low  
101 pH value ( $\text{pH} < 2$ ) was flushed into the outlet port at 100  $\mu\text{L}/\text{h}$  using a separate tube to prevent  
102 clogging by precipitation in the outlet. The precipitation phase continued for 75 hrs, followed by  
103 the dissolution phase where nanopure water ( $\text{pH} = 4$ ) was injected into both inlets at the same  
104 volumetric flow rate (50  $\mu\text{L}/\text{h}$ ) for  $\sim$  150 hrs.

105

## 106 **Microscope Imaging**

107 Mixing between the two reactants resulted in calcium carbonate ( $\text{CaCO}_3$ ) precipitation, which was  
108 imaged at selected time intervals. Images were acquired with both CCD camera (Axiocam) and  
109 laser scanning confocal microscope (Zeiss LSM510). To assess the precipitate behavior, mosaic  
110 images were made of a collection of 2-D optical images taken at 1  $\mu\text{m}/\text{pixel}$  resolution over the  
111 micromodel region with reactions (Figures 1 and S2). Before the mosaic was created, an additional  
112 image was taken outside of the pore network and then applied to each image to correct non-uniform  
113 illumination. To assess the 3-D precipitate morphology in single pore body, the LSCM was used  
114 to acquire a stack of images at 1  $\mu\text{m}$  vertical interval over the micromodel depth (10  $\mu\text{m}$ ), following  
115 Park et al.<sup>36</sup> and Lima et al.<sup>37</sup>. Images with three different horizontal resolutions (0.63  $\mu\text{m}$ , 0.31  
116  $\mu\text{m}$  and 0.20  $\mu\text{m}$  per pixel) with imaging parameters reported in Table S1 were taken (Fig. S3),  
117 but based on preliminary analysis the finest resolution image (0.20  $\mu\text{m}$ ) was used to conduct  
118 quantitative analysis. Following Boyd et al.<sup>30</sup>, Raman spectroscopy was performed to identify the

119 crystal polymorphs which were determined based on the Raman spectra of calcium carbonates in  
120 the literature<sup>38</sup>. The detailed description is provided in the section S1.

121

## 122 **Image process of CaCO<sub>3</sub> Precipitates**

123 All images were segmented to identify precipitates using a threshold value that was adjusted  
124 manually for each (mosaic) image due to different intensities in background shading. A  
125 combination of different filters (e.g., median, sharp contrast, normalization) was applied based on  
126 different features of each image after non-precipitate regions including cylinders were manually  
127 masked. In particular, the shadow effect around cylinders due to non-uniform illumination and the  
128 non-smooth edges of the cylinders without precipitates were manually removed to improve the  
129 image processing as shown in the supplemental information (see Fig. S4 for an example). For a 3-  
130 D stack of LSCM images each image was processed independently to construct a segmented 3-D  
131 profile of precipitates. A set of image processing filters (e.g., filling holes, erode, dilate) was  
132 applied to produce segmented images within  $\pm \sim 5\%$  reproducibility.

133

## 134 **CaCO<sub>3</sub> Reaction Rates and Reactive Surface Area**

135 For segmented 2-D images in multiple pores at three different locations (upstream, midstream,  
136 and downstream in Figure 1) the number of pixels containing CaCO<sub>3</sub> precipitate was counted to  
137 compute the overall reaction rates (mol/s) as  $[A_{2D} \times 10\mu\text{m}/V_{\text{mol}}/\text{dt}]$ .  $A_{2D}$  is the 2-D horizontal area  
138 of the precipitate [the number of pixels  $\times$  area of each pixel ( $=1\mu\text{m}^2$ )],  $10\mu\text{m}$  is the micromodel  
139 depth,  $V_{\text{mol}}$  is a molar volume of calcite ( $36.94\text{ cm}^3/\text{mol}$ ), and  $\text{dt}$  is the time interval of each  
140 image from the previous time step. It is assumed that the 2-D area of the precipitate based on 2-D  
141 images is uniform over the micromodel depth. In addition the perimeter of precipitates was  
142 counted using an analyze particles plug-in in ImageJ/Fiji<sup>39</sup> to compute the effective reaction rates  
143 (mol/m<sup>2</sup>/s) as  $[(A_{2D} \times 10\mu\text{m}/V_{\text{mol}}/\text{dt})/RSA_{2D\_avg}]$ . The term in the parenthesis is the overall reaction  
144 rate ((mol/s),  $RSA_{2D\_avg}$  is the average of 2-D vertical reactive surface area of the precipitate  
145 between the previous and current times computed as [the number of perimeter pixels  $\times$  pixel  
146 resolution ( $\mu\text{m}$ )  $\times 10\mu\text{m}$ ] where  $10\mu\text{m}$  is the micromodel depth. For single pore LSCM images  
147 the 3-D reactive surface area ( $RSA_{3D}$ ) and volume ( $V_{3D}$ ) for precipitates were computed using a  
148 3-D objects counter plug-in in Fiji<sup>40</sup>. A stack of segmented 3-D images was directly used for  
149 analysis, while a 2-D image was used to compute the volume ( $V_{2D}$ ) with the uniform vertical

150 profile. It is noted that the reactive surface of precipitates in a single pore is dominantly vertical  
151 because top and bottom faces of the precipitates are confined by the micromodel. Although a  
152 micromodel is typically considered a 2-D system due to its shallow depth, we evaluated 2-D and  
153 3-D reactive surface areas in single pores to account for the impact of the vertical dimension and  
154 image resolution on the reactive surface area.

155

### 156 **Pore Scale Reactive Transport**

157 A 2-D pore-scale reactive transport model<sup>2, 13, 30</sup> was modified to simulate the distribution of pH,  
158 flow velocity, species concentrations at a specific time during the dissolution phase under the  
159 experimental conditions in this study. Briefly, an open source lattice Boltzmann library<sup>41</sup> was  
160 used to solve for fluid velocity fields in pore spaces and a finite volume method was used to  
161 solve for reactive transport including homogeneous and heterogeneous reactions. For the  
162 micromodel with precipitates, the model domain was 3.78 mm x 2.89 mm with an empty inlet  
163 region (0.15 mm) and a 1  $\mu$ m grid spacing was used to reflect the 2-D image resolution. The  
164 clean water (pH=4.0) was uniformly injected through both inlets. The primary species consists of  
165  $\text{H}^+$ ,  $\text{HCO}_3^-$ , and  $\text{Ca}^{2+}$ , and the secondary species concentrations were computed through the mass  
166 action law. The overall reaction rate of  $\text{CaCO}_3$  precipitation and dissolution ( $R_m$ , mol/s) has the  
167 form:

$$168 R_m = S_r I_m = -S_r k_r \left( 1 - \frac{a_{\text{Ca}^{2+}} a_{\text{CO}_3^{2-}}}{K_{sp}} \right) \quad (1)$$

169 where  $S_r$  is the reactive surface area of precipitation and dissolution,  $I_m$  is the effective reaction  
170 rate (mol/m<sup>2</sup>/s),  $k_r$  ( $= k_1 a_{\text{H}^+} + k_2 a_{\text{H}_2\text{CO}_3} + k_3$ ) is the overall kinetic rate constant with  $k_1$   
171 ( $8.9 \times 10^{-1}$ ),  $k_2$  ( $5.01 \times 10^{-4}$ ), and  $k_3$  ( $6.6 \times 10^{-7}$ ) (mol/m<sup>2</sup>/s)<sup>42</sup>,  $a_i$  is the activity of species  $i$ , and  $K_{sp}$  is  
172 the solubility product of  $\text{CaCO}_3$ . Here, we define the supersaturation ratio (SR) as the ratio of ion  
173 activity product ( $a_{\text{Ca}^{2+}} a_{\text{CO}_3^{2-}}$ ) to  $K_{sp}$ . To evaluate the effect of reactive surface area and  
174 polymorph of  $\text{CaCO}_3$  precipitate on reaction rates in equation (1), two different reactive surface  
175 area values ( $S_r$ ) based on image analysis and stability of precipitates and two different solubility  
176 products ( $K_{sp}$  for calcite and aragonite) were used in pore scale simulations. The description of  
177 the cases is presented in the results of pore scale simulations.

178

179

180 **RESULTS and DISCUSSION**

181 **CaCO<sub>3</sub> Precipitation in Multiple Pores**

182 Images of CaCO<sub>3</sub> precipitates in multiple pores are shown for both precipitation and dissolution  
183 phases in Figure 1c (see Figure S5 for high resolution images). As two solutions were injected  
184 separately, transverse mixing between calcium and carbonate ions created a reaction zone where  
185 CaCO<sub>3</sub> precipitates formed within pore bodies and around the cylindrical posts. Near the inlet,  
186 precipitates formed at the mixing line in the micromodel and extended less than a single pore  
187 body in the transverse direction, while the precipitates formed across 3 pore bodies surrounding  
188 the primary mixing line downstream. Early precipitation processes in the micromodel system  
189 typically involve homogeneous nucleation, particle attachment, and crystal growth, which has  
190 been investigated in the previous works<sup>13, 30</sup>. During the precipitation phase, more precipitates in  
191 the midstream and downstream locations were observed than in the upstream location. This is  
192 likely due to combination of precipitates-induced spreading of reactant plume and enhanced  
193 mixing across the interface of two reactant plumes<sup>13, 34</sup>. Spreading due to heterogeneous pore  
194 structure such as one caused by precipitates leads to the stretching of interfaces of the reactant  
195 plume, while mixing across the reactive interfaces is governed by local hydrodynamic  
196 dispersion<sup>43-45</sup>.

197

198 Both precipitation patterns and the amount of precipitates over time are evaluated to compare the  
199 current results with previous studies in micromodels<sup>14, 30</sup> where solute concentrations and  
200 micromodel geometries were similar. Overall precipitation patterns in terms of precipitate  
201 spreading and various shapes of precipitants within a few transverse pore bodies in 2-D images  
202 are similar to previous CaCO<sub>3</sub> precipitation studies<sup>14, 30</sup>. The similarity in precipitate patterns  
203 over a range of micromodel depths (10  $\mu\text{m}$  with a Darcy velocity of 1.67 cm/min in this  
204 study .vs. 20  $\mu\text{m}$  (1.25 cm/min)<sup>14</sup>, and 35  $\mu\text{m}$  (0.92 cm/min)<sup>30</sup>) suggests that the vertical gradient  
205 or advective component of the reactive ion concentrations can be negligible at the low Reynolds  
206 numbers (<<1, i.e., laminar flow) and a diffusion time scale over the micromodel depth in this  
207 study is much smaller than a retention time scale in each pore block. Hence, the difference in the  
208 steady state times among these studies is likely controlled by the flux of reactive species when  
209 the overall pattern of the pore network and solution chemistry are similar. Quantitative

210 comparison of this work with the previous works will be performed in the section of reaction  
211 rates.

212

213 During the precipitation phase, the precipitate area ( $A_{2D}$ ) generally increased downstream due to  
214 the increase of transverse mixing with the travel distance (Figure 2 and Table S2). The change of  
215  $A_{2D}$  in up-, mid-, and down-stream regions reveals that precipitation rapidly occurred for the first  
216 3.1 hr in all regions, and then was followed by slow dissolution in the upstream region, slowed  
217 down with a continuous growth until ~56 hr (followed by slow dissolution) in the midstream  
218 region, and continuously occurred to the end of precipitation phase in the downstream region.  
219 The slightly non-monotonic behavior in the upstream can be attributed to a higher concentration  
220 of reactive products, resulting in fast precipitation leading to a rapid decrease in transverse  
221 mixing. Figure 1c clearly shows the formation of distinct crystal phases between 1.8 and 3.1 hrs  
222 in the upstream region, resulting in the change of local hydrodynamics (see Figure S5 for high  
223 resolution image). In addition, the upper mixing stream in the midstream region at 1.8 hr almost  
224 moved upward to form a new precipitation line at 3.1 hr, while relatively big crystals (all of  
225 calcite) remained. As demonstrated by previous pore-scale modeling<sup>13</sup>, this change can result  
226 from the pore blocking of precipitates upstream, so the transverse mixing in the midstream  
227 region is influenced. The comparison of vertical surface area ( $RSA$ ) with precipitate (horizontal)  
228 area ( $A_{2D}$ ) from 3.1 hr to 75 hr in Figure 2 shows that  $A_{2D}$  tends to slightly decrease upstream,  
229 increase and then decrease midstream, and largely increase downstream.  $RSA$  also followed the  
230 trend of  $A_{2D}$  change, but the rate of change of  $RSA$  (i.e., slope in Figure 2) was higher than that of  
231  $A_{2D}$ , implying that smaller precipitates decrease more rapidly upstream (e.g., location B in Figure  
232 S6 and Figure S10), but new precipitates form downstream to increase both  $A_{2D}$  and  $RSA$   
233 (Figures 1 and S7).

234

### 235 **CaCO<sub>3</sub> Dissolution in Multiple Pores**

236 Following the precipitation phase, the dissolution phase was examined. Most notably, dissolved  
237 CaCO<sub>3</sub> were observed as dark aqueous phase plumes in the upper side of the micromodel (Figure  
238 1b-c). Near the inlet, the plumes of dissolved precipitate formed in direct contact with  
239 precipitates. However, further downstream the plumes appeared in pores without precipitates that  
240 were 2 to 3 pore bodies away from pores with precipitates. As the dissolution continued, CaCO<sub>3</sub>

241 crystals along the central precipitate line completely dissolved, and the plumes were observed  
242 from both sides of the micromodel (e.g., 89 hr of dissolution). During dissolution, the amount of  
243 precipitate areas decreased by ~73-98% over ~142 hrs (Figure 2 & Table S2). The observation of  
244 the dissolved plumes will be further discussed in the pore-scale simulation results.

245

246 For dissolution at 24 hr ( $t=99$  hr in Figure 2), precipitate area ( $A_{2D}$ ) changed differently in three  
247 regions where  $A_{2D}$  decreased by ~23% in the upstream, and slightly increased by 2.4 ~ 4.3% in  
248 the midstream and downstream. The change of reactive surface area ( $RSA$ ) shows that  $RSA$  in the  
249 upstream decreased by ~16%, did not change in the midstream, and increased by 11.1%  
250 downstream over 24 hrs of dissolution (Table S2). The different trend between upstream and  
251 downstream can be explained by correlation between local reactions and hydrodynamics where  
252 dissolved ions in both upper and lower sides of the central precipitate line in the upstream can  
253 produce reactant ions (i.e.,  $HCO_3^-$  and  $Ca^{2+}$ ), resulting in precipitation in the midstream. Then  
254 undersaturated solution in the downstream due to reaction in the midstream may contribute to the  
255 dissolution as well as precipitation indicated by the increase of  $RSA$ . The increase of  $RSA$  in  
256 downstream can be explained by the growth of small precipitates that can contribute to the  $RSA$   
257 increase higher than  $A_{2D}$  change (see Figure S7). For example, a radius of 5  $\mu m$  precipitate can  
258 contribute to the  $RSA$  increase four times higher than  $A_{2D}$  with a conservative assumption of  
259 vertically uniform precipitate profile in depth of the micromodel (5  $\mu m$ ). The impact of local  
260 hydrodynamics on the reaction patterns will be discussed in the pore scale simulation results.  
261 Most of the crystals remained at 89 hr were calcite that was slowly dissolved compared to other  
262 polymorphs (aragonite and ACC) as shown in Raman analysis (Figure S8). The dissolved plume  
263 in the entire upstream region at 89 hr (Figure 1) indicates that all precipitates have been exposed  
264 to fluid flowing (i.e., no vertical pore blocking).

265

## 266 **CaCO<sub>3</sub> Precipitation and Dissolution in Single Pore**

267 To explore how local variations in flow and transport may influence the precipitation patterns  
268 and polymorphs, representative patterns of precipitates were examined in five single pore  
269 locations at different times (Figure 3), and the amount of precipitates and reactive surface areas  
270 at two locations ( $i$  &  $v$ ) were also evaluated. All images were taken along the central mixing line  
271 (Figure 1) where precipitation was confined to and continuous along the central mixing line

272 (location *i*@6 hr), discrete large and small crystals formed (*ii*@6 hr), and individual large  
273 crystal(s) and continuous precipitates formed (*iii*@6 hr and *iv-v*@28 hr). While some large  
274 crystals formed in isolation of the mixing line (location *iv*), others attached to the mixing line (*v*),  
275 possibly due to the initial nucleation or crystal growth locations downstream. Raman spectra  
276 analysis performed during the dissolution phase indicate that the thin continuous precipitate line  
277 in the first pore body (location *i*) could consist of ACC and aragonite, distinctive rhombohedral  
278 shape is calcite, smooth curved boundary shape is predominantly aragonite, and aggregates of  
279 smaller particles are mostly aragonite, but sometimes include calcite (see more examples in  
280 Figure S8).

281

282 In individual pores, the dissolution behavior depends strongly on the local precipitate pattern and  
283  $\text{CaCO}_3$  crystal phase. For the continuous precipitate line near the inlet (*i*@94 hr), a single breach  
284 in the thin precipitate line occurred along with the dissolved precipitate plume after irregular  
285 surfaces of aragonite precipitates were dissolved (e.g., upstream image at 24 hr during the  
286 dissolution phase in Figure 1c). After the breach, flow was likely to bypass the remaining part of  
287 the precipitate, resulting in a relatively slow dissolution of thin ACC. For the cases without a  
288 continuous precipitate line (e.g., *ii*@94 hrs) discrete precipitates including two big aragonite  
289 crystals dissolved relatively fast due to a higher solubility and possibly meta-stable phase of  
290 aragonite. As a result, a large reactive surface area of small precipitates can be dissolved fast  
291 once flow was allowed through the pore body as shown in the image after 24 hrs during the  
292 dissolution phase (e.g., Figure S1 for high resolution image). For a continuous precipitate line  
293 and various sizes and polymorphs of precipitates (locations *iii-v*), most of the small precipitates  
294 were dissolved faster than a big calcite crystal (location *v*), while the dissolution of continuous  
295 precipitate lines was affected by  $\text{CaCO}_3$  polymorph (aragonite in location *iv* and mix of aragonite  
296 and calcite in locations *iii* and *v*) and local hydrodynamics and solution chemistry. Overall, the  
297 evolution and extent of dissolution depends on the initial state of the pore geometry as well as  
298 the local and global evolution in the hydrodynamics as dissolution proceeds.

299

### 300 **Impact of Image Resolution on Quantitative Analysis**

301 The precipitate area ( $A_{2D}$ ) and perimeter of precipitates as the reactive surface area ( $RSA$ ) in the  
302 first pore body (location *i* in Figure 3) were estimated using 2-D images taken at four different

303 resolutions of 0.2, 0.63, 0.31, and 1  $\mu\text{m}$  per pixel during both precipitation phase ( $t=55\text{hr}$ ) and  
304 dissolution phase ( $t=94\text{ hr}$ ) (Figure 4 and Figure S9 for high resolution images). Comparison of  
305  $A_{2D}$  and  $RSA$  analysis (Figure 4) shows that the accuracy of the analysis decreases with  
306 decreasing the image resolution. In particular, the estimates at 1  $\mu\text{m}$  resolution become lower  
307 than those at 0.2  $\mu\text{m}$  resolution significantly. This discrepancy is primarily due to clear image  
308 quality at 0.2 and 0.31  $\mu\text{m}$  resolutions compared to slightly blurred image of precipitates with  
309 slightly thicker shade around the cylinder at 0.63 and 1  $\mu\text{m}$  resolutions (Figure S9). This  
310 comparison clearly highlights the importance of image resolution and quality on the estimation  
311 of reaction rates and  $RSA$  and previous analysis based on the relatively coarse resolution optical  
312 images ( $\sim 2 \mu\text{m}^{14,30}$  and  $\sim 3 \mu\text{m}^{17}$  resolution) would provide qualitative trends instead of accurate  
313 quantitative results. To improve the quantitative analysis of 1  $\mu\text{m}$  resolution images, upscaled  
314 segmented images from 1  $\mu\text{m}$  to 0.2  $\mu\text{m}$  resolution using bicubic interpolation resulted in  
315 increasing the accuracy of precipitate area ( $A_{2D}$ ) significantly and the perimeter of precipitate  
316 ( $RSA$ ) slightly (Figure 4). For all quantitative analysis in this study, we used images at 0.2  $\mu\text{m}$   
317 resolution for the volume and  $RSA$  of precipitates in single pore and the upscaled segmented  
318 image from 1 to 0.2  $\mu\text{m}$  resolution using bicubic interpolation in multiple pores.  
319

### 320 **3-D Estimate of $\text{CaCO}_3$ Reactive Surface Area in Single Pore Images**

321 2-D and 3-D images at 0.2  $\mu\text{m}$  resolution in locations  $i$  &  $v$  were analyzed to estimate the  
322 reactive surface area ( $RSA_{2D}$ ,  $RSA_{3D}$ ) and volume ( $V_{2D}$ ,  $V_{3D}$ ) of precipitates at four different times.  
323 2-D images in two locations ( $i$  &  $v$ ) are shown in Figure 3 and a 3-D vertical profile in location  $i$   
324 is shown in Figure S10. In addition, confocal images taken at the bottom, center, and top of the  
325 micromodel in two locations ( $ii$  &  $v$ ) are shown in Figures S11-S12.  $RSA_{3D}$  was higher than  
326  $RSA_{2D}$  by a factor of  $\sim 1.73$  (ranging from 1.59 to 1.92) and 1.06 (ranging from 1.02 to 1.08) in  
327 locations  $i$  &  $v$ , respectively, while  $V_{2D}$  and  $V_{3D}$  were relatively similar at both locations. The  
328 range of the  $RSA_{3D}/RSA_{2D}$  ratio was within the theoretical surface roughness factor (1-6.13 with  
329 most of them within 2.5) for various rough fracture surface types<sup>20</sup>. The similarity of volume  
330 estimates can attribute to the similarity between 2-D and projected 3-D images (Figure S10)  
331 where the boundary of 2-D image at location  $i$  matches the average of 3-D segmented image  
332 relatively well. Hence, the high resolution 2-D image can be used to estimate the volume or area

333 of precipitates. The higher  $RSA_{3D}$  compared to  $RSA_{2D}$  at location  $i$  is mainly due to the change of  
334 vertical surface roughness as shown in Figure S10. The similarity of  $RSA_{3D}$  to  $RSA_{2D}$  at location  
335  $v$  was mainly due to the presence of a big calcite crystal and a smooth vertical surface of  
336 precipitate line. Crystals tend to grow slowly downstream and a stable form of calcite grows as  
337 shown in Figure 3 (location  $v$ ). It should be noted that as in location  $i$  where a higher geometrical  
338 surface area does not result in a fast dissolution, the overall reaction rate is also strongly affected  
339 by local hydrodynamics and solution chemistry<sup>20, 24</sup>.

340

#### 341 **CaCO<sub>3</sub> Reaction Rates**

342 Although the initial pattern of pore structure was homogeneous, precipitation increased the  
343 complexity of pore structures, resulting in a heterogeneous pore structure with different reactive  
344 surfaces. In previous microfluidic works<sup>14, 30</sup> our new calculation show that overall precipitation  
345 rates were estimated to be  $0.5\sim4\times10^{-11}$  and  $3\sim4\times10^{-11}$  mol/s over the whole micromodel area<sup>14</sup>  
346 and a third of the whole micromodel length<sup>30</sup>, respectively. A similar range of precipitation rates  
347 even with different analysis areas was mainly due to different precipitation patterns used for  
348 analysis, wherein experimental results with only one dominant precipitation line and multiple  
349 precipitation lines were analyzed in Zhang et al.<sup>14</sup> and in Boyd et al.<sup>30</sup>, respectively. This  
350 different precipitation patterns in the micromodel system can be caused by a couple of factors  
351 including local fluctuation of streamline due to the micromodel movement during imaging,  
352 mechanical vibration of pumping system, and the change of local hydrodynamics along the  
353 centerline of micromodel due to precipitates. For the first 3.1 hr the sum of reaction rates in  
354 upstream and midstream regions was calculated as  $3\sim5\times10^{-12}$  mol/s (Table 1) which is  
355 comparable with the value in Boyd et al.<sup>30</sup> by considering the micromodel depth (10 vs. 35  $\mu\text{m}$ )  
356 and flow rates (100 vs. 192  $\mu\text{L}/\text{hr}$ ). Since these two previous micromodel studies did not  
357 compute an effective reactive area, it is not possible to compare these works to other systems.  
358 Here, we demonstrate the significance of realistic reactive surface area on the estimation of  
359 reaction rates in the microfluidic work.

360

361 With the vertical  $RSA$  the estimated precipitation rates ( $I_m$  in Eq. (1), mol/m<sup>2</sup>/s) were  $1.4\sim3.0\times$   
362  $10^{-5}$  at 1.8 hr,  $8.5\sim19\times10^{-6}$  at 3.1 hr, and then  $0.9\sim6.4\times10^{-7}$  until 75 hr except net dissolution  
363 rates upstream and midstream (Table 1). The overall kinetic rate constant ( $k_r$ ) in Eq. (1) has a

364 range of  $\sim 6.6 \times 10^{-7}$ – $5 \times 10^{-6}$  mol/m<sup>2</sup>/s with the literature constant values ( $k_1$ ,  $k_2$ ,  $k_3$ ) (e.g., Chou et  
365 al.<sup>42</sup>) given the experimental conditions (pH = 6–11, total carbonate concentration =  $2 \times 10^{-5}$  –  
366 0.01 M) in this work. A supersaturation ratio (SR=IAP/  $K_{sp}$ ) in Eq. (1) was calculated up to  $\sim 400$   
367 and  $\sim 2.6$  for calcite and ACC, respectively, at the beginning of precipitation phase along the  
368 central mixing line using the pore scale simulation<sup>30</sup>. Thus, the higher precipitation rates at early  
369 times (e.g.,  $1.4$ – $3.0 \times 10^{-5}$  mol/m<sup>2</sup>/s at 1.8 hr) based on image analysis in this work can be  
370 comparable with the product ( $\sim$  an order of  $10^{-5}$ ) of  $k_r$  and (1-SR) based on the literature value  
371 and experimental conditions during the beginning of precipitation phase. This indicates that if  
372 ion concentrations in the active reaction region (i.e., primary precipitation line in this work) can  
373 be accurately estimated at early times before significant pore blocking, the estimation of RSA at  
374 1.8 hr can be considered realistic reactive surface area when the geometrically estimated surface  
375 area are predominantly in contact with reactive fluid.

376

377 The effective precipitation rates decreased more significantly upstream and slightly downstream  
378 at 3.1 hr, compared to those at 1.8 hr (Table 1), reflecting that the change of local hydrodynamics  
379 due to precipitates upstream caused pore blocking along the precipitation line (i.e., no transverse  
380 mixing). As a result, the effective reaction rates ( $I_m$  in Eq. (1)) decreased more upstream than  
381 midstream and downstream over time (Table 1). Comparison of RSA and  $I_m$  at 3.1 hr and 75 hr  
382 shows that the RSA values were within  $\pm 24$  %, but the  $I_m$  value at the downstream region was  
383 lower by approximately two orders of magnitude at 75 hr than at 3.1 hr and even negative (i.e.,  
384 overall dissolution dominant reaction) at the upstream earlier (after 3.1 hr) and midstream later  
385 (after 56.2 hr). This clearly demonstrates that the effective surface area based on the geometrical  
386 estimation is not the actual reactive surface area in contact with reactive fluid. Instead, only a  
387 fraction of sites on the surface is reactive, which would explain slower rate estimation of  $I_m$  and  
388  $R_m$  in this work. This is also related to the impact of local hydrodynamics on reactions. The bulk  
389 flow can bypass the highly precipitate region where dissolution and reprecipitation can occur as  
390 in the Oswalt ripening process. In this regime, a major limiting step would be transport-limited  
391 rather than kinetic-limited.

392

393 With the vertical RSA dissolution rates at t= 24 hr during the dissolution phase were 22.7, –2.9,  
394 and  $-6.8 \times 10^{-8}$  mol/m<sup>2</sup>/s from upstream to downstream (Table 1, Figures 1c and S5 for

395 microscopic images). As discussed previously, the dissolution rates indicated that dissolved  
396 species upstream reprecipitated midstream and downstream (e.g., Figure S7). Here we limit our  
397 discussion to the upstream dissolution rate where we can reasonably assume that dissolution is  
398 predominant. The dissolution rate of  $2.27 \times 10^{-7}$  mol/m<sup>2</sup>/s was higher by an order of magnitude  
399 than the value obtained in other calcite dissolution works (e.g., Molins et al.<sup>21</sup>; Pokrovsky et  
400 al.<sup>46</sup>). In the previous work<sup>21</sup> the discrepancy among column, batch, and simulation results was  
401 explained by a couple of factors including different sources of calcite crystals, rate-limiting  
402 steps, and kinetic rate models. In this work, the estimated RSA at 24 hr during dissolution phase  
403 can represent pore-accessible mineral surface areas well since undersaturated inlet solution can  
404 flow through most of precipitates. Hence, the discrepancy can be attributed to the presence of  
405 CaCO<sub>3</sub> polymorphs at the beginning of dissolution phase that became unstable rapidly, resulting  
406 in a fast dissolution rate. This was highlighted in the image of single pore location *ii* (Figure 3)  
407 where precipitates were aragonite, and once local hydrodynamics swept through the pore body,  
408 all major precipitates were dissolved relatively rapidly. This observation highlights the  
409 importance of the knowledge on highly reactive mineral phases similar to the previous work<sup>19, 24</sup>  
410 where both pore-accessible mineral surface areas and highly reactive mineral phases were  
411 required to match the core flood dissolution experimental results.

412  
413 For individual pores, spatial and temporal variations can be seen more clearly depending on  
414 position and the time (Figure 3). Although the overall precipitate area in location *i* near the inlet  
415 did not change much between 6 hr and 55 hr, the vertical surface area decreased by ~ 21 %,  
416 indicating that the local reaction is dissolution-dominant after pore blocking. During the  
417 dissolution phase, the dissolution rate in the location *i* was  $1.1 \times 10^{-11}$  mol/m<sup>2</sup>/s at 94 hr after  
418 dissolution which was much lower than the dissolution rate of  $4.6 \times 10^{-7}$  mol/m<sup>2</sup>/s at 89 hr in the  
419 upstream multiple pore region. This indicates that dissolution occurs very locally where flow can  
420 pass through easily. The locality of reactions can be seen in other locations. For example, most  
421 of the precipitates in locations *ii-iv* were dissolved at 94 hr during the dissolution phase, while a  
422 big crystal in location *v* grew, resulting in a net precipitation with a rate of  $1.2 \times 10^{-11}$  mol/m<sup>2</sup>/s at  
423 94 hr. Precipitation in location *v* is mainly due to reprecipitation downstream of dissolved  
424 species transported from the upper stream regions. This analysis clearly highlights the feedback  
425 mechanism between reactions and hydrodynamics.

426

427 **Pore-scale Reactive Transport Simulation Results**

428 Simulation results of the distribution of pH, flow velocity field, and super-saturation ratio (SR)  
429 with respect to calcite are shown in Figure 5. Simulations were performed to obtain the spatial  
430 distribution of quantities due to the kinetic reaction in Eq. (1) without updating mineral contents.  
431 An experimental image of precipitate distribution at 24 hr during the dissolution phase is also  
432 shown. The volumetric fraction of precipitates in the experimental image is assumed to be a  
433 unity (i.e., a grid block completely occupied by precipitates) and dissolution reactions are  
434 assumed to occur only at the vertical surface of existing precipitates. To account for the effect of  
435 surface roughness and different polymorphs on dissolution rate, we performed sensitivity  
436 analysis with different reactive vertical surface areas by employing a multiplier of 2 and 100  
437 with the solubility product of calcite (cases 1 and 2) and a multiplier of 100 with the solubility  
438 product of aragonite (case 3). The multiplier of 2 represents the increase of vertical surface area  
439 based on 3-D profile of precipitates upstream (e.g., location  $v$ ), while the multiplier of 100 would  
440 represent the instability of precipitates during the dissolution phase, which was required to match  
441 experimental observations in a similar system in Yoon et al.<sup>13</sup>. In particular, we used three cases  
442 to evaluate what mechanistic processes may contribute to the formation of dissolved plume  
443 above the central precipitate line.

444

445 Comparison of the experimental image and velocity and pH distributions shows that dissolved  
446  $\text{CaCO}_3$  particles transport was constrained with the flow line above the precipitation zones and  
447 along the transition zone of pH values from 7 to  $\sim$ 8. This also shows that the dissolved ions  
448 diffuse away from the mineral surface and then form dark plumes within thermodynamically  
449 favorable pH zone. The newly formed dissolved plume transported along the streamlines slightly  
450 away from the precipitate surface and guided by pH values. Comparison of SR (i.e., dissolved  
451 ion products) distribution in cases 1 and 2 shows that SR values in case 2 are much higher over  
452 larger areas than in case 1, however, both these cases (Figure 5d-e) did not show any significant  
453 dissolved ion concentrations above the precipitation line. Instead SR distribution in case 3 with  
454 aragonite solubility product and a high multiplier of 100 demonstrates that SR values are higher  
455 than cases 1 & 2 and mimic the observed dissolved plume above the precipitate zones (light blue

456 in Figure 5f), demonstrating that both  $\text{CaCO}_3$  phase and reactivity expressed as the multiplier of  
457 100 are key factors to reproduce the experimental observation.

458

459 Cases 1-2 clearly show non-reactive regions below the precipitate line due to no contact between  
460 flowing fluid and minerals and these non-reactive regions are much smaller in Case 3 due to  
461 higher diffusion of higher dissolved concentrations driven by higher reaction rates. This clearly  
462 indicates that geometrically estimated reactive surface area can misrepresent actual reactive area  
463 without the knowledge of local hydrodynamics<sup>23, 24</sup>. It is also noted that the diffusion dominant  
464 region between the central precipitate line and centerline of the micromodel did not show  
465 dissolved plume clearly in Figure 1a. This can be explained by the fact that dissolved ions in  
466 these regions would tend to move toward favorable precipitate surfaces instead of flow through  
467 the streamlines which is shown in the first few pore bodies along the center of the micromodel.  
468 In this work the experimental observation highlights that the dissolved plume acts as reactive  
469 tracer showing the coupled effect of reactive transport with hydrodynamics.

470

## 471 **IMPLICATIONS**

472 Ultimately, the evolution of  $\text{CaCO}_3$  precipitate patterns in the whole micromodel is significantly  
473 influenced by the local variations in precipitation and dissolution. Spatially and temporally  
474 averaged reaction rates are likely to be poor estimators of the local reaction rates early during  
475 precipitation and late during dissolution. At such times, the flow complexity may be high,  
476 inducing the formation of rough mineral surfaces and 3-D effects on the evolution of reactive  
477 flow and transport. 2-D expressions for reaction rate that are commonly found in many pore-  
478 scale models may oversimplify the reactivity during these complex flow situations and be poor-  
479 estimators of their behavior. Recent pore scale reactive transport works<sup>8</sup> including this work  
480 demonstrate that pore-scale analysis of evolving precipitates' patterns can reveal (1) the  
481 significance of structural and chemical control of fluid migration and cementation and (2)  
482 permeability and porosity relationships for various flow and reaction regimes.

483

484 Recent multiscale image analysis combined with dissolution experimental work shows that the  
485 knowledge on both pore-accessible mineral surface areas and highly reactive mineral phases are  
486 required to match the core flood experimental results<sup>24</sup>. In particular, several recent studies<sup>23-25</sup>

487 emphasize that the effective surface area in contact with reactive fluid is important to properly  
488 account for the impact of mineral geometries and local hydrodynamics on the relationship  
489 between reactive surface areas and bulk reaction rates. Although our work used a clean  
490 micromodel with the formation of ACC which posed a problem to quantitatively estimate the  
491 precipitation rate at early times, the microfluidic device with controlled mineral surfaces (e.g.,  
492 calcite chip) would overcome this limitation to study an effective reaction rate in a controlled  
493 hydrodynamic system.

494

#### 495 **Acknowledgments**

496 This work was supported as part of the Center for Frontiers of Subsurface Energy Security, an  
497 Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science,  
498 Office of Basic Energy Sciences under Award Number DE-SC0001114. We thank Prof. Charles  
499 J. Werth for providing the micromodel and Dr. Kyle Michelson for Raman analysis. This paper  
500 describes objective technical results and analysis. Any subjective views or opinions that might be  
501 expressed in the paper do not necessarily represent the views of the U.S. Department of Energy  
502 or the United States Government. Sandia National Laboratories is a multimission laboratory  
503 managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a  
504 wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's  
505 National Nuclear Security Administration under contract DE-NA-0003525.

506

#### 507 **Supporting Information**

508 There are supplemental figures for high resolution images and tables for additional image  
509 analysis.

510      **Literature Cited**

511

512      1.      Li, L.; Maher, K.; Navarre-Sitchler, A.; Druhan, J.; Meile, C.; Lawrence, C.; Moore, J.;  
513      Perdrial, J.; Sullivan, P.; Thompson, A., Expanding the role of reactive transport models in  
514      critical zone processes. *Earth-Science Reviews* **2017**, *165*, 280-301.

515      2.      Yoon, H.; Kang, Q.; Valocchi, A. J., Lattice Boltzmann-based approaches for pore-scale  
516      reactive transport. *Reviews in mineralogy geochemistry* **2015**, *80*, 393-431.

517      3.      Steefel, C. I.; Emmanuel, S.; Anovitz, L. M., *Pore-scale geochemical processes*.  
518      Mineralogical Society of America: 2015.

519      4.      Altman, S. J.; Aminzadeh, B.; Balhoff, M. T.; Bennett, P. C.; Bryant, S. L.; Cardenas, M.  
520      B.; Chaudhary, K.; Cygan, R. T.; Deng, W.; Dewers, T., Chemical and hydrodynamic  
521      mechanisms for long-term geological carbon storage. *The Journal of Physical Chemistry C*  
522      **2014**, *118*, (28), 15103-15113.

523      5.      Steefel, C.; Appelo, C.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.;  
524      Lichtner, P.; Mayer, K. U.; Meeussen, J., Reactive transport codes for subsurface  
525      environmental simulation. *Computational Geosciences* **2015**, *19*, (3), 445-478.

526      6.      Soulaine, C.; Roman, S.; Kovscek, A.; Tchelepi, H. A., Mineral dissolution and  
527      wormholing from a pore-scale perspective. *Journal of Fluid Mechanics* **2017**, *827*, 457-483.

528      7.      Szymczak, P.; Ladd, A. J., Reactive-infiltration instabilities in rocks. Fracture  
529      dissolution. *Journal of Fluid Mechanics* **2012**, *702*, 239-264.

530      8.      Yoon, H.; Major, J.; Dewers, T.; Eichhubl, P., Application of a pore-scale reactive  
531      transport model to a natural analog for reaction-induced pore alterations. *Journal of*  
532      *Petroleum Science Engineering* **2017**, *155*, 11-20.

533      9.      De Yoreo, J. J.; Vekilov, P., Principles of crystal nucleation and growth. *Reviews in*  
534      *mineralogy geochemistry* **2003**, *54*, 57-93.

535      10.      Stack, A. G.; Grantham, M. C., Growth rate of calcite steps as a function of aqueous  
536      calcium-to-carbonate ratio: independent attachment and detachment of calcium and  
537      carbonate ions. *J Crystal Growth* **2010**, *10*, (3), 1409-1413.

538      11.      Teng, H. H.; Dove, P. M.; De Yoreo, J. J., Kinetics of calcite growth: surface processes  
539      and relationships to macroscopic rate laws. *Geochimica et Cosmochimica Acta* **2000**, *64*,  
540      (13), 2255-2266.

541      12.      Singh, R.; Yoon, H.; Sanford, R. A.; Katz, L.; Fouke, B. W.; Werth, C. J., Metabolism-  
542      induced CaCO<sub>3</sub> biomineralization during reactive transport in a micromodel: Implications  
543      for porosity alteration. *Environmental science & technology* **2015**, *49*, (20), 12094-12104.

544      13.      Yoon, H.; Valocchi, A. J.; Werth, C. J.; Dewers, T., Pore-scale simulation of mixing-  
545      induced calcium carbonate precipitation and dissolution in a microfluidic pore network.  
546      *Water Resources Research* **2012**, *48*, (2).

547      14.      Zhang, C.; Dehoff, K.; Hess, N.; Oostrom, M.; Wietsma, T. W.; Valocchi, A. J.; Fouke, B.  
548      W.; Werth, C. J., Pore-scale study of transverse mixing induced CaCO<sub>3</sub> precipitation and  
549      permeability reduction in a model subsurface sedimentary system. *Environmental science &*  
550      *technology* **2010**, *44*, (20), 7833-7838.

551      15.      Gouze, P.; Noiriel, C.; Bruderer, C.; Loggia, D.; Leprovost, R., X-ray tomography  
552      characterization of fracture surfaces during dissolution. *Geophysical Research Letters* **2003**,  
553      *30*, (5).

554 16. Noiriel, C.; Gouze, P.; Bernard, D., Investigation of porosity and permeability effects  
555 from microstructure changes during limestone dissolution. *Geophysical research letters*  
556 **2004**, *31*, (24).

557 17. Noiriel, C.; Steefel, C. I.; Yang, L.; Bernard, D., Effects of pore-scale precipitation on  
558 permeability and flow. *Advances in water resources* **2016**, *95*, 125-137.

559 18. Gao, J.; Xing, H.; Tian, Z.; Pearce, J. K.; Sedek, M.; Golding, S. D.; Rudolph, V., Reactive  
560 transport in porous media for CO<sub>2</sub> sequestration: Pore scale modeling using the lattice  
561 Boltzmann method. *Computers & Geosciences* **2017**, *98*, 9-20.

562 19. Beckingham, L. E.; Mitnick, E. H.; Steefel, C. I.; Zhang, S.; Voltolini, M.; Swift, A. M.;  
563 Yang, L.; Cole, D. R.; Sheets, J. M.; Ajo-Franklin, J. B., Evaluation of mineral reactive surface  
564 area estimates for prediction of reactivity of a multi-mineral sediment. *Geochimica et  
565 Cosmochimica Acta* **2016**, *188*, 310-329.

566 20. Deng, H.; Molins, S.; Trebotich, D.; Steefel, C.; DePaolo, D., Pore-scale numerical  
567 investigation of the impacts of surface roughness: Upscaling of reaction rates in rough  
568 fractures. *Geochimica et Cosmochimica Acta* **2018**, *239*, 374-389.

569 21. Molins, S.; Trebotich, D.; Yang, L.; Ajo-Franklin, J. B.; Ligocki, T. J.; Shen, C.; Steefel, C.  
570 I.; technology, Pore-scale controls on calcite dissolution rates from flow-through laboratory  
571 and numerical experiments. *Environmental science & technology* **2014**, *48*, (13), 7453-7460.

572 22. Wen, H.; Li, L., An upscaled rate law for mineral dissolution in heterogeneous media:  
573 The role of time and length scales. *Geochimica et Cosmochimica Acta* **2018**, *235*, 1-20.

574 23. Salehikhoo, F.; Li, L., The role of magnesite spatial distribution patterns in  
575 determining dissolution rates: When do they matter? *Geochimica et Cosmochimica Acta*  
576 **2015**, *155*, 107-121.

577 24. Beckingham, L. E.; Steefel, C. I.; Swift, A. M.; Voltolini, M.; Yang, L.; Anovitz, L. M.;  
578 Sheets, J. M.; Cole, D. R.; Kneafsey, T. J.; Mitnick, E. H., Evaluation of accessible mineral  
579 surface areas for improved prediction of mineral reaction rates in porous media.  
580 *Geochimica et Cosmochimica Acta* **2017**, *205*, 31-49.

581 25. de Assis, T. A.; Reis, F. D. A. A., Dissolution of minerals with rough surfaces.  
582 *Geochimica et Cosmochimica Acta* **2018**, *228*, 27-41.

583 26. Liu, J.; Pancera, S.; Boyko, V.; Shukla, A.; Narayanan, T.; Huber, K., Evaluation of the  
584 particle growth of amorphous calcium carbonate in water by means of the porod invariant  
585 from SAXS. *Langmuir* **2010**, *26*, (22), 17405-17412.

586 27. Ogino, T.; Suzuki, T.; Sawada, K., The formation and transformation mechanism of  
587 calcium carbonate in water. *Geochimica et Cosmochimica Acta* **1987**, *51*, (10), 2757-2767.

588 28. Pouget, E. M.; Bomans, P. H. H.; Goos, J. A. C. M.; Frederik, P. M.; Sommerdijk, N. A. J.  
589 M., The initial stages of template-controlled CaCO<sub>3</sub> formation revealed by cryo-TEM.  
590 *Science* **2009**, *323*, (5920), 1455-1458.

591 29. Rieger, J.; Frechen, T.; Cox, G.; Heckmann, W.; Schmidt, C.; Thieme, J., Precursor  
592 structures in the crystallization/precipitation processes of CaCO<sub>3</sub> and control of particle  
593 formation by polyelectrolytes. *Faraday discussions* **2007**, *136*, 265-277.

594 30. Boyd, V.; Yoon, H.; Zhang, C.; Oostrom, M.; Hess, N.; Fouke, B.; Valocchi, A. J.; Werth,  
595 C., Influence of Mg<sup>2+</sup> on CaCO<sub>3</sub> precipitation during subsurface reactive transport in a  
596 homogeneous silicon-etched pore network. *Geochimica et Cosmochimica Acta* **2014**, *135*,  
597 321-335.

598 31. Fanizza, M. F.; Yoon, H.; Zhang, C.; Oostrom, M.; Wietsma, T. W.; Hess, N. J.; Bowden,  
599 M. E.; Strathmann, T. J.; Finneran, K. T.; Werth, C. J., Pore-scale evaluation of uranyl

600 phosphate precipitation in a model groundwater system. *Water Resources Research* **2013**,  
601 49, (2), 874-890.

602 32. Yoon, H.; Leibeling, S.; Zhang, C.; Müller, R. H.; Werth, C. J.; Zilles, J. L., Adaptation of  
603 *Delftia acidovorans* for degradation of 2, 4-dichlorophenoxyacetate in a microfluidic porous  
604 medium. *Biodegradation* **2014**, 25, (4), 595-604.

605 33. Tartakovsky, A. M.; Redden, G.; Lichtner, P. C.; Scheibe, T. D.; Meakin, P., Mixing-  
606 induced precipitation: Experimental study and multiscale numerical analysis. *Water  
607 Resources Research* **2008**, 44, (6).

608 34. Willingham, T. W.; Werth, C. J.; Valocchi, A. J., Evaluation of the effects of porous  
609 media structure on mixing-controlled reactions using pore-scale modeling and micromodel  
610 experiments. *Environmental science & technology* **2008**, 42, (9), 3185-3193.

611 35. Chomsurin, C.; Werth, C. J., Analysis of pore-scale nonaqueous phase liquid  
612 dissolution in etched silicon pore networks. *Water resources research* **2003**, 39, (9).

613 36. Park, J. S.; Choi, C. K.; Kihm, K. D., Optically sliced micro-PIV using confocal laser  
614 scanning microscopy (CLSM). *Experiments in Fluids* **2004**, 37, (1), 105-119.

615 37. Lima, R.; Wada, S.; Tsubota, K.-i.; Yamaguchi, T., Confocal micro-PIV measurements  
616 of three-dimensional profiles of cell suspension flow in a square microchannel.  
617 *Measurement Science and Technology* **2006**, 17, (4), 797.

618 38. Nehrke, G.; Poigner, H.; Wilhelms-Dick, D.; Brey, T.; Abele, D., Coexistence of three  
619 calcium carbonate polymorphs in the shell of the Antarctic clam *Laternula elliptica*.  
620 *Geochemistry, Geophysics, Geosystems* **2012**, 13, (5), Q05014.

621 39. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.;  
622 Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B., Fiji: an open-source platform for biological-  
623 image analysis. *Nature methods* **2012**, 9, (7), 676.

624 40. Bolte, S.; Cordelieres, F. P., A guided tour into subcellular colocalization analysis in  
625 light microscopy. *Journal of microscopy* **2006**, 224, (3), 213-232.

626 41. Palabos Parallel lattice Boltzmann solver. [www.palabos.org](http://www.palabos.org)

627 42. Chou, L. E. I.; Garrels, R. M.; Wollast, R., Comparative study of the kinetics and  
628 mechanisms of dissolution of carbonate minerals. *Chemical geology* **1989**, 78, (3-4), 269-  
629 282.

630 43. Davison, S. M.; Yoon, H.; Martinez, M. J., Pore scale analysis of the impact of mixing-  
631 induced reaction dependent viscosity variations. *Advances in water resources* **2012**, 38, 70-  
632 80.

633 44. Herrera, P. A.; Cortínez, J. M.; Valocchi, A. J., Lagrangian scheme to model subgrid-  
634 scale mixing and spreading in heterogeneous porous media. *Water Resources Research*  
635 **2017**, 53, (4), 3302-3318.

636 45. Rubin, Y.; Sun, A.; Maxwell, R.; Bellin, A., The concept of block-effective  
637 macrodispersivity and a unified approach for grid-scale-and plume-scale-dependent  
638 transport. *Journal of Fluid Mechanics* **1999**, 395, 161-180.

639 46. Pokrovsky, O. S.; Golubev, S. V.; Schott, J.; Castillo, A., Calcite, dolomite and magnesite  
640 dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 C and 1 to  
641 55 atm pCO<sub>2</sub>: New constraints on CO<sub>2</sub> sequestration in sedimentary basins. *Chemical  
642 geology* **2009**, 265, (1-2), 20-32.

643

644

645

646 List of Figures

647

648 Figure 1. (a-b) 2-D microscopic images of precipitates at 1  $\mu\text{m}$  resolution in the micromodel during  
649 the precipitation phase ( $t=75$  hr, top) and the dissolution phase ( $t=89$  hr, bottom). Three different  
650 locations of multiple pores (upstream, midstream, and downstream) and five different single pore  
651 locations ( $i-v$ ) are shown. The central line of the micromodel is shown with a dashed red line. See  
652 Figure S2 for high resolution images. (c) Change of precipitate patterns in multiple pores at  
653 selected times. See Figure S5 for high resolution images.

654

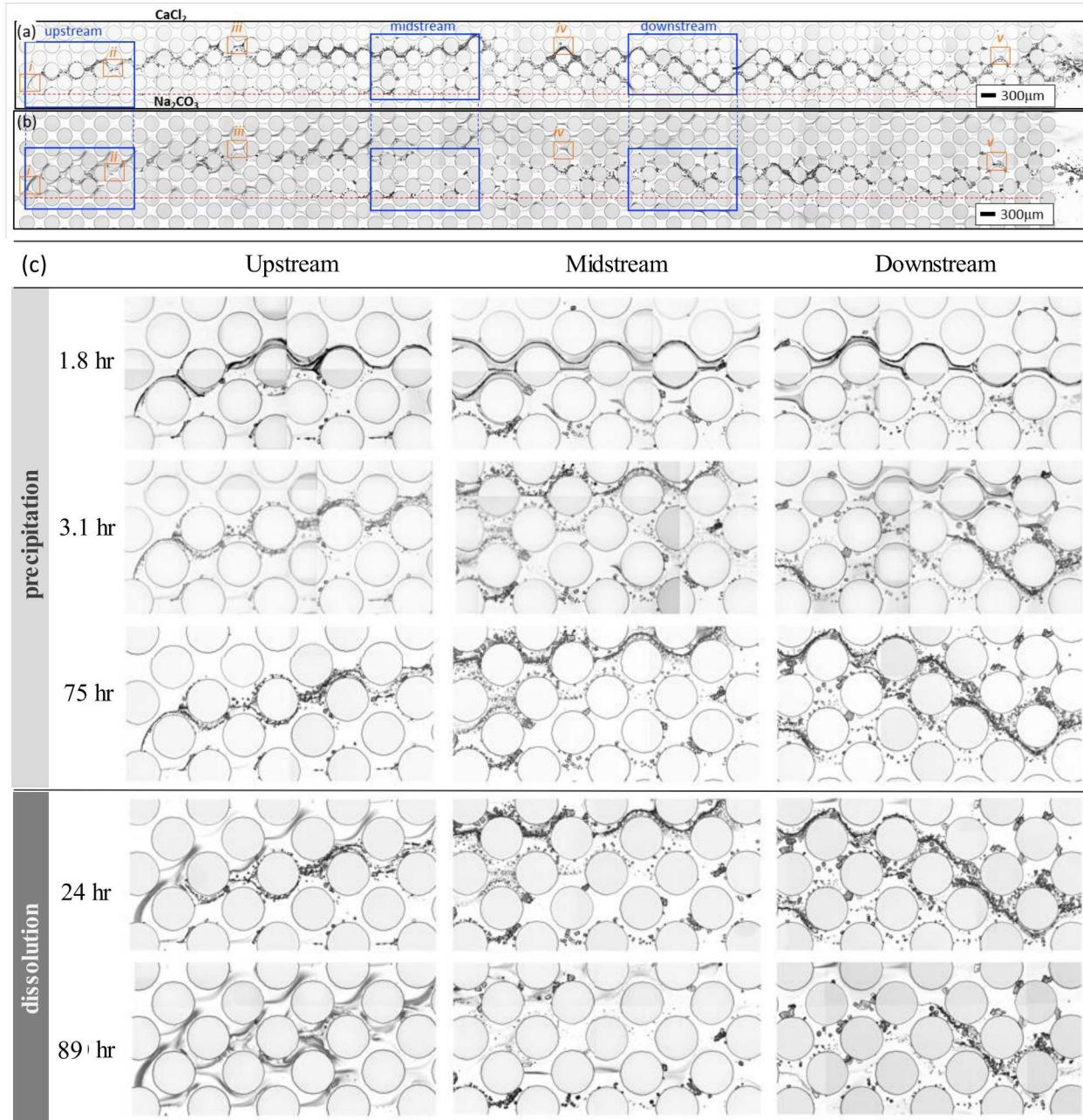
655

656 Figure 2. Change of precipitate area ( $A_{2D}$ ) and reactive surface area ( $RSA$ ) over time in three  
657 multiple pore regions.

658

659 Figure 3. Change of precipitate patterns in single pores at five different locations ( $i-v$ ). Locations  
660 are shown in Figure 1 and images were taken at 0.20  $\mu\text{m}/\text{pixel}$ .

661


662 Figure 4. Comparison of the precipitate area ( $A_{2D}$ ) and the reactive surface area ( $RSA$ ) in the first  
663 pore (location  $a$ ) at four different resolutions (0.2, 0.63, 0.31, and 1  $\mu\text{m}$  per pixel) during the  
664 precipitation phase ( $t=55$  hr) and dissolution phase ( $t=94$  hr). All estimates are normalized to the  
665 estimated areas using 0.2  $\mu\text{m}$  resolution images. Results at 1  $\mu\text{m}$  resolution within a circle were  
666 estimated with the interpolated images at 0.2  $\mu\text{m}$  resolution from 1  $\mu\text{m}$  resolution images using  
667 bicubic interpolation. Figure S9 for high resolution images.

668

669 Figure 5. (a) An experimental image of precipitate distribution at 24 hr during the dissolution  
670 phase and (b-f) simulation results of the distribution of pH, flow velocity field, and super-  
671 saturation ratio (SR) with respect to calcite.

672

673



675

676

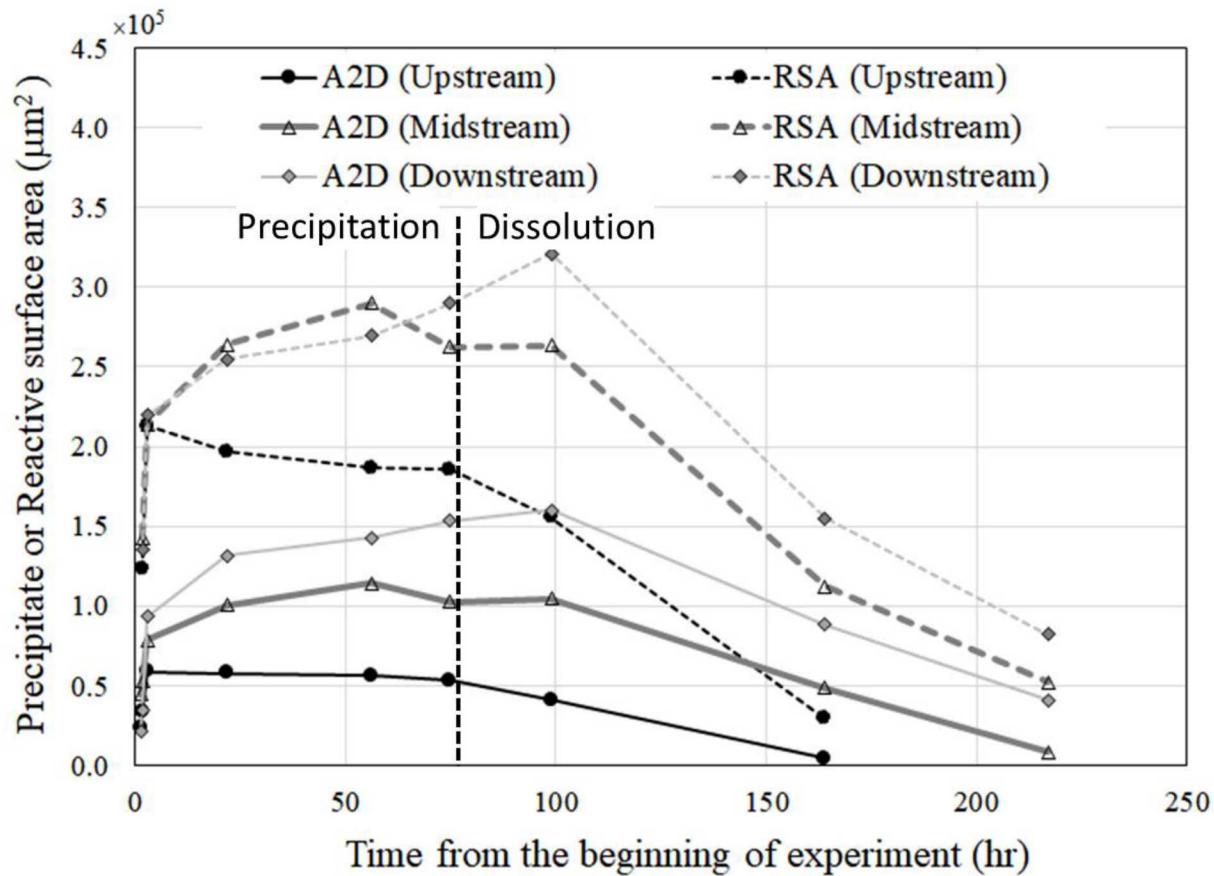
677

678

679

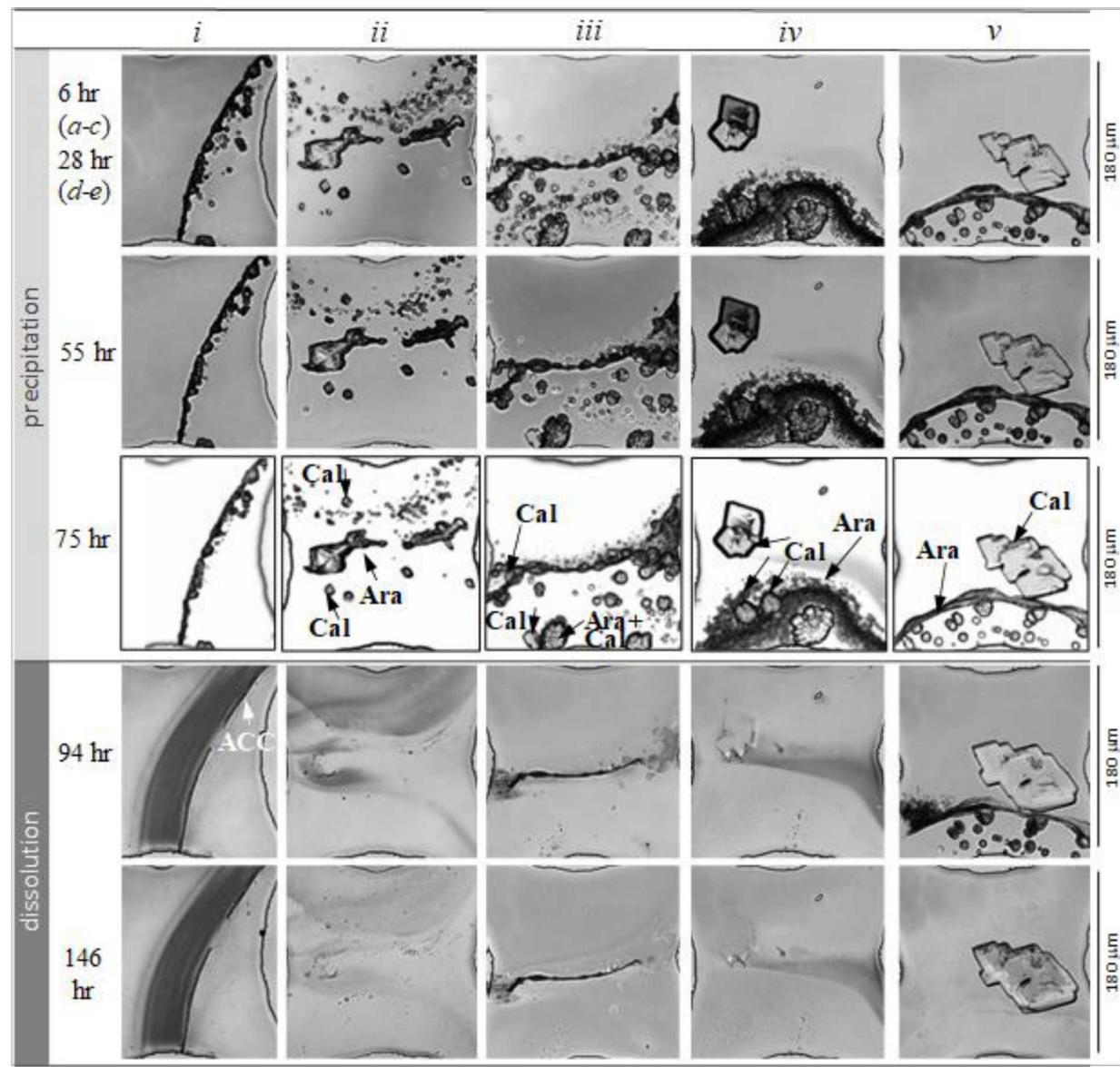
680

681


682

683

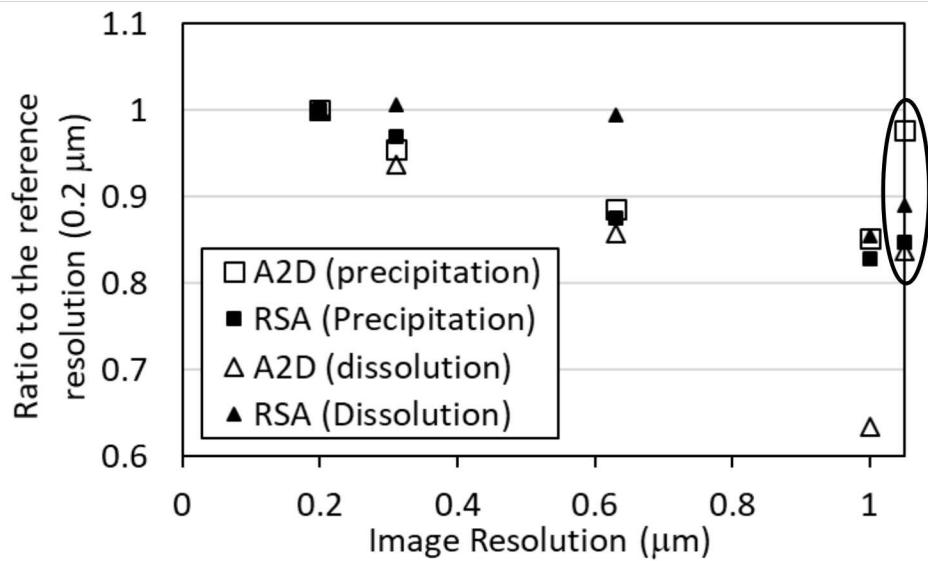
684


Figure 1. (a-b) 2-D microscopic images of precipitates at 1  $\mu\text{m}$  resolution in the micromodel during the precipitation phase ( $t=75$  hr, top) and the dissolution phase ( $t=89$  hr, bottom). Three different locations of multiple pores (upstream, midstream, and downstream) and five different single pore locations (a-e) are shown. The central line of the micromodel is shown with a dashed red line. See Figure S2 for high resolution images. (c) Change of precipitate patterns in multiple pores at selected times. See Figure S5 for high resolution images.

685  
686  
687



688  
689  
690  
691 Figure 2. Change of precipitate area ( $A_{2D}$ ) and reactive surface area (RSA) over time in three  
692 multiple pore regions.  
693  
694  
695

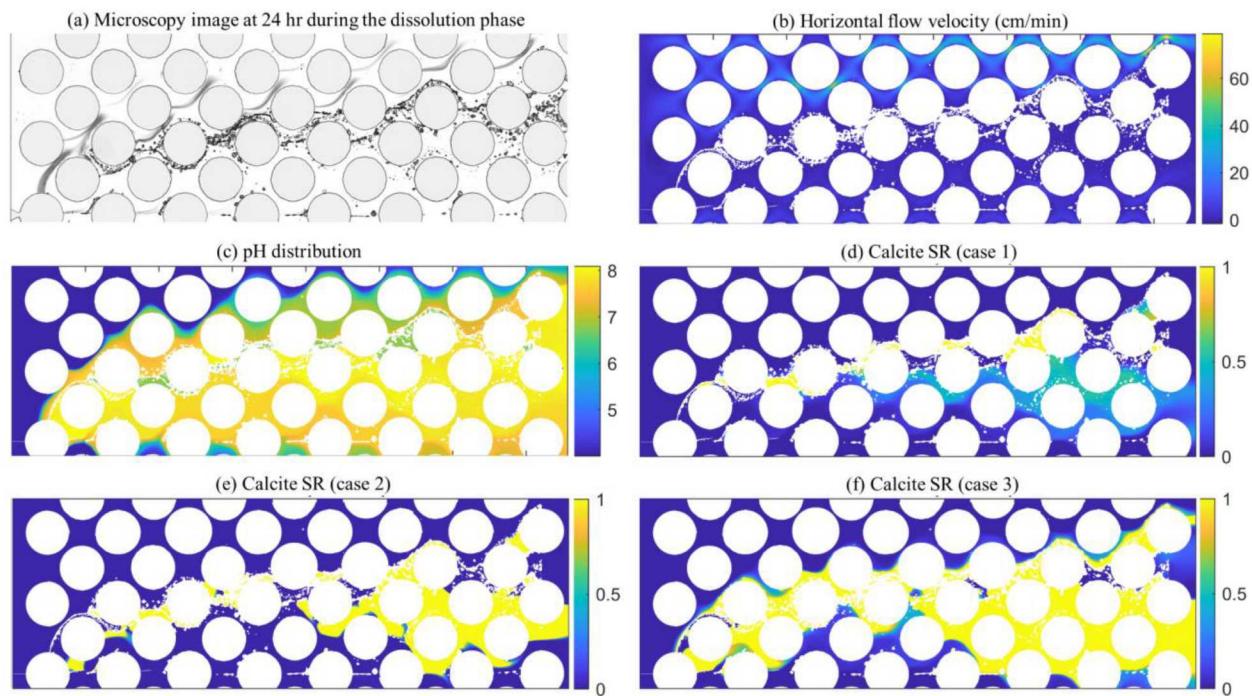

696  
697  
698  
699



700  
701  
702  
703  
704  
705

Figure 3. Change of precipitate patterns in single pores at five different locations (i-v). Locations are shown in Figure 1 and images were taken at 0.20  $\mu\text{m}/\text{pixel}$ .

706  
707  
708




709  
710

711 Figure 4. Comparison of the precipitate area ( $A_{2D}$ ) and the reactive surface area ( $RSA$ ) in the first  
712 pore (location *a*) at four different resolutions (0.2, 0.63, 0.31, and 1  $\mu\text{m}$  per pixel) during the  
713 precipitation phase ( $t=55\text{hr}$ ) and dissolution phase ( $t=94\text{ hr}$ ). All estimates are normalized to the  
714 estimated areas using 0.2  $\mu\text{m}$  resolution images. Results at 1  $\mu\text{m}$  resolution within a circle were  
715 estimated with the interpolated images at 0.2  $\mu\text{m}$  resolution from 1  $\mu\text{m}$  resolution images using  
716 bicubic interpolation. Figure S6 for high resolution images.

717  
718  
719

720  
721



722  
723  
724  
725  
726  
727

Figure 5. (a) An experimental image of precipitate distribution at 24 hr during the dissolution phase and (b-f) simulation results of the distribution of pH, flow velocity field, and super-saturation ratio (SR) with respect to calcite.

728 Table 1. Precipitate surface area ( $A_{2D}$ ), overall reaction rate, reactive surface area ( $RSA$ ), and  
729 effective reaction rate for multiple pore regions during precipitation (gray) and dissolution  
730 phases (white).

731  
732

| Time* | Overall reaction rate (mol/s) |          |           | Effective reaction rate (mol/m <sup>2</sup> /s) |          |           |            |
|-------|-------------------------------|----------|-----------|-------------------------------------------------|----------|-----------|------------|
|       | (hr)                          | upstream | midstream | Downstream                                      | upstream | midstream | downstream |
| 1.5   |                               | 1.2E-12  | 2.2E-12   | 1.1E-12                                         | 3.0E-05  | 2.8E-05   | 2.4E-05    |
| 1.8   |                               | 2.6E-12  | 2.1E-12   | 3.3E-12                                         | 2.6E-05  | 1.4E-05   | 3.0E-05    |
| 3.1   |                               | 1.5E-12  | 1.5E-12   | 3.4E-12                                         | 8.9E-06  | 8.5E-06   | 1.9E-05    |
| 22    |                               | -3.7E-15 | 8.8E-14   | 1.5E-13                                         | -1.8E-08 | 3.7E-07   | 6.4E-07    |
| 56.2  |                               | -3.5E-15 | 3.0E-14   | 2.5E-14                                         | -1.8E-08 | 1.1E-07   | 9.4E-08    |
| 75    |                               | -1.2E-14 | -4.7E-14  | 4.3E-14                                         | -6.5E-08 | -1.7E-07  | 1.5E-07    |
| 99    |                               | -3.9E-14 | 7.7E-15   | 2.1E-14                                         | -2.3E-07 | 2.9E-08   | 6.8E-08    |
| 164   |                               | -4.3E-14 | -6.5E-14  | -8.3E-14                                        | -4.6E-07 | -3.5E-07  | -3.5E-07   |
| 217   |                               |          | -5.7E-14  | -6.8E-14                                        |          | -6.9E-07  | -5.7E-07   |

733 \* dt in Eq. (1) is the time interval of each image from the previous time step (i.e., the time  
734 difference between two images).

**Supporting Information for**  
**Pore-scale analysis of calcium carbonate precipitation and dissolution kinetics in a**  
**microfluidic device**

**Hongkyu Yoon<sup>1,\*</sup>, Kirsten N. Chojnicki<sup>1</sup>, and Mario J. Martinez<sup>2</sup>**

<sup>1</sup>Geoscience Research and Applications, Sandia National Laboratories, Albuquerque, NM, USA

<sup>2</sup>Fluid and Reactive Processes Department, Engineering Sciences, Sandia National Laboratories, Albuquerque, NM, USA

\* Corresponding author (hyoon@sandia.gov)

The supporting information includes:

Section S1. Raman Spectroscopy

References

List of Supplementary Figures S1-S12

Figure S1. Schematic of micromodel with pore network dimension and inlet conditions

Figure S2. 2-D microscopic images of precipitates in the micromodel during (a) the precipitation phase ( $t=75$  h) and (b) the dissolution phase ( $t=89$  h). Three different locations of multiple pores (upstream, midstream, and downstream) and five different single pore locations (*i-v*) are shown. The central line of the micromodel is shown with a dashed red line. See Figure 1a-b for the description in the main text. High resolution image (1  $\mu\text{m}$  resolution) is downloadable as a separate file.

Figure S3. High resolution 2-D microscopic images of precipitates in the micromodel during (a) the precipitation phase ( $t=75$  h) and (b) the dissolution phase ( $t=89$  h).

Figure S4. An example of image segmentation procedure.

Figure S5. High resolution images of change of precipitate patterns in multiple pores at selected times. The three different locations (upstream, midstream, and downstream) are shown in Figure 1a-b & Figure S2. High resolution image is downloadable as a separate file.

Figure S6. Comparison of precipitates at two different locations in the upstream region. The precipitates in the first two pores (location A) do not change notably (within 1-2 % difference) between 3.1 h and 22 h, but in location B small particles at 3.1 h in the upper pore body dissolved at 22 h. This happens during the precipitation phase because the precipitate line blocks the transverse mixing, resulting in undersaturated conditions in both upper and lower regions.

Figure S7. Comparison of precipitate sizes at the end of precipitation phase ( $t = 75$  h) and during dissolution phase ( $t = 99$  h) in the downstream region. Image is taken from the bottom part of the downstream region where the dissolved components transported from the upstream reprecipitate onto the existing precipitate particles. Note that there is one new small crystal formed at the bottom of the middle pore at  $t = 99$  h.

Figure S8. Raman spectra of the precipitates at different locations. Microscopic images of crystals are also shown. Amorphous calcium carbonate (upper left) does not have distinct peaks corresponding to the reference Raman spectra of other calcium carbonate polymorphs. Calcite and aragonite have been detected predominantly.

Figure S9. High resolution images of the precipitate area ( $A_{2D}$ ) and the reactive surface area ( $RSA$ ) in the first pore (location  $i$ ) at four different resolutions (0.2, 0.63, 0.31, and 1  $\mu\text{m}$  per pixel) during the precipitation phase ( $t=55$  h) and dissolution phase ( $t=94$  h). See Figure 4 in the main text for discussion.

Figure S10. Comparison of 2-D image, average of 3-D segmented image stack, and 3-D profile of precipitates in location  $i$  during the precipitation phase ( $t=75$  h, top) and during the dissolution phase ( $t=94$  h, bottom). The 3-D profile is exaggerated vertically twice.

Figure S11. Individual image slice of 3D confocal image stacks on the surface of micromodel (left), at the center of depth (middle), and near the glass cover (right) in location  $ii$  at four different times.

Figure S12. Individual image slice of 3D confocal image stacks on the surface of micromodel (left), at the center of depth (middle), and near the glass cover (right) in location  $v$  at four different times.

Supplementary Table S1. Confocal imaging parameters at three different resolutions

Supplementary Table S2. Precipitate surface area ( $A_{2D}$ ) and reactive surface area ( $RSA$ ) in the multiple pores.

Other supporting information of high resolution images includes:

Figure S2-high resolution image.pptx

Figure S5-high resolution image.pptx

## Section S1. Raman Spectroscopy

Following Boyd et al. (2014), backscattering Raman spectroscopy with the Horiba LabRAM HR Evolution confocal Raman system was used to characterize the polymorphs of  $\text{CaCO}_3$  precipitates. Raman spectra were taken over a range of 0 and  $1200 \text{ cm}^{-1}$  using a 532 nm diode-pumped solid-state laser. Raman spectra of  $\text{CaCO}_3$  polymorphs were obtained over a range of acquisition times from 10s to 30s to increase a signal to noise with adjusting a laser power level. Carbonate polymorphs were determined by comparing the Raman spectra to reference spectra from Nehrke et al. (2012). Briefly, calcite has the spectra peaks at 155, 282, 711, and  $1085 \text{ cm}^{-1}$ , aragonite at 155, 206, 705, and  $1085 \text{ cm}^{-1}$ , and vaterite at 105, 114, 267, 300, 740, 750, 1075, and  $1090 \text{ cm}^{-1}$ . The peaks at  $\sim 520 \text{ cm}^{-1}$  and the shoulders at  $\sim 920 \text{ cm}^{-1}$  correspond to the silicon surface of the micromodel. In the current experimental work, vaterite was not observed. But in our other similar testing, vaterite was observed near the inlet where precipitation occurred very rapidly. Raman spectra with microscopic images are presented in Figure SX. Since Raman spectra was measured as a point measurement, different  $\text{CaCO}_3$  polymorphs within the micromodel was analyzed selectively. Hence, there is no quantitative analysis done over the entire period. However, it is possible to infer the polymorphs based on morphology and locations (i.e., different local chemical conditions) as in Boyd et al (2014).

## References

Boyd, V.; Yoon, H.; Zhang, C.; Oostrom, M.; Hess, N.; Fouke, B.; Valocchi, A. J.; Werth, C., Influence of  $\text{Mg}^{2+}$  on  $\text{CaCO}_3$  precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network. *Geochimica et Cosmochimica Acta* 2014, 135, 321-335.

Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T. and Abele, D., Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam *Laternula elliptica*. *Geochemistry, Geophysics, Geosystems* 2012, 13(5), Q05014, doi:10.1029/2011GC003996.

## Supplemental Figures

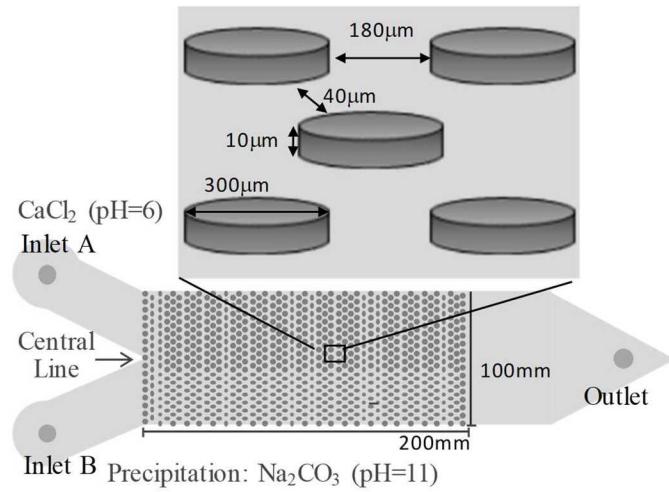



Figure S1. Schematic of micromodel with pore network dimension and inlet conditions

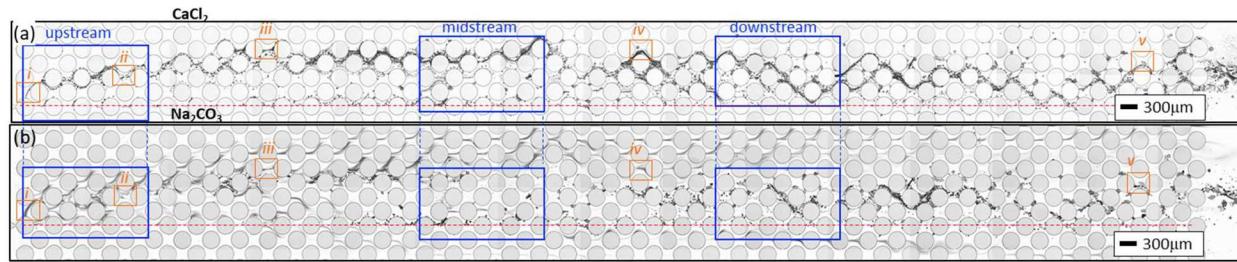



Figure S2. 2-D microscopic images of precipitates in the micromodel during (a) the precipitation phase ( $t=75$  h) and (b) the dissolution phase ( $t=89$  h). Three different locations of multiple pores (upstream, midstream, and downstream) and five different single pore locations ( $i-v$ ) are shown. The central line of the micromodel is shown with a dashed red line. See Figure 1a-b for the description in the main text. High resolution image (1  $\mu\text{m}$  resolution) is downloadable as a separate file.

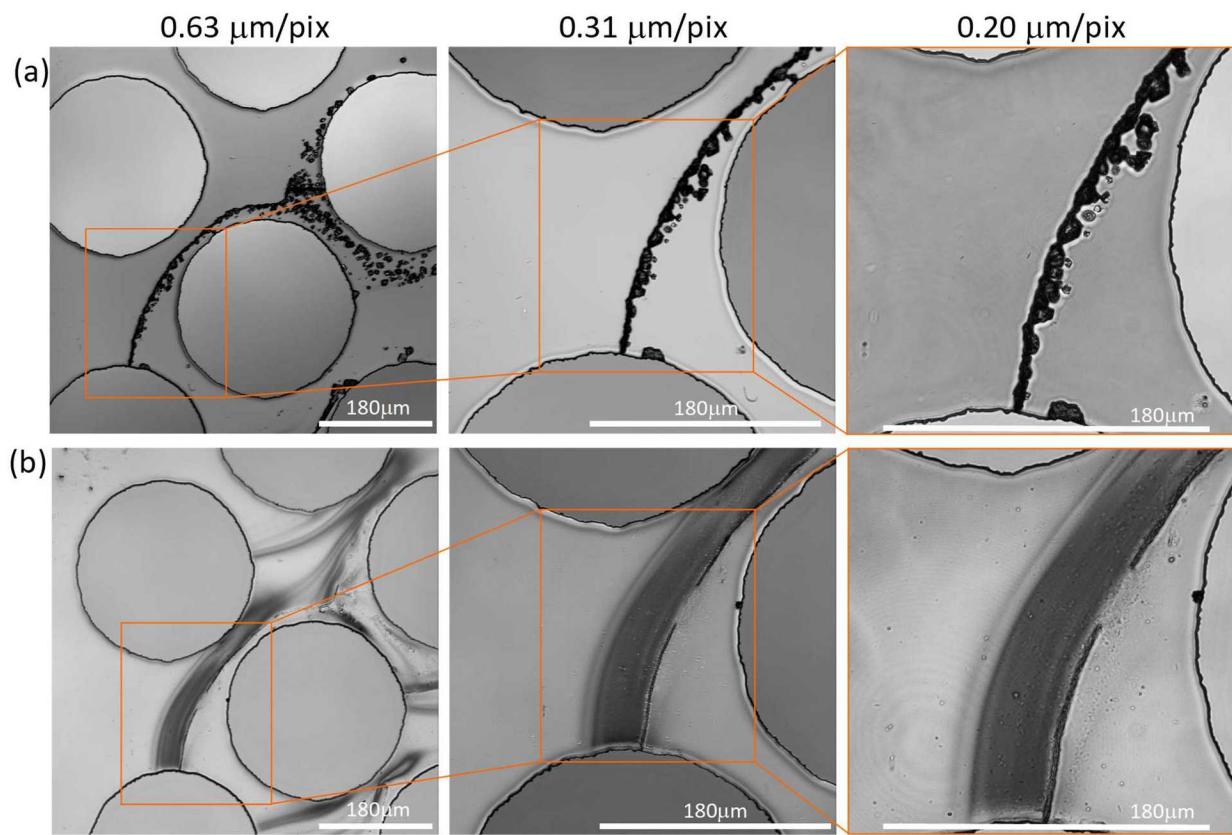
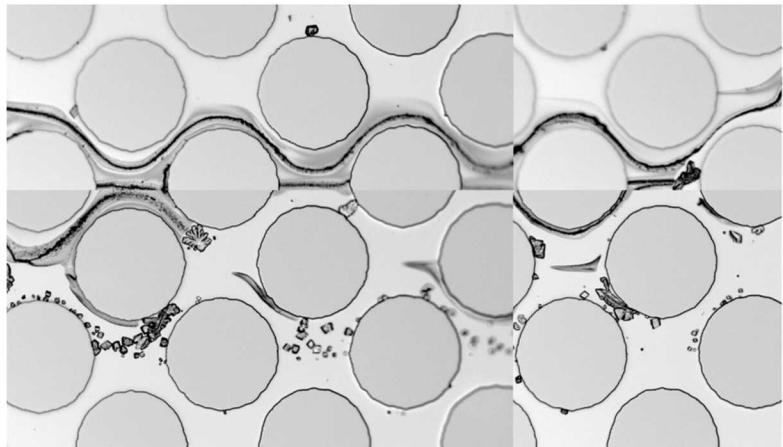
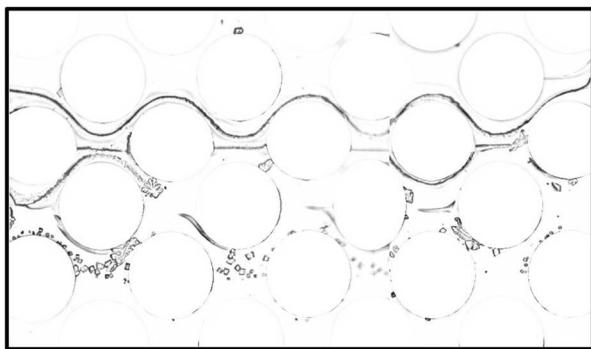
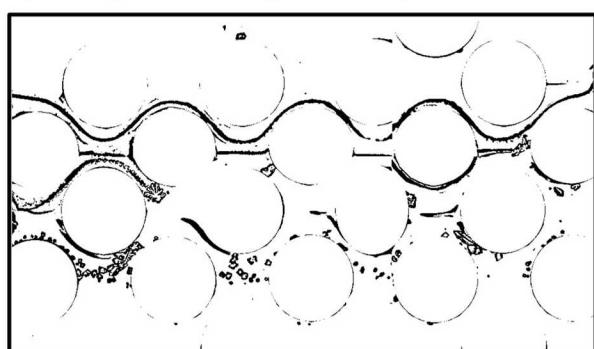
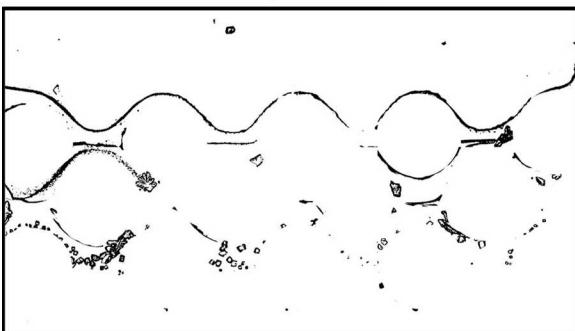





Figure S3. High resolution 2-D microscopic images of precipitates in the micromodel during (a) the precipitation phase ( $t=75$  h) and (b) the dissolution phase ( $t=89$  h).


Original  
mosaic  
image




Step 1: Remove background gradient



Step 2: Adjust contrast, normalize, and threshold



Step 3: Manual cleaning of cylinder boundaries  
and erode operation



Step 4: Fill holes of precipitates

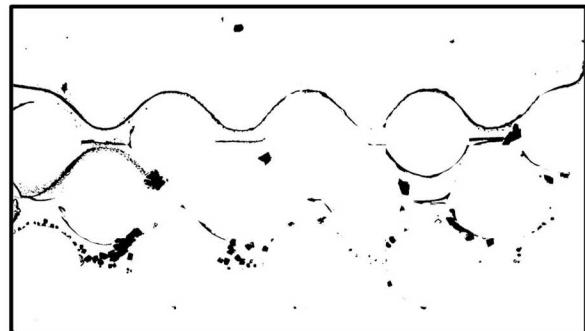



Figure S4. An example of image segmentation procedure.

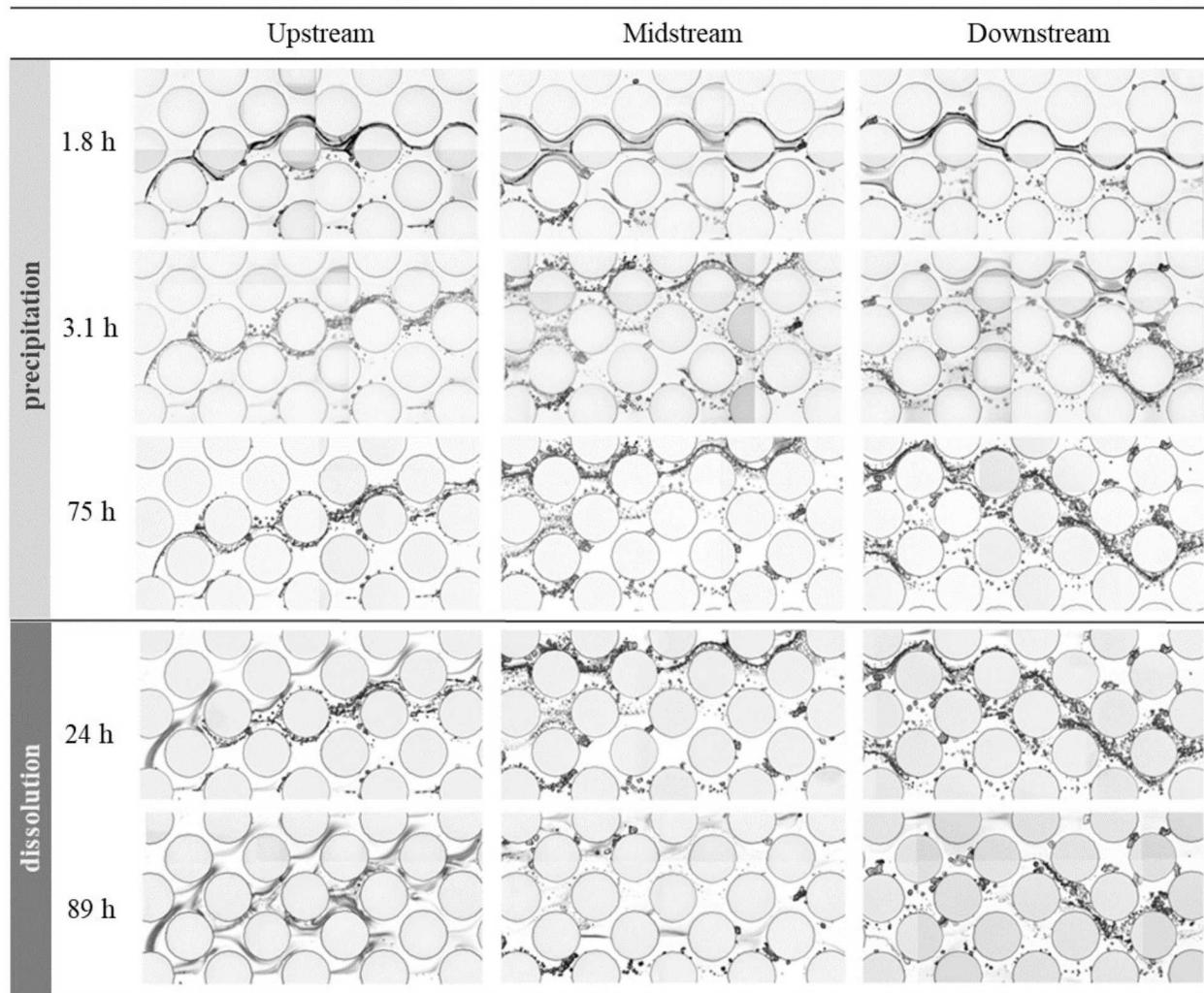



Figure S5. High resolution images of change of precipitate patterns in multiple pores at selected times. The three different locations (upstream, midstream, and downstream) are shown in Figure 1a-b & Figure S2. High resolution image is downloadable as a separate file.

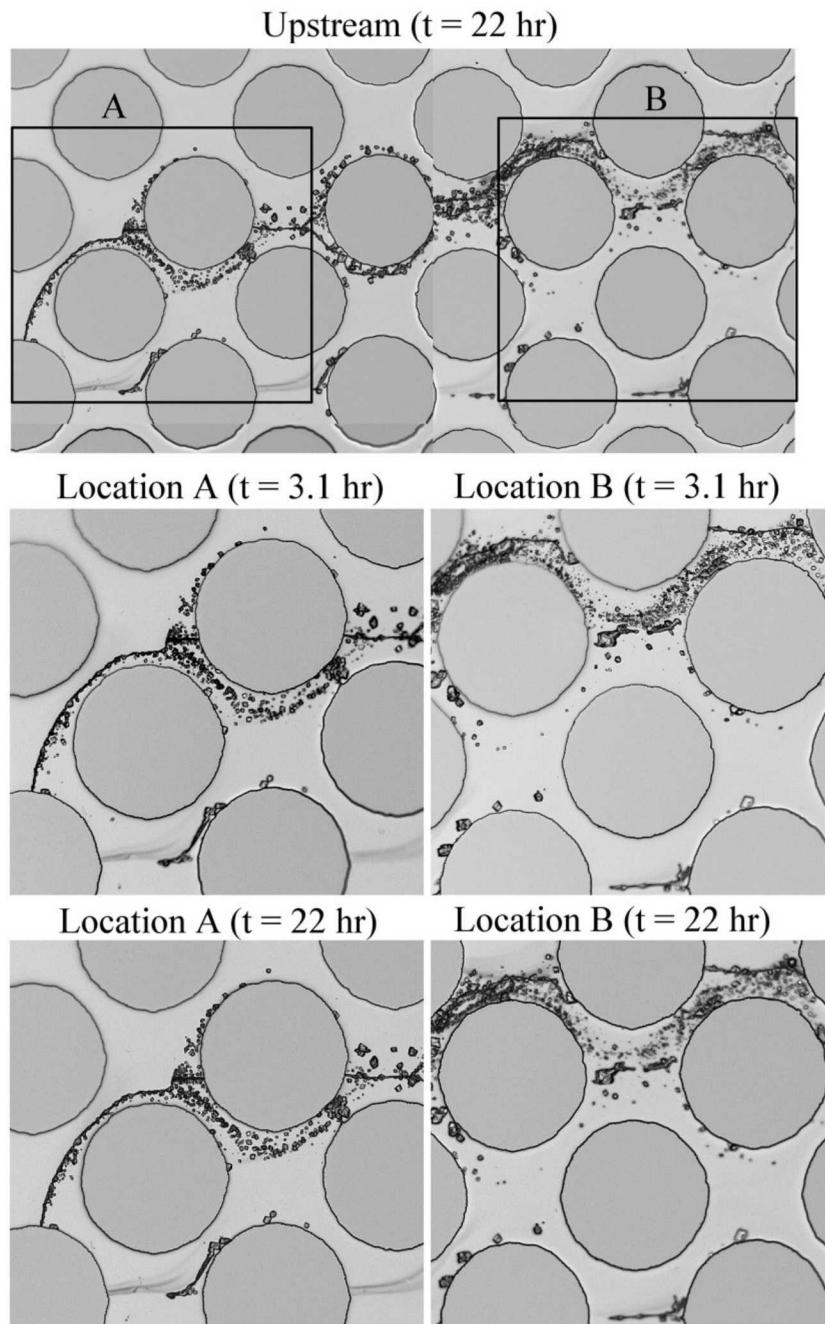



Figure S6. Comparison of precipitates at two different locations in the upstream region. The precipitates in the first two pores (location A) do not change notably (within 1-2 % difference) between 3.1 h and 22 h, but in location B small particles at 3.1 h in the upper pore body dissolved at 22 h. This happens during the precipitation phase because the precipitate line blocks the transverse mixing, resulting in undersaturated conditions in both upper and lower regions.

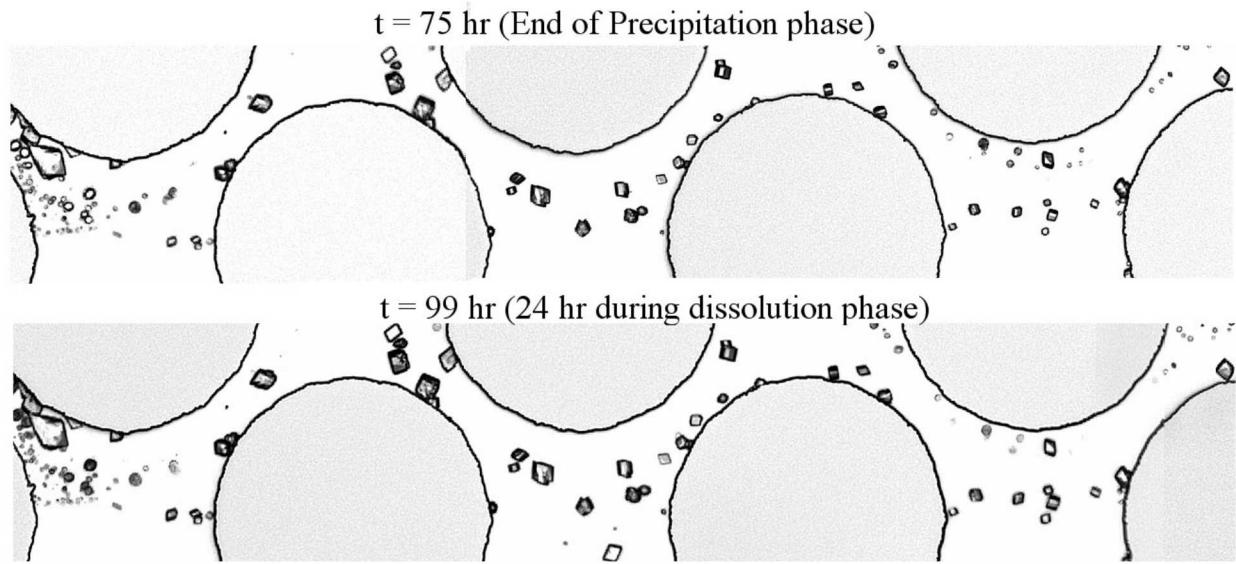



Figure S7. Comparison of precipitate sizes at the end of precipitation phase ( $t = 75$  h) and during dissolution phase ( $t = 99$  h) in the downstream region. Image is taken from the bottom part of the downstream region where the dissolved components transported from the upstream reprecipitate onto the existing precipitate particles. Note that there is one new small crystal formed at the bottom of the middle pore at  $t = 99$ h.

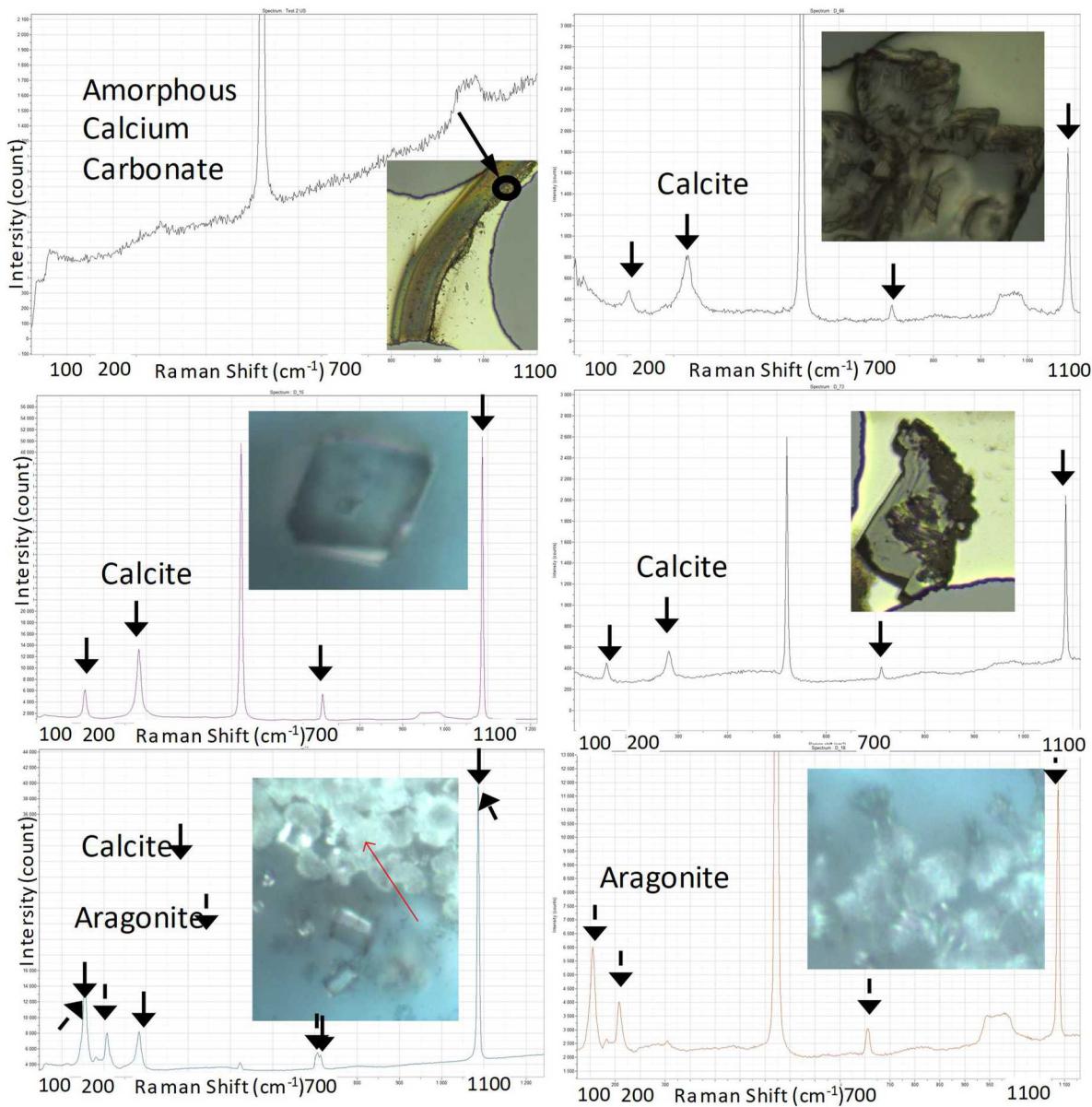



Figure S8. Raman spectra of the precipitates at different locations. Microscopic images of crystals are also shown. Amorphous calcium carbonate (upper left) does not have distinct peaks corresponding to the reference Raman spectra of other calcium carbonate polymorphs. Calcite and aragonite have been detected predominantly.

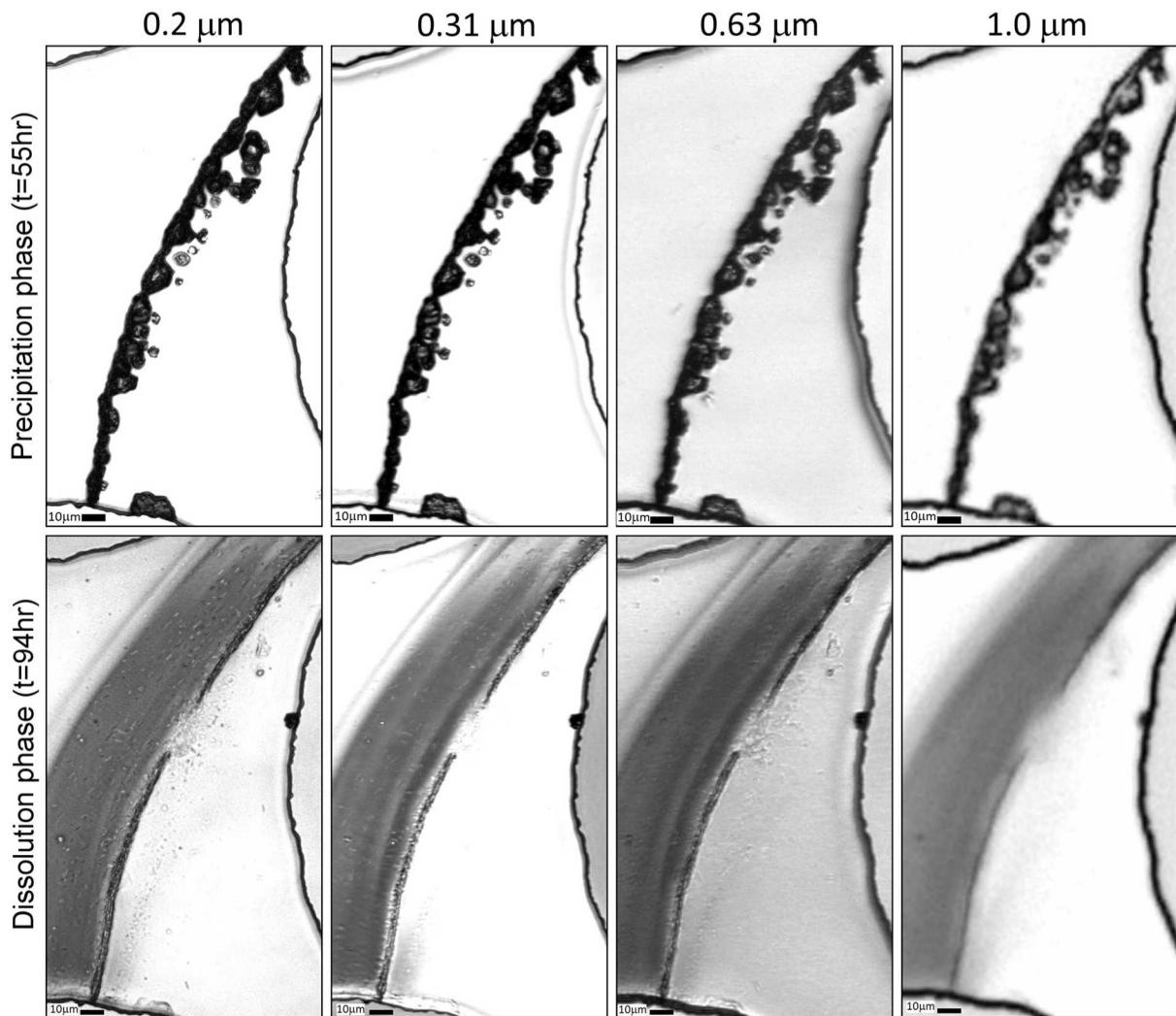



Figure S9. High resolution images of the precipitate area ( $A_{2D}$ ) and the reactive surface area ( $RSA$ ) in the first pore (location  $i$ ) at four different resolutions (0.2, 0.63, 0.31, and 1  $\mu\text{m}$  per pixel) during the precipitation phase ( $t=55\text{h}$ ) and dissolution phase ( $t=94\text{ h}$ ). See Figure 4 in the main text for discussion.

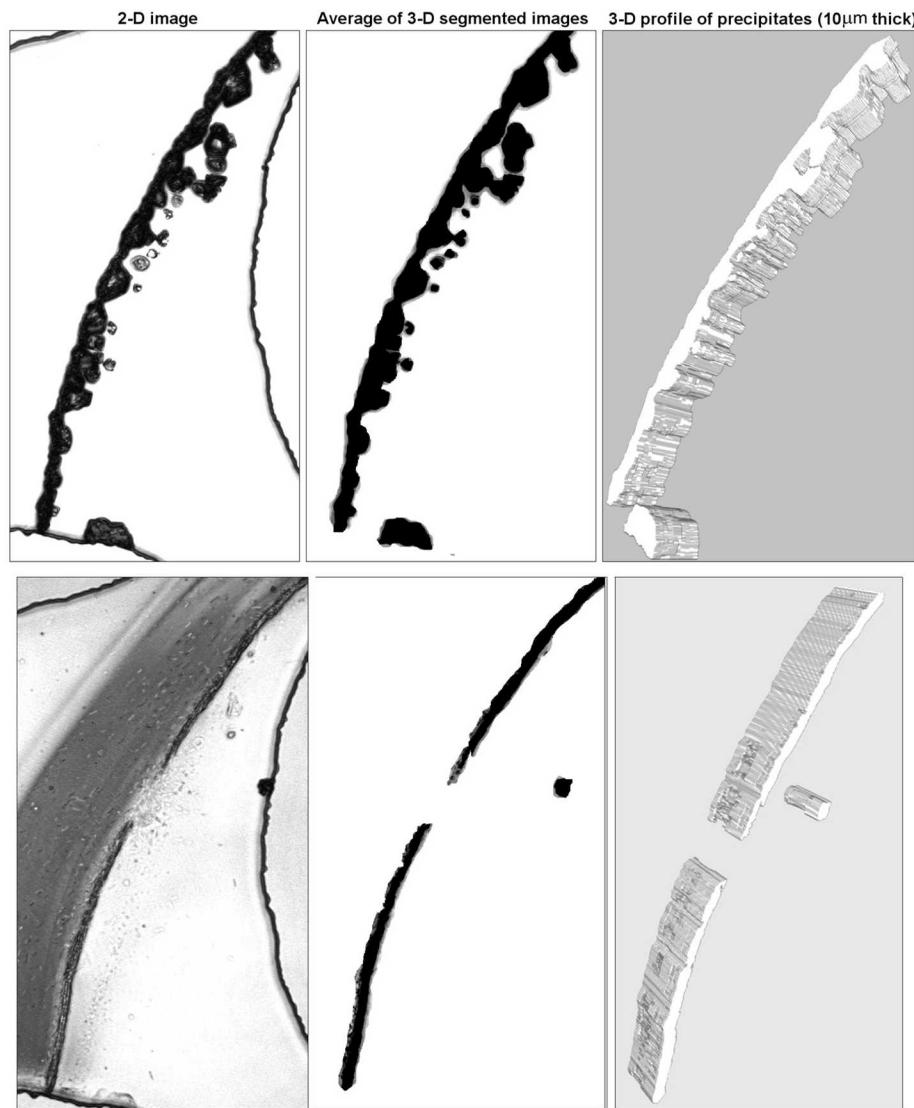



Figure S10. Comparison of 2-D image, average of 3-D segmented image stack, and 3-D profile of precipitates in location *i* during the precipitation phase ( $t = 75\text{h}$ , top) and during the dissolution phase ( $t = 94\text{h}$ , bottom). The 3-D profile is exaggerated vertically twice.

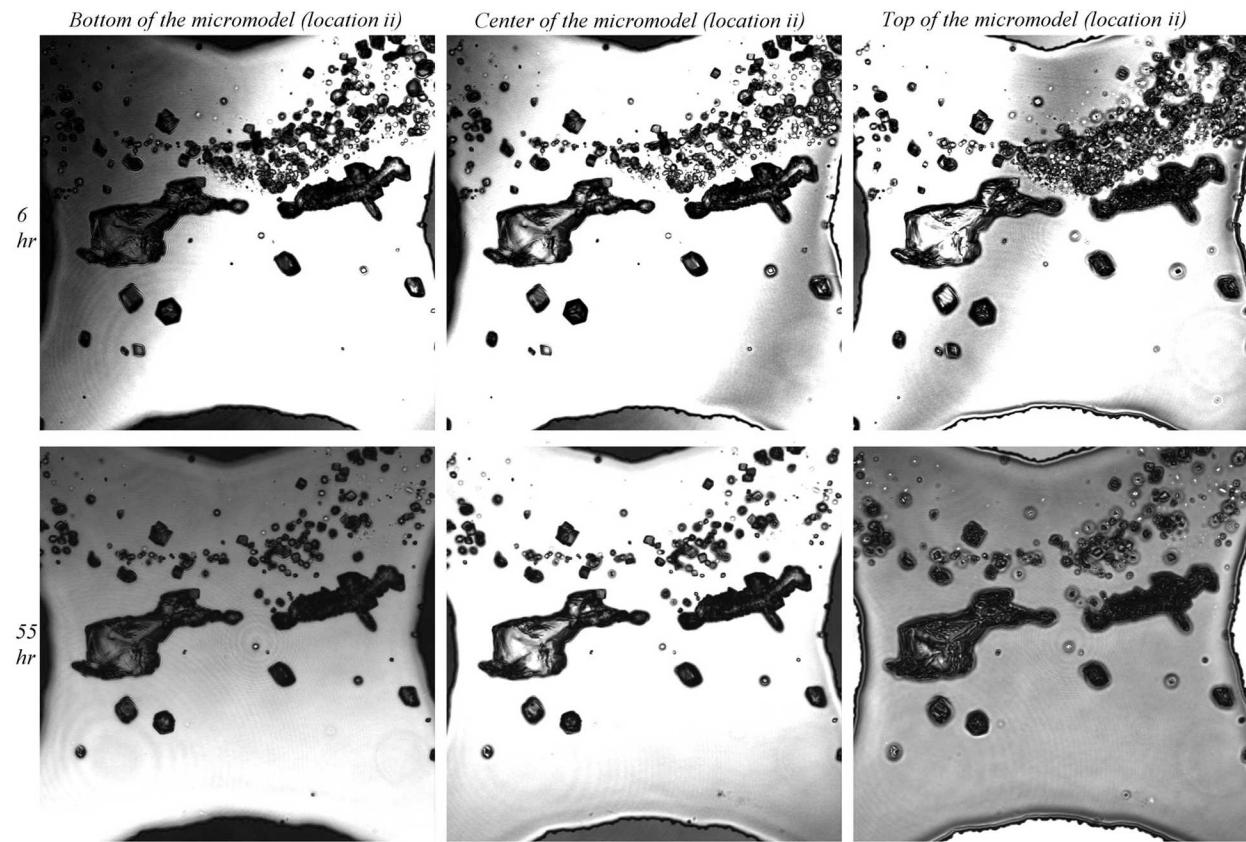



Figure S11. Individual image slice of 3D confocal image stacks on the surface of micromodel (left), at the center of depth (middle), and near the glass cover (right) in location *ii* at two different times.

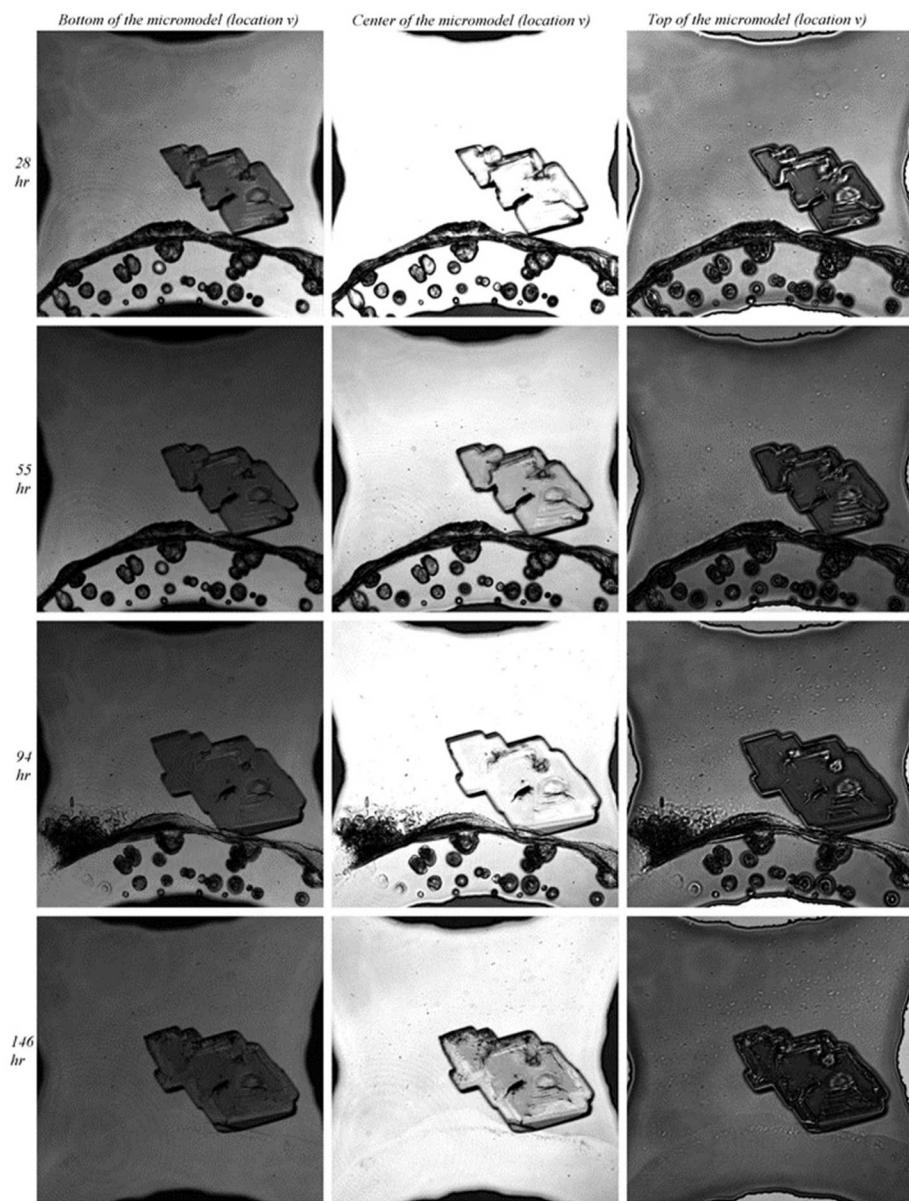



Figure S12. Individual image slice of 3D confocal image stacks on the surface of micromodel (left), at the center of depth (middle), and near the glass cover (right) in location *v* at four different times.

Table S1. Confocal imaging parameters at three different resolutions

|                                               |                      |                   |                            |
|-----------------------------------------------|----------------------|-------------------|----------------------------|
| x-y resolution ( $\mu\text{m}/\text{pixel}$ ) | 0.63                 | 0.31              | 0.20                       |
| Image Size (microns)                          | 642x642              | 321x321           | 200x200                    |
| Pinhole (AU)                                  | 0.40                 | 0.68              | 0.15                       |
| Optical Thickness ( $\mu\text{m}$ )           | 7.5                  | 4.9               | 1.9                        |
| Step Size ( $\mu\text{m}$ )                   | 1                    | 1                 | 1                          |
| Objective                                     | 10x<br>plan-neofluar | 20x<br>LD Epiplan | 50x<br>LD Epiplan-Neofluar |
| Numerical Aperature                           | 0.3                  | 0.4               | 0.55                       |

Table S2. Precipitate surface area ( $A_{2D}$ ) and reactive surface area ( $RSA$ )<sup>#</sup> in the multiple pores.

| Time*<br>(hr) | Precipitate area ( $\mu\text{m}^2$ ) |           |            | Effective reaction rate (mol/m <sup>2</sup> /s) |           |            |
|---------------|--------------------------------------|-----------|------------|-------------------------------------------------|-----------|------------|
|               | upstream                             | midstream | Downstream | upstream                                        | midstream | Downstream |
| 1.5           | 2.3E+04                              | 4.4E+04   | 2.2E+04    | 7.8E+04                                         | 1.6E+05   | 8.9E+04    |
| 1.8           | 3.3E+04                              | 5.3E+04   | 3.5E+04    | 1.2E+05                                         | 1.4E+05   | 1.4E+05    |
| 3.1           | 5.9E+04                              | 7.8E+04   | 9.4E+04    | 2.1E+05                                         | 2.1E+05   | 2.2E+05    |
| 22            | 5.8E+04                              | 1.0E+05   | 1.3E+05    | 2.0E+05                                         | 2.6E+05   | 2.5E+05    |
| 56.2          | 5.6E+04                              | 1.1E+05   | 1.4E+05    | 1.9E+05                                         | 2.9E+05   | 2.7E+05    |
| 75            | 5.3E+04                              | 1.0E+05   | 1.5E+05    | 1.9E+05                                         | 2.6E+05   | 2.9E+05    |
| 99            | 4.1E+04                              | 1.0E+05   | 1.6E+05    | 1.6E+05                                         | 2.6E+05   | 3.2E+05    |
| 164           | 4.1E+03                              | 4.9E+04   | 8.8E+04    | 2.9E+04                                         | 1.1E+05   | 1.5E+05    |
| 217           |                                      | 8.3E+03   | 4.1E+04    |                                                 | 5.2E+04   | 8.2E+04    |

<sup>#</sup> Overall reaction rates and effective reaction rates are reported in Table 1 in the main text.

\* dt in Eq. (1) is the time interval of each image from the previous time step (i.e., the time difference between two images).