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Abstract

Causality in an engineered system pertains to how a system output changes due to a controlled change or intervention
on the system or system environment. Engineered systems designs reflect a causal theory regarding how a system will
work, and predicting the reliability of such systems typically requires knowledge of this underlying causal structure.
The aim of this work is to introduce causal modeling tools that inform reliability predictions based on biased data
sources. We present a novel application of the popular structural causal modeling (SCM) framework to reliability
estimation in an engineering application, illustrating how this framework can inform whether reliability is estimable
and how to estimate reliability given a set of data and assumptions about the subject matter and data generating
mechanism. When data are insufficient for estimation, sensitivity studies based on problem-specific knowledge can
inform how much reliability estimates can change due to biases in the data and what information should be collected
next to provide the most additional information. We apply the approach to a pedagogical example related to a
real, but proprietary, engineering application, considering how two types of biases in data can influence a reliability
calculation.

Highlights:

• Understanding reliability often requires causal, rather than predictive, inferences.

• Structural causal modeling is a framework for thinking causally about reliability.

• Sensitivity studies investigating data bias can improve decisions about reliability.
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1. Introduction

Reliability analysis aims to quantify the likelihood that a system will meet its functional requirements over time
[24]. Predicting the reliability of engineered systems is difficult, as system testing is often expensive and modeling the
performance of engineered systems is a challenge. Modern reliability assessments often rely on 'reliability assurance,'
defined as combining information from various sources to learn about reliability, instead of traditional 'reliability
demonstration,' defined as asserting a reliability requirement is met based on statistical modeling of pass/fail or
time-to-failure test data [24]. When the failure event is not directly observed frequently enough to demonstrate
reliability, reliability assurance activities often supplement test data with auxiliary information, including physics-
based modeling and expert judgment [4].

Reliability assurance activities involve describing and testing causal theories about a system, using explanatory
models that describe a causal mechanism rather than predictive models that forecast based on observed data alone
[37]. As noted in [1], there is a need to establish and to develop methods for inferring causality in risk and reliability
assessment. Heuristically, causality in an engineered system pertains to how a system output changes due to a
controlled, possibly hypothetical, change or intervention on the system or system environment [6]. Understanding
causal relationships allows generalizations to be made in the absence of test data, deemed 'extrapolative prediction'.
As an example, computer simulations of engineering systems are typically causal models, because they predict
how outputs change as a function of unobserved inputs through describing the underlying physics. In the absence
of strictly physics-based models for predicting reliability, statistical models based on observational data are often
used for reliability assessment. As in physics-based modeling, these statistical models must accurately reflect the
underlying causal mechanisms to produce accurate reliability predictions.

The aim of this work is to introduce causal modeling tools that can support reliability assurance activities,
particularly statistical modeling, when data sources contain bias. In the ideal setting, we can collect data from a
large designed physical or computer experiment, using randomization of inputs to infer causal relationships about
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how outputs change across inputs. In practice, data are often 'observational,' where the analyst does not have
control over how the data are collected. Observational data often contain biases. For instance, the data may not
be a representative sample from the target population (selection bias) or spurious associations may exist between
inputs and outputs due to omitted variables (confounding bias). With imperfect data, equating predictive models
with explanatory models is identical to inferring causation from correlation; causal modeling facilitates moving from
correlation to causation and thus produces more generalizable results than prediction alone [8].

To address data insufficiencies, we present a novel application of the popular structural causal modeling (SCM)
framework [2, 27] to engineering reliability assessment based on biased data. While others have investigated causality
in reliability analysis and quality [6, 10, 20, 23], we are unaware of any previous work that implements the SCM
framework, which is a popular framework for causal inference in human health and social science applications [27].
In related work, Broniatowski and Tucker (2017) described high-level notions of validity that can be used to assess
data-driven causal claims about engineering systems [6]. The authors emphasize that many methodologies that are
successful for prediction (e.g. machine learning) are not effective for drawing causal inferences. Previous work has
also considered how to learn causal networks in engineered systems from manufacturing data [20, 23]; methods for
learning causal networks depend heavily on having ample, bias-free data from which to learn the network. Deviating
from this work, we are more concerned with reliability assurance applications where expert judgment is the primary
source of information for building the causal network because data are biased and often sparse, which is a common
situation in practice [2, 13, 14, 33]. We are targeting the question of: given a causal network, when can we accurately
estimate reliability given the available data? Unlike previous risk assessment literature that only alludes to the need
to adjust for biases in data to infer causality, we give concrete steps for implementing methods to address this bias.

The paper is structured as follows. In Section 2, we discuss a motivating engineering example. In Section 3, we
provide a high-level review of causality in risk assessment to further motivate the presented methods. In Section
4, we describe how the SCM framework can be applied to reliability assessment. Then, we illustrate how the SCM
framework can inform sensitivity studies to assess the implications of assumption violations in reliability estimation
(Section 5). The paper concludes with a discussion (Section 6).

2. Motivating example: Predicting battery performance

This work was motivated by applications that we have encountered concerning the issue of causality from the
perspective of design and manufacturing of complex and expensive engineered systems; specifically, in our case, we are
concerned with production of nuclear weapon components (which are then integrated into a larger system). A frequent
challenge is to demonstrate that components are meeting their requirements with limited test or computational data;
the 'quantifications of margins and uncertainties framework' (QMU) was developed in the early 2000s to address risk
assessment in nuclear weapon applications with limited data and high consequence decision-making [26, 31, 36]. QMU
is essentially risk assessment for nuclear weapons, with an emphasis on the credibility of the results for informing
decision-making [31].

Most QMU analyses rely heavily on observational data, modeling, and subject matter knowledge, as collecting
large amounts of data from designed experiments is often cost prohibitive. In other engineering applications, it is
sometimes feasible to conduct structured designs of experiments [25] to answer causal questions about how inputs
relate to outputs. Most QMU applications rely on data that are primarily 'observational,' where we cannot specifically
control all aspects of the design of experiments due to limited resources and/or testing constraints.

Consider the following hypothetical example motivated by a real QMU application: a component must meet
performance requirements across a broad range of environments (e.g. temperature, mechanical shock and vibration,
etc.) and over a specified product lifetime. However, data are limited; for instance, testing combined environments
is infeasible and the amount of hardware for testing is less than the desired level. The question of interest then
becomes: with the imperfect data that are available, what can be said about the likelihood of a component meeting
its performance requirements?

To illustrate how the SCM framework can be applied to predict reliability using statistical models based on
observational data, we use an example motivated by a proprietary engineering application, where the objective is
to predict component performance and estimate reliability in an aging system. Specifically, we consider change in
voltage of a thermal battery design over time. The batteries must meet a functional voltage requirement (26.8V)
throughout their lifespan for different inputs and environments with 98% reliability. The batteries were tested in
surveillance for 25 years. In Figure 1, battery voltages are displayed as a function of battery age; from simply plotting
the data, the downward trend in voltage over time suggests that the reliability at the current time point, 25 years,
may fall below the 98% reliability requirement. In fact, fitting a linear regression to these data and predicting the
voltage distribution at 25 years (Figure 1), the best-estimate of reliability at 25 years is 0.850, with 95% confidence
interval (.775, .910), suggesting the requirement is no longer met.
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Figure 1: (a) Battery voltage as a function of age. (b) The estimated prediction distribution for voltage at age 25 based on the linear
regression model. The estimated failure probability is the area under the curve to the left of the requirement, 26.8V.

A key challenge is that the data contain certain biases. To achieve the goal of making inference about battery
performance at the current time point (25 years after production), biases in the data collection mechanism must be
addressed. Specifically, the tested batteries are not a representative sample from the population of fielded batteries;
in the surveillance data, load is higher, on average, than what would be expected in normal use conditions. Further,
some important measurements were not collected in the surveillance data, namely battery load. Considering the
underlying causal model behind battery performance and its relationship to the collected data is required to build
an appropriate statistical model for predicting current battery performance. While all data used in this manuscript
are simulated, the example is motivated by real but proprietary case.

3. Causality in risk assessment

The most common definition of causality in risk analysis pertains to the effects of hypothetical interventions
on a system. Specifically, "causality in risk analysis is ... about how changes, if made, would propagate through
systeme [10]. The system can be an environment, e.g. how much would pollution levels change under a proposed
regulatory policy; a population of individuals, e.g. how much would disease incidence change given a vaccine campaign
in a population; or, as considered in this paper, manufactured goods, e.g. how much would the reliability of a
batch of components change given a specific design choice? Notions of causality are typically framed in terms of
counterfactuals, which consider what would happen to an outcome in a system under a well-defined hypothetical
intervention on that system.

Without the ability to actually implement the intervention (as would happen in a design of experiments or clinical
trial), estimating counterfactual quantities (and, subsequently, causal effects), requires modeling the system using
available data and subject matter expertise and then using this model to make causal inferences. Note that, when we
can implement the intervention in the population of interest, we do not necessarily need this system model; rather,
causal inferences are drawn using empirical observations from a sample of the population. On the other hand, when
the intervention is not actually implemented in the population, then a model of the system is required for inferring
causality; stated otherwise, inferences about counterfactual quantities from observatinoal data are conditional on the
assumed model, which introduces a layer of approximation into these causal inferences, since, of course, all models
are approximations of the true system.

There are many forms of 'causal modeling' in risk assessment and therefore it is worth clarifying what is meant by
this phrase herein. We are concerned with in quantitative causal inferences arising from probabilistic models about
a system. In typical risk assessment applications, these causal probabilistic models are represented using Bayesian
networks [9]. Bayesian networks are graphical models used to probabilistically represent information in an uncertain
domain [3]; when arrows between nodes in a Bayesian network represent causal dependencies, then the probabilistic
models underlying the Bayesian network can be used to make inferences about causal dependencies in the underlying
system [30]. By fully specifying a causal Bayesian network, an analyst can query causal relationships of interest.

For instance, in a probabilistic risk assessment (PRA) analysis, one could ask how a proposed risk management
intervention (e.g. a vaccine campaign) would change the ultimate health consequences for a population (e.g. the
disease incidence) [9]. First, we must posit an underlying model for this system (represented via a Bayesian network)
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and then consider the impact of intervening on this system to increase the vaccine rate. A hypothetical Bayesian
network for this example is shown in Figure 2. Since we aim to understand how the disease incidence of the flu
(Y) would change if we could intervene on the vaccine rate (X3), we can consider the probability distribution of Y
fixing X3 to the anticipated vaccine rate under a population-level intervention. Other factors also impact the disease
incidence and the vaccine rate, such as population demographics (X1), geographic location (X2), and infectiousness
of the flu strain (X4). To evaluate the causal effects of intervening on the vaccine rate, the analyst fixes X3 in the
Bayesian network to reflect the intervention, and then propagates uncertainty over the network, conditioning on the
intervention.

-> X3 X4

Figure 2: Bayesian network for vaccine intervention example.

In risk assessment and reliability analysis, causal reasoning via Bayesian networks has gained in popularity.
However, the practical implementation of Bayesian networks in PRA applications is often inhibited by difficulties
associated with specifying the full probability model induced by the Bayesian network; stated more simply, drawing
the diagram is often simpler than learning all the relationships between variables in the diagram [19]. In the vaccine
example, under the posited model, we would need to predict the disease incidence as a function of the geographic
location, population demographics, vaccine rate, and disease infectiousness; accurate prediction would of course
require ample data that are relevant to the problem at hand. In practical applications, specifying these relationships
is often difficult due to lack of relevant data; that is, either the available data is too sparse or too biased to infer
conditional dependencies between nodes in a Bayesian network. It is exactly this problem that we address in this
paper by leveraging the structural causal modeling approach [29]. While [9] alludes to the impact of biases in data
on assertions of causality and [10] alludes to the potential utility of counterfactual modeling methods (like SCM)
for risk assessment, there remains a gap in the literature regarding how to apply these modern counterfactual-based
causal inference frameworks (e.g. [29]) to infer causality under biases in data.

4. Applying the SCM framework to reliability applications

In the presence of observational data that contain some biases, SCM provides a framework for defining causality
and estimating causal effects. First, causality is predicated on the existence of some causal model of the world
(the structural causal model); and second, causal effects are counterfactual quantities, defined as the results of a
hypothetical intervention on this causal model. In this section, we review the SCM framework and demonstrate how
the framework can be applied to reliability applications. Our review draws from the existing literature; the novelty
of the work is applying this framework to improve reliability assessment. The notation and concepts used herein
follow [2].

The basic premise of the SCM framework is that there exists some true model, e.g., a system of mathematical
equations, that predicts outputs using a set of inputs and relationships between those inputs; however, this true
model is often unknown, particularly when systems are too complex to characterize. With enough knowledge about
the system (i.e., data and assumptions), we can still predict outputs of interest without directly collecting data
on these outputs. More formally, a structural model .A4 consists of three elements: (1) the model, defined as a
set of functions describing the relationship between a set of inputs and outputs; (2) input variables or, in causal
terminology, exogenous variables; and (3) output variables whose values are uniquely determined given the input
variables and model; in causal terminology, these variables are called endogenous.

In reliability applications, it is useful to think of the underlying structural model as a physics-based system of
equations predicting the output of a widget based on design parameters and environments. For example, the voltage
of the thermal battery in Section 2 is the output, which could hypothetically be predicted using a model and inputs
to the 'battery system,' such as design parameters and environmental exposures. In this work, we consider the case
where we do not know the model exactly, but there are some observations of the inputs and outputs (i.e., data),
and some knowledge of the system that can be used to learn about the model and subsequently predict a target of
estimation. For instance, in the battery example, we have some measurements of voltage (the output) and inputs
age and load, and are aiming to predict voltage for unobserved combinations of load and age.
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The SCM framework can provide a generalized process for assessing whether the available data are sufficient
for estimating reliability and for identifying the set of assumptions under which reliability estimation is feasible.
The 'causal inference' question pertains to: is the available data sufficient to "make up for our ignorance' of the
true causal model linking the inputs and outputs [2]? The available data may consist of a single dataset or multiple
datasets of different types. In engineering applications, 'data' may constitute actual experimental data, computational
simulations, or expert judgment. A critical aspect of the SCM framework is integration of engineering judgment and
expert knowledge, emphasizing that data alone cannot replace "substantive knowledge in practical decision making
and scientific exploratione [2].

In the following sections, we overview the steps of estimating causal effects (Section 4.1); and apply the framework
to the motivating example (Section 4.2).

4.1. Steps of structural causal modeling

To implement the SCM framework to estimate causal effects, the following steps are often used:

1. Define the causal effect to be estimated (Section 4.1.1).

2. Identify assumptions required for causal estimation given the available data and knowledge about the problem
(Section 4.1.2).

3. Estimate causal effect from the available data under certain modeling assumptions (Section 4.1.3).

In the following sections, we describe each of these steps in more detail.
The following notation is used throughout. The output of the causal model is denoted Y, which is a function

of inputs X . Capital letters (X ,Y) denote random variables, whereas lower case letters (x, y) denote realizations of
random variables. P() denotes a probability density function for a random variable.

4.1.1. Defining the target of estimation

In this section, we consider how to define the target of estimation, reliability, using counterfactual notation used
to represent causal quantities. In the SCM framework, the target of estimation Q is called a 'causal query,' reflecting
the idea that 'causal' estimands reflect an intervention on a structural model .A4 [2]. Causal queries are functions of
counterfactuals, which are outcomes under hypothetical interventions on a system. Mathematically, counterfactuals
on a system model are conditional probability distributions deduced from an intervention on a system model. To
denote such an intervention, [2] uses the ̀ do'-notation. Specifically, the counterfactual Yldo(X = x) is the random
variable representing the output Y if we intervene on the structural model to fix input X to x [2, 14, 27]. That is,
P(Yldo(X = x)) is the distribution of Y if we could fix X to the value of x, keeping everything else the same when
propagating uncertainty over the structural model. Causal queries Q typically concern functions of distributions of
counterfactuals, e.g., Q = g{P(Yldo(X = x))}.

In reliability applications, reliability is the most obvious target of estimation Q, where reliability is defined as
a quantified measure of uncertainty about a probability of system success [4]; other quantities such as margin or
safety factors may also be reasonable targets, but we focus herein on reliability. When reliabilty is defined in terms
of meeting a performance requirement, a causal query for reliability can be written as Q = P (Y < rldo(X = x)),
where X is a variable representing specific conditions at which reliability is estimated and T is a required performance
threshold on Y. To define an intervention on X, we could intervene on product tolerances or environmental exposures
(e.g. different mechanical or thermal environments, ages, etc.). We consider T fixed and known for simplicity, though
in practice T could also be a random variable.

4.1.2. Assumptions for causal estimation from observational data

Causal estimation is the act of linking observed data to a causal query, e.g., expressing a counterfactual quantity
P(Y l do(X = x)) as a function of observable quantities P(Y IX, S = 1). The observable quantity represents the
association between Y and X in the observed data and is thus empirically estimable from the data alone. The
random variable S is a sample selection indicator reflecting how data were sampled for inclusion in the dataset
[2, 28]; S = 1 denotes data sampled according to the data generating mechanism for the observed data, which
may be different from the data generating mechanism for the population of interest. Unlike the observable quantity
P(Y1X, S = 1), the counterfactual quantity P(Yldo(X = x)) is only estimable with knowledge of how the data were
generated to disentangle the causal effect of X on Y from other associations in the data. Biases present in the data,
such as selection and confounding bias, will cause these two quantities to differ, often substantially, in practice.

For instance, in the battery example (Section 2), biases in the data preclude direct estimation of the causal query
using associations in the observed data. The counterfactual of interest is the voltage distribution at a specific age,
i.e., P(Ylclo(A = a)). Simply estimating the empirical association between age and voltage in the data (P(YIA =
a, S = 1)) is insufficient to estimate the counterfactual, because load is higher in the observed data than in the
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fielded batteries, which leads to an over-estimation of voltage and under-estimation of reliability in the observed data
relative to the causal estimands.

The causal literature includes many different methods for estimating counterfactual quantities from observed
data [14]. Herein, we apply the popular back-door adjustment formula [2], because this estimator is conducive to
reliability applications and is frequently used in practice. The back-door adjustment formula is:

P(Yldo(X = x)) = Ep(y-Lx- = x, z, S = 1)P(Z = z) (1)

where the terms on the right hand side of the equation can be estimated from the available data [2]. The objective
is to find a reasonable set of assumptions and set of variables Z such that the equality in Equation 1 holds, as
demonstrated in the following sections.

Estimating Q requires two assumptions: (1) we can identify a set of variables Z to control for biases present
in the data and (2) we have enough data or information to accurately estimate the terms in Equation 1, namely
P(YIX, Z, S = 1) and P(Z = z). We distinguish between these two types of assumptions using the terminology
structural versus functional assumptions, where structural assumptions pertain to biases in the data generating
mechanism and functional assumptions (Section 4.1.3) pertain to biases in the statistical model form, assuming the
structural assumptions are correct.

First, we discuss how to identify structural assumptions required for causal estimation, i.e. how to determine a
sufficient set of variables Z to condition on in Equation 1. To identify these assumptions, we must consider the types
of structural biases that are present in the data [2]:

• Confounding bias occurs when variables are omitted in a statistical model that are present in M and confound
the relationship between X and Y.

Confounding bias is formally defined in terms of conditional independence between variables; specifically, no
confounding bias is equivalent to 11 do(X = x)_LX 1Z (where AL represents independence), i.e. assignment to
level X = x in the data does not impact the value of the counterfactual given Z (called ̀ ignorability' of the
assignment mechanism to X). Practically, no confounding implies that the distribution of the counterfactual
Y Ido(X = x) is the same across different values of X; that is, there are no imbalances in predictors of Y
between levels of X that would change the distribution of the counterfactuals across levels of X . In practice,
controlling for confounding bias is achieved by conditioning on variables Z that are associated with both X
and Y.

Returning to the battery example, confounding bias could arise if, due to a tester error, battery load increased
over time in battery tests, but load was not measured during testing. In this case, the random variable
representing voltage fixing age to a certain value (a counterfactual quantity that is not observed) is correlated
with age, because this counterfactual is depends on load and the distribution of load changes with age. Stated
more simply, load confounds the relationship between age and voltage and will bias the reliability estimate.

• Selection bias occurs when the available data are not representative of the target population.

Selection bias arises due to non-random sampling of observations in the data; specifically, the probability of
inclusion in the dataset varies as a function of some variables Z that are associated with the outcome Y.
Without appropriately controlling for selection variables Z , the distribution of Yldo(X = x) will be specific to
the selection mechanism S. By adjusting for Z, ̀ignorability' of the selection mechanism (defined as Y_LS X, Z)
can be achieved [2]. (Note: alternative methods for adjusting for selection bias are beyond the scope of this
paper; see [2] for details.)

Returning to the battery example, if battery load increases over time in the battery tests due to a tester error,
then the tests do not represent a 'random sample' of battery loads. Rather, load will be higher, on average,
in the battery tests than in the use-conditions of interest (that is, selection into the dataset is associate with
battery load). Therefore, selection bias on load will bias reliability estimation.

A set of rules has been established for determining what set of variables Z is sufficient to control for selection
and confounding bias. Causal diagrams are a graphical tool for identifying these variables Z by visually representing
the causal structure of M. That is, causal diagrams inform the identifiability of a query Q by determining whether
the available data D are sufficient for statistical modeling given the true model M. To make this determination, the
analyst encodes in a causal diagram a set of assumptions about how variables in M are related and how the data
were generated. Expert knowledge is typically used to build the causal diagram, which is simply "a graphical tool
to represent our qualitative expert knowledge and a priori assumptions about the causal structure of interest" [14].
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Causal diagrams are a type of Bayesian network, which (as noted in Section 3) is a commonly used tool for
graphically representing models in risk assessment [5, 18, 38, 40] as well as computational simulation modeling
[21, 22, 35]. Causal diagrams are directed acyclic graphs (DAGs), defined as graphs with directional arrows between
nodes (directed) and with no cycles (loops); in causal diagrams, arrows between nodes represent potential causal
dependencies between variables in the structural model M. An arrow connecting X and Y states that we cannot rule
out a causal relationship between X and Y; in counterfactual language, intervening on X could change the outcome
for Y. An example of a simple DAG is shown in Figure 3a. An outcome Y is a function of variables X and Z.
Rectangles and circles can be used to depict whether variables in a DAG are observed or unobserved, respectively.
For instance, in Figure 3b, the output Y and variable X are observed, while Z is unobserved.

X - 17

1 /
z

(a) (b)

Figure 3: DAG concepts: (a) Simple DAG and (b) DAG with observed status.

Explicit rules have been derived to determine identifiability of a query from a causal diagram, using the rules
of ̀ d-separation'; a detailed review of all rules for determining the set of variables Z to condition on using causal
diagrams is beyond the scope of this work, and we refer the reader to [14, 27]. To summarize, the rules of ̀ d-
separation' detect potential biases in causal queries due to biases in the data by looking for conditional dependences
between variables. Causal estimation is theoretically feasible when two conditional independence assumptions are
met: Yldo(X = x)]1_,X1Z (no unmeasured confounding) and YJLSIX, Z (ignorable selection bias). Hence, to de-
termine the identifiability of a causal estimand, we must check these conditional independencies. The rules of
d-separation are used to determine whether two variables in a DAG are independent, conditional on a set of variables
Z. Hernan et. al (2002) concisely summarize the rules of d-separation as:

Two variables are d-separated if all paths between them are blocked (otherwise they are d-connected). A
path is blocked if and only if it contains a non-collider that has been conditioned, or it contains a collider
that has not been conditioned on and has no descendants that have been conditioned on [13].

A collider is a node in the graph where two arrows collide; for instance, in the diagram A —> C <— B, C is a collider.
To check for confounding bias, we can look for unblocked paths between X and Y in a DAG where the direct

causal association between X and Y has been removed. If there is no confounding bias, then no information should
flow between X and Y in a graph where the direct causal connection between X and Y has been removed. To check
for selection bias, we introduce a node S into the graph that denotes selection in the dataset and include arrows in
the graph between S and variables that are related to S. If the selection mechanism is ignorable, then no information
should flow between Y and S after conditioning on X and Z, i.e., there are no unblocked paths between Y and S in
a DAG.

As an example, in Figure 4a, if Z is unobserved, then there remains a path between X and Y in the causal diagram,
even after we remove the direct causal link between X and Y. In this case, we cannot estimate P(Yldo(X = x))
because the relationship between Y and X is confounded by the unobserved variable Z. If Z was observed (Figure
4b), Equation 1 could be applied to estimate P(Yldo(X = x)).

4.1.3. Estimate causal effects under functional modeling assumptions
After determining how to apply Equation 1 to estimate reliability using causal diagram, we must have enough

information available to estimate the terms in Equation 1, P(17-1X, Z, S = 1) and P(Z = z), from the data. In the
absence of ample data to infer these relationships, we make modeling assumptions about these functional relationships.
For instance, we can specify a statistical regression model for Y IX, Z, S = 1, assuming Y varies linearly with X and
Z. Interactions and nonlinearities can be added to the statistical model for additional flexibility. Naturally, the
accuracy with which we can specify Y IX, Z, S = 1 depends on how much data and a priori knowledge are available.
When data are sparse, inferences will more heavily depend on assumptions based on subject matter knowledge; with
ample data, inferences will be more data-driven. Standard statistical rules of thumb and power analyses apply to
determining whether enough data are available.
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(a) (b)

Figure 4: (a) DAGs with direct causal association between X and Y removed. If information can still flow between X and Y, then
confounding bias is present; (b) if this path is blocked, then no bias is present.

Further, to apply the adjustment formula in the presence of selection bias, we must specify a probability distribu-
tion for Z, P(Z = z); note that, in the absence of selection bias, the empirical distribution of Z in the collected data
can be used to marginalize over Z in Equation 1 and there is no need to specify this distribution. In the presence
of selection bias, we need auxiliary information about the distribution of Z to apply the adjustment formula; this
information can come from expert knowledge or other data sources, but of course cannot be learned from the dataset
with selection bias on Z present.

To summarize the process for reliability estimation, we specify a set of variables Z such that, under the data
generating mechanism, structural biases are not present after controlling for Z in the analysis via Equation 1 (Section
4.1.2). Then, we determine how to statistically model Y as a function of X and Z (Section 4.1.3). By assembling
and assessing this set of assumptions, we have a means to assess the credibility of a data-driven reliability assessment
within a causal framework.

4.2. Example: Predicting battery performance

To illustrate how the SCM framework can be applied in practice to explicate the assumptions behind a reliability
assessment, we return to the motivating example from Section 2 and consider predicting battery voltage at the
current time point, defined as A = a. The goal is to use a statistical model to predict the frequency of battery failure
due to insufficient voltage, denoted Q = P(Y < TIC10(A = a)). Because we are aiming to illustrate how to apply
the SCM concepts, we use a simple statistical model in this example, but note that the concepts can be extended to
arbitrarily complicated statistical models. Specifically, to model the observed data, we assume a linear relationship
between battery voltage and age:

1111,S = 1 = ao aiA + e,E N (0, a) (2)

The output voltage Y is a function of the age A, where this function is parameterized by unknown parameters
a = {ao, al} and random noise e N(0, a). Both age and voltage are measured in the collected surveillance data.

Equation 2 is the fitted statistical model and can be used to predict functions of Y in the observed data. However,
it remains unclear as to whether Equation 2 can be used to estimate the causal query of interest, Q. That is, under
what assumptions does it hold that P(Y A) = P(17. Ido(A = a))? Recall that there is an additional variable 'battery
load', denoted L, which also impacts battery voltage. However, L was not recorded in the data. In this case, a causal
diagram could be used to determine whether the effect of load must be considered to estimate reliability. The causal
diagram is determined by knowledge of the data generating mechanism. For instance, confounding and selection bias
could arise if, due to an error in the testing procedure, the input load to the tester L was artificially increased over
time, applying a higher load to the battery as time increased (DAG shown in Figure 6b).

Figures 5a-5d show simplified examples of how different biases in the data could impact the identifiability of the
causal query.

• In Figure 5a, Q is estimable without knowledge of L. While L was not observed, the causal diagram implies
that knowledge of L is not needed, because L is neither a confounder nor a variable associated with selection
(in the diagram, this result follows from no unblocked paths between A and Y through L and no selection
indicator S present).

• Unmeasured confounding. In Figure 5b, confounding bias exists, because L is associated with both Y and A,
but is not observed. Hence, information can 'flow' between Y and A in the causal diagram even after removing
the direct arrow between A and Y, and the relationship is confounded.

• Adjustment for confounding. On the other hand, if L was measured (Figure 5c), conditioning on L controls for
confounding bias in the analysis by blocking the flow of information between A and Y in the diagram; hence,
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per Equation 1, statistical models predicting voltage Y would need to include both A and L (including A alone
is not sufficient).

• Unmeasured selection. In Figure 5d, selection bias precludes estimation because the terms in Equation 1
cannot be estimated from the data, since L is associated with S but L is not observed. In the causal diagram,
information can flow between Y and S and thus the selection bias cannot be ignored in estimation.

• Adjustment for selection. On the other hand, if L was measured (Figure 5e), selection bias can be corrected
for using the adjustment formula in Equation 1, given auxiliary information about the distribution P(L = l)
in the target population. The path between Y and S is now blocked by conditioning on L.

(a) (b) (c) (d) (e)

Figure 5: Different SCM identifiability cases: (a) Q estimable, (b) Q not estimable due to confounding, (c) Q estimable conditioned on
L, (d) Q not estimable due to selection bias, and (e) Q estimable with auxiliary information.

Hence, whether Q is estimable depends on the true data generating mechanism and the available data. Note the
difference between the DAGs in Figure 5 and Figure 6a. In Figure 6a, L is along the causal pathway between A and
Y. This type of relationship could happen, for instance, if aging mechanisms caused an increase in load, which then
caused an increase in voltage. On the other hand, if the load association is driven by a tester error (e.g Figure 6b),
L is not on the causal pathway. If confounding is driven by a tester error, selection bias is also likely to be present.
If L is along the causal pathway between A and Y, then we should not control for L in our analysis per the rules of
d-separation (Section 4.1.2).

(a) (b)

Figure 6: (a) L is on the causal pathway between A and Y. (b) L is not on the causal pathway between A and Y. Note, selection bias
is also present in this case, as might be observed with a tester error.

The structural and functional assumptions required to use Equation 2 and the data D to make inference about Q
are presented in Table 1. Structurally, we must assume the DAG in Figure 5a is correct. Under these assumptions, we
can equate the counterfactual quantity P(Yldo(A = 25)) to P(Y I A = 25, S = 1), which is estimable using Equation
2; stated differently, if our assumptions are correct, P(YIA = 25, S =1) is an estimator for P(Yldo(A = 25)). Note
that, in this example, we assumed the form of the input-output relationship was linear with normally distributed
residual variability (Equation 2), which is a reasonable assumption per Figure 1. With sufficient data, we could
theoretically learn about this relationship from the data. Without sufficient data, these functional assumptions are
required. Determining what constitutes 'sufficient data' is not necessarily straightforward, but statistical model
selection and power analyses may help inform whether certain types of effects are detectable with the available data.

In this case, the implications of the functional assumption regarding normality of Y are quite subtle and important
to consider. Specifically, we must consider how the residual variability in Y, denoted c, arises. Per the causal diagram,
e may contain variability due to production variability, measurement error, and the impact of L on Y. If the effect
of L on Y changes with A, then c will no longer be 'constant variance' over A and the statistical model must be
updated to account for this heteroskedasticity. Hence, assuming E has a constant variance also implies no interaction
between A and L on Y.
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Structural assumptions Functional assumptions

• No confounding of the age-voltage relationship.

• No selection bias in the observed data.

• Linearity: linear relationship between E(Y)
and A.

• Normality: Y 1 A normally distributed with con-
stant variance over A (and no interaction be-
tween A and L on Y).

Table 1: Structural and functional assumptions needed to estimate Q using Equation 2.

5. Sensitivity studies

Using sensitivity studies, we consider the implications of violations of assumptions required for causal inference.
When assumptions are not supported by evidence, sensitivity studies are commonly used to determine the quantitative
impact of violating an assumption on the final results [11, 39]. Such studies typically require eliciting information
from experts concerning which assumptions could be wrong, how an assumption might be wrong, and the impact of
a violation of the assumption. In this section, we explore what information is required to conduct sensitivity studies
to examine the credibility of results using the battery data as an exemplar, specifically focusing on how to extend
Equation 2 to account for violations of structural assumptions.

Specifically, we consider how the distribution of voltage at the current time point changes under different structural
assumptions. Changes in the distribution of voltage will subsequently change the estimated reliability (Figure 1).
Because the data are simulated, we know the true reliability at the current time point (99%) and can compare this true
reliability to estimates under varying assumptions. The sensitivity studies illustrate how bias-corrected statistical
models can improve reliability estimation with good prior information about the data generating mechanism. These
sensitivity studies can be constructed for arbitrary types of assumption violations, but we consider two specific
examples: selection bias (Section 5.1) and confounding bias (Section 5.2).

5.1. Example: sensitivity study to address selection bias

First, we consider the effect of selection bias on the reliability estimate Q. Selection bias on battery load L could
arise as an artifact of the test plan, where the battery was tested at higher loads than would be representative of use
conditions (the target population). In the presence of selection bias (5d), we cannot estimate Q using Equation 2.
However, we can adjust for the bias with additional assumptions about:

• the true distribution of load in the target population of batteries P(L = l),

• the selection distribution on load in the surveillance data P(L = lls = 1), and

• the load-voltage association, P(Y1L, A, S = 1).

We first consider the hypothetical case where we have exact knowledge of these additional quantities. To adjust for
selection bias, we can apply the adjustment formula in Equation 1, with knowledge about the true distribution of L
and the distribution of Y1A, L, S = 1:

Li TN(.5, .25, 0, 1) (true load distribution in target population)

P(rdo(A = a)) = P(ITIA= a, L = l, S = 1) P(L = l) dl (3)

true dist.

Then, we fit a statistical model to estimate the distribution of Y1L, A, S =1:

Y~AiLiS= 1 =

ci ^ N(0, u)

Lil(S = 1) ,--, TN(1, .25, 0, 1) (true load distribution in the observed data, i.e. the selection distribution)

02 = —5 (true load-voltage association) (4)

00 + + 02-Li + Ei

where TN(µ, o-, min, max) denotes the truncated normal distribution with mean ,a, standard deviation a, and
bounds min to max. Lines 3-4 in Equation 4 are the additional assumptions used to address selection bias. Note
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that, in line 1, load is included in the statistical model though it is not explicitly measured in the data. Rather,
load is treated as missing data that is estimated in the statistical model under the assumptions. The error term e
now has a completely different interpretation from Equation 2 and no longer represents variability due to load, only
uncertainty due to production variability and measurement uncertainty.

To illustrate this approach, we implement this model in a simulated dataset (n = 200), where the data were
simulated from the model in Equation 4, with data collected uniformly over time from 0 to 25 years. We fit the
model in Equation 4 using Bayesian inference [12] with improper flat priors on the unknown parameters /30, 01 and
Q. Then, we compare the estimate of P(Y Ido(A = 25)) under Equation 3 to a 'naive estimate' under Equation 2
which does not address selection bias. All statistical models were fit in using the R Statistical Software package [32],
interfaced with STAN for Bayesian inference [7]. Code for duplicating the sensitivity study examples is provided in
the online supplementary material.

The adjusted estimator for P(Y Ido(A = 25)) aligns well with the truth in this simulated example (Figure 7a).
This analysis is clearly overly optimistic, since the selection mechanism and load-voltage association are typically
not known exactly. However, considering this analysis suggests an approach to a sensitivity study.

• Specify probability distributions reflecting uncertainty about the true load distributions, selection distributions,
and load-voltage associations. That is, Equations 3 and 4 can be extended to add 'prior distributions' on the
sensitivity study parameters.

• Fit the statistical model with the additional prior distributions on the uncertain sensitivity parameters.

• Compare inferences on Q from the original statistical model and the sensitivity study.

Because the data typically will not contain information about structural biases in the data, the end results will be
sensitive to selection of the prior distributions on the sensitivity study parameters.

For instance, we can extend Equation 4 to allow for uncertainty in the load-voltage association and in the mean
of the selection distribution (lines 3-5 below):

Li, S = 1 = 00 + + 132L, + Et

Ei N(0, a)

LilS = 1 TN(N,.25, 0, 1) assumed selection distribution

N(.9, .2) assumed selection distribution

/32 N(-4, 2) assumed load-voltage association (5)

We can apply the adjustment formula in Equation 3 under this revised model to again estimate Q. Now, we use the
sample of size n = 200 to calculate a best-estimate and 95% pointwise confidence intervals on the voltage distribution,
as well as estimate reliability and a corresponding 95% CI. Results from this analysis compared to the naive analysis
based on Equation 2 are shown in Figure 7b. Because the prior on the sensitivity study parameters in Equation 5
is reasonably aligned with the truth (Equation 4), the 95% pointwise confidence intervals also contain the truth. If
the priors were bounded away from the truth, then the sensitivity study results will be inaccurate. The estimated
reliability in the sensitivity study is .984, with 95% CI (.975, .993); hence, the change in reliability from the original
analysis, where the reliability estimate was .850, is substantial and the sensitivity study suggests that selection bias
should likely not be ignored when estimating reliability.

The results of sensitivity studies can be used to help determine what actions to take next. For instance, if results
are exceptionally sensitive to certain dubious assumptions, then more information might need to be collected prior
to decision-making. For example, under selection bias, we can consider collecting different types of information to
improve our estimates. For instance, we could conduct more surveillance tests, learn the load-voltage association
more precisely, or learn about the load selection distribution more precisely. This leads to a decision question is:
what type of information would be most beneficial to collect next? In Appendix A, we provide an example of how
to use a decision-analytic framework to determine what information to collect next based on the sensitivity study
results.

5.2. Example: Sensitivity study to address confounding bias

Suppose now that we want to design a sensitivity study to address unmeasured confounding by load. That is, load
L is associated with both age A and voltage Y, but is not along the causal pathway between A and Y (Figure 6a).
As noted in the Section 4.2, this type of confounding could arise due to a tester error, where load was accidentally
increased over time. However, note that this confounding would also be accompanied by selection bias, since the
observed loads in the surveillance data are no longer representative of the expected load distribution in the target
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Figure 7: Selection bias sensitivity study examining the empirical distributions of Y1A = 25. (a) The selection mechanism is known.
The truth is in black, naive estimator in green, and corrected estimate in blue. The truth is covered by the corrected estimate. (b) The
selection mechanism is uncertain. The best-estimate (pointwise median) is in a darker color than the 95% point-wise confidence intervals.
The true distribution lies within the 95% confidence intervals from the sensitivity study.

population. When predicting Y, we should predict to the 'correct' distribution of L, depending on whether selection
bias is present. In this example, we assume confounding bias is due to tester error, such that the distribution of
load in the target population is the same as in Equation 3 in Section 5.1. A causal diagram for this case is shown in
Figure 6b.

To apply the adjustment formula (Equation 1) to adjust for confounding bias, we need a statistical model for
the distribution of Y1L, A, S = 1, but load L is not measured. To address this confounding bias, we use auxiliary
information about:

• the load-age association P(LIA, S = 1), and

• the load-voltage association P(Y1L, A, S = 1).

In the presence of selection bias, we also need information about the distribution of load in the target population to
apply the adjustment formula in Equation 1. With knowledge of these quantities, we can adjust for confounding via
a statistical model. For example, suppose the confounding mechanism is known exactly to be:

Li, S = 1 = 13o + 131AT + 132Li + Ez

Ei N(0, a)

S = 1 = T N (.5 + .02A,,, .25, 0, 1) (true load-age association)

02 —5 (true load-voltage association)

(6)

Lines 3-4 model the confounding mechanism given exact knowledge of the load-age and load-voltage associations.
Given the distribution of Y1L, A, S = 1, as well as the distribution of load in the target population P(L = l) (if
selection bias is present), we can apply the adjustment formula in Equation 3.

Results from fitting the confounding-adjusted model are shown in Figure 8a. As in Section 5.1, the adjusted
estimator aligns well with the truth in this simulated example, though this analysis is optimistic, since we plugged
in the exact confounding mechanism. In practice, the exact load-age and load-voltage associations are unknown.
Sensitivity studies can be used to determine how the results would change under different assumptions about the
relationships. For instance, a model with uncertain load-age and load-voltage relationships might be:

S = 1 = )30 + i32L, + Et

Et ^ N(0, a)

S = 1 = T N (.5 + rylAz, .25, 0, 1) (assumed load-age association)

• N (.01, .02) (assumed load-age association)

N ( —4, 2) (assumed load-voltage association) (7)
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Note that a simple way to specify the load-age association is by specifying the distribution of load at two points and
then interpolating.

Figure 8b shows the results of fitting this hierarchical model to the n = 200 samples, with 95% pointwise
confidence intervals included. While uncertainty in the voltage distribution is higher due to the uncertainty about
the confounding mechanism, inferences about the voltage distribution remain quite accurate relative to the truth and
the truth is contained within the confidence intervals. The reliability estimates change substantially after addressing
confounding in the sensitivity study. Specifically, without addressing confounding, the reliability estimate is .515
with 95% CI (.400, .630); in the sensitivity study with adjustment, the reliability estimate is .992 with 95% CI (.988,
.994). Again, these inferences are sensitive to the prior on the sensitivity study parameters, and incorrect prior
specification would produce inaccurate results. Regardless, the results of the sensitivity study indicate the potential
high sensitivity of the reliability estimate to confounding bias.

O

— Truth
— Naive estimate
— Confounding adjustment

26 27 28 29 3b 31
Voltage

(a)

1 

— Truth
— Naive estimate

_ _ _ _ — Confounding adjustment

26 27 28 29 30
Voltage

(b)

31

Figure 8: Confounding bias sensitivity study examining the empirical distributions of YIA = 25. (Left) Confounding mechanism is known.
The truth is in black, naive estimator in green, and corrected estimate in blue. The truth is covered by the corrected estimate. (Right)
Confounding mechanism is uncertain. The best-estimate (median) is in a darker color than the 95% pointwise confidence intervals. The
true distribution lies within the 95% confidence intervals from the sensitivity study.

6. Discussion

In this paper, we link reliability analysis to SCM and illustrate how this framework can improve inferences
and drive sensitivity studies. Connecting reliability to causality will ideally allow the reliability and risk analysis
community to leverage the existing large body of work on causal analysis in other areas of application. This paper
is only intended to frame how SCM and reliability are connected, and therefore contains very limited details about
SCM. Further details can be found in review books such as [14, 27, 29].

Unlike SCM, existing approaches for reliability assessment uncertainty quantification often do not systematically
consider statistical model credibility, essentially 'conditioning' on the statistical model being correct. This SCM
framework puts a direct emphasis on the need to systematically assess statistical model credibility, i.e. do we have
enough information to quantify reliability? Ignoring statistical model uncertainty can naturally lead to underesti-
mation of uncertainty and inefficient allocation of resources for improving reliability. An important element of the
SCM framework is the idea that data alone are typically not sufficient to learn causal relationships; rather, reliance
on expert judgment and a fundamental understanding of how the data were generated is critical. Expert judgment
is used to identify the structure of the causal network; to specify a statistical model for the data (when data are
sparse); and to specify parameters in sensitivity studies assessing potential violations of assumptions.

Sensitivity studies examining structural modeling assumptions about how the data were generated can inform
modeling results. The sensitivity studies in this paper only address violation of structural assumptions. The analysis
results still rely on strong functional assumptions, namely that the conditional distribution of Y IL, A is correctly
specified. The statistical models could be extended to relax certain assumptions; however, as assumptions are relaxed,
more parameter uncertainties must be specified in the sensitivity study, adding to the complexity of the analysis.
Note that sensitivity studies are conceptually different from sensitivity analysis, which refers to quantifying how
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much variance in a model's outputs is explained by each model input [34]. On the other hand, sensitivity studies is
a broader term that refers to analyzing how violations of certain assumptions impact the credibility of the modeling
results.

Herein, we only discussed two types of structural biases (confounding and selection bias); Bareinboim and Pearl
(2016) identify a third type of bias, transportability bias [2], where results from the available data must be 'trans-
ported' to a different target population. Confounding and selection bias compromise the internal validity of studies,
while transportability bias compromises external validity [6]. Methods for adjusting for transportability and selec-
tion bias are similar, and therefore we focused on selection bias herein, but note that the results can be shown to
generalize to transportability.

A primary limitation of our analysis is the simplicity of the example, namely modeling a linear trend over time
from a single data source to predict reliability. One of the strengths of the SCM framework is the ability to use expert
judgment and auxiliary data sources to improve estimation; future work will explore how to conduct data integration
via the SCM framework to improve reliability estimation. Further, our analysis relied on the assumption that the
functional model for battery voltage was correctly specified; in practical reliability applications, statistical models for
reliability are difficult to specify, particularly due to the need to extrapolate about the tail behavior of the statistical
model [16]. In non-engineering applications, such as health policy, a common goal is to compare alternatives, and Q
is often a difference in conditional means, e.g. E(Yldo(X = x1)) — E(Ylclo(X = x2)). In engineering applications,
mean estimation is typically of less interest than reliability or margin estimation, which requires estimation of the
full distribution of a counterfactual, rather than just a mean estimate. Estimation of this full distribution requires
more modeling assumptions or more data than simply estimating a mean.

One of the strengths of the SCM framework is that the concepts are sufficiently general to apply across a broad
array of settings. In future work, we aim to explore how SCM can improve risk and reliability assessments via
combining different data sources, deemed data fusion [2]. Additionally, this paper focused on statistical, rather than
computational simulation, models for estimating reliability. Another interesting area of research in risk analysis is
how SCM can inform calibration and forward propagation of uncertainty over mis-specified computer models.

Appendix A. Assessing value of additional information

Using the selection bias example from Section 5.1, we apply a value of information decision framework (see, for
instance, [15, 17, 41] for more details) to decide whether and what information to collect next by maximizing our
expected utility (minimizing expected cost). Value of information (VoI) considers the cost relative to information
gain and is defined as the difference in the expected cost of a certain decision with and without the new information:

V oI = E(C1D) — E(C1D,D*) (A.1)

where C is the total cost, D is the current information, and D* represents the new information. If collecting the
information substantively decreases the expected cost relative to the cost of the new information, then the information
has high value.

To calculate VoI, we need the following information: a statistical model for the outcome, the decision being made
based on the outcome model, the cost structure for the decision, and the new information that can be collected. To
illustrate the concept, we consider VoI in the context of selection bias (Section 5.1). The statistical model for the
outcome is in Equation 5. The decision being made is whether or not the 98% reliability requirement is met for the
26.8 V requirement. We consider a linear cost structure, where we can either reject now and improve reliability at
cost C2 or approve the product and impose a linear penalty on the failure probability p for any probability exceeding
pr = .01. With knowledge of p, this cost structure is:

C (p) = min(CiPI (13 > Pr), C2) (A.2)

Since p is uncertain, we consider the expected cost of approving the product. Then, the overall expected cost is:

C = min (EAD [Cip-r(p > Pr)], C2) (A.3)

where the expectation is taken over the posterior distribution of p given the data D. Now, suppose we obtain
additional information that induces a distribution on the model space, denoted V*. The expected cost given additional
information D* is defined as:

C* = ED* rnin(EPID ,d* [C11,- 1- (P > pr)], C2) (A.4)

where plD , d* is the posterior distribution of p given data D and a realization of D* . That is, the expectation in
Equation A.4 is taken over the prior predictive distribution over D* . Decisions about whether to collect new data V*
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are driven by the relative cost of C1 to C2, the expected reliability, and the change in uncertainty about reliability
given the new information.

We consider collecting the following additional types of information:

• Conduct n* additional tests at the current time point A = 25. D* is a vector of n* samples from the posterior
predictive distribution of Y.

• Obtain perfect information about the load-voltage association, 02 . D* is a vector of samples from the prior
distribution on 02 .

• Obtain perfect information about the mean of the load selection distribution, pl. D* is a vector of samples
from the prior distribution itj.

To estimate the value of information, we compare the expected cost under each of these three different scenarios
to the expected cost given the current information only. (Note that we could also consider the value of jointly
conducting multiple actions, such as both collecting new samples and learning about the load-voltage association;
however, such joint actions are not considered herein.)

Returning to the selection bias example (Section 5.1), we now consider a data-limited scenario where only n = 50
tests were conducted, rather than n = 200 tests. First, we examine the value of information for the case where
the sample size increases by conducting n* tests at the current time point. We consider 4 different cases: n* =
{1, 5, 10, 100}. To estimate VoI, we sample n* new data points from the posterior predictive distribution of the
voltage Y after fitting the model in Equation 5. Then, we fit the model in Equation 5 again to the revised sample
with the n* additional points; repeating this procedure 100 times, we then obtain the approximate prior predictive
distribution of p given D* , from which we can calculate the expected cost given the n* new samples using Equation
A.4. Results of the VoI analysis are show in Figure A.9. The value of information peaks for a C1/C2 ratio near 40;
that is, collecting new information is most valuable when the linear penalty on reliability (C1) is approximately 40
times as large as the cost of initially rejecting and approving reliability up front (C2). The VoI increases with the
number of new samples; the confidence interval width for reliability also shrinks as n* increases. Whether to collect
more samples depends on the cost of the additional data collection relative to the VoI.
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Figure A.9: (Left) Value of information for increasing the sample size as a function of the ratio of C2 to C1. (Right) Confidence interval
width on reliability as a function of the added sample size.

Next, we calculate the value of information under the three different scenarios as a function of the ratio of C1/C2
(Figure A.10). For the case where the sample size increases, we use n* = 100 (since VoI was highest at n* = 100).
The average confidence interval width under the different scenarios is also plotted in Figure A.10. Collecting the new
information does decrease uncertainty about reliability and therefore tends to decrease expected cost; but, the value
of information is of course sensitive to the ratio of C1/C2. Obtaining perfect information about the load-voltage
association provides the most additional value once the ratio of C1/C2 exceeds 20. However, the decision maker must
also consider the cost of obtaining the additional information. Therefore, whether to collect additional information
and what information to collect depends on the difference between the VoI and the cost of the additional information.
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