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Abstract. The influence of the optic axis orientation of hexagonal boron nitride (hBN) on the 

near-field radiative heat transfer between hBN slabs as well as between graphene/hBN 

heterostructures is studied. A modified 4×4 transfer matrix method is employed to calculate the 

near-field radiative heat flux (NFRHF) between the media. The numerical results show that the 

NFRHF will decrease when the optic axis of hBN is tilted off the direction of the energy flow for 

bare hBN slabs. The reason is that hyperbolic phonon polaritons (HPPs) excited in the 

hyperbolic bands of Type I are largely suppressed for tilted optic axis though surface phonon 

polaritons can be excited in the hyperbolic bands. On the contrary, the NFRHF between two 

graphene/hBN heterostructures is affected by the coupling of SPPs excited at the 

vacuum/graphene interface with those at the graphene/hBN interface and the formation of a 

hybrid mode, by which the NFRHF is maximum when the hBN slabs are arranged with strong 

in-plane anisotropy of the surface. The results obtained in this work may provide a promising 

way for manipulating near-field radiative heat transfer between anisotropic materials. 
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1. Introduction 

It is well known that the radiative heat flux between two objects in the near-field regime can be 

much larger than that predicted with the Stefan-Boltzmann law owing to the contribution from 

evanescent waves.
1-4

 Especially, the power flux can exceed the blackbody limit by several orders 

in magnitude if surface polaritons or hyperbolic modes can be excited.
5-10

 The enhanced radiative 

heat transfer in the near field has been shown to have promising applications in 

therophotovoltaics,
11-13

 thermal rectification,
14

 noncontact refrigeration,
15

 and thermal 

transistor,
16

 to name a few. 

      Various materials and structures have been proposed to obtain huge near-field radiative heat 

transfer, such as polar materials,
17, 18

 doped silicon,
19-21

 hyperbolic materials,
22-26

 metasurfaces,
27, 

28
 magnetic-optical materials,

29, 30
 and magneto-dielectric uniaxial anisotropic media.

31-33
 A large 

number of artificial hyperbolic metamaterials have been investigated for enhancing near-field 

radiative heat transfer due to their hyperbolic dispersion property for electromagnetic (EM) wave 

propagation, which originates from one of the principal components of their permittivity tensor 

having opposite sign to the other two principal components. However, when the tangential 

wavevector component is larger than π ̸ P (P is the period of the artificial metamaterial), the 

hyperbolic dispersion will not hold any more.
34 

Therefore, there is period limitation for artificial 

metamaterial. In contrast, for natural hyperbolic material, such as hexagonal boron nitride (hBN), 

since the lattice constant is on the order of sub-nanometer, such limitation on the wavevector for 

near-field thermal radiation is negligible. hBN has attracted much attention in near-field radiative 

heat transfer research recently. Zhao et al.
35, 36

 and Shi et al.
37

 studied the enhanced near-field 

radiative heat transfer between multilayer graphene/hBN heterostructures. In their work, the 

optic axis of hBN is considered to be along the energy flow. Liu and Xuan  studied the near-field 
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radiative transfer between two hBN films when the optic axis of the hBN film is perpendicular to 

the direction of the energy flow.
38

 However, the situation becomes much more complicated if the 

optic axis of hBN is neither parallel nor perpendicular to the energy flow direction. Nevertheless, 

the influence of the optic axis orientation of hBN on the near-field radiative heat transfer has not 

been studied yet. 

      In the present study, we numerically investigate the effect of optic axis orientation of hBN on 

the near-field radiative heat transfer between two planar hBN slabs and between two 

graphene/hBN heterostructures. We have developed a modified 44 transfer matrix method that 

circumvents the vector projection operation with the traditional 44 transfer matrix method
39

 and 

combined it with the fluctuation-dissipation theorem (FDT)
9
 to calculate the near-field radiative 

heat flux (NFRHF). By adopting the enhanced transmittance matrix approach
40

, this modified 

4×4 transfer matrix method is capable of calculating the NFRHF between multilayered structures 

while avoiding the problem of numerical overflow when dealing with evanescent waves. The 

effect of optic axis orientation on the NFRHF for both bare hBN slabs and graphene/hBN 

heterostructures are studied and the underlying physical mechanisms are elucidated with the help 

of dispersion relations of surface and volume modes. 

2. Theory and Methods 

As an anisotropic material, the optical response of hBN is related to the orientation of its optic 

axis. In this paper, we studied the near-field radiative heat transfer between a planar emitter and a 

planar receiver separated by a vacuum gap, as shown in Fig. 1. The structures of the emitter and 

the receiver are essentially the same, which consist of bare hBN slabs or graphene-covered hBN 

slabs. For convenience, the optic axis of hBN is considered in the x-z plane of the coordinate 

system xyz and is tilted off the z-axis by angles of 1  and 2  for the emitter and the receiver, 
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respectively.  In addition, the vacuum gap width and the thickness of hBN are denoted by d and 

h, respectively.  

 

Fig. 1 Schematic of near-field radiative heat transfer between two graphene/hBN heterostructures. The optic axis 

(OA) of hBN is in the x-z plane and is tilted off the z-axis by an angle. 

      When the optic axis of hBN is along the z-axis of the coordinate system xyz, its permittivity 

tensor can be expressed as
35-38 
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where ,||m   indicates the component perpendicular or parallel to the optic axis and   is angular 

frequency. The other parameters are 142 58 10TO, .     rad/s, 141 47 10TO, .    rad/s, 

143 03 10LO, .     rad/s, 141 56 10LO, .    rad/s, 4 87, .   , 2 95, .  , 11Γ 9.42 10    rad/s 

and 11

||Γ 7.54 10   rad/s.  One can easily determine from Eq. (1) that the dispersion relation for 

EM waves propagating in hBN exhibits the property of hyperbolicity in two frequency bands: the 

one between 
141.47 10  rad/s and 

141.56 10  rad/s is called the hyperbolic band of Type I, where 
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|| 0   while 0  , while the other between 
142.58 10  rad/s and 

143.03 10 is called the 

hyperbolic band of Type II, where 
|| 0   while 0  .

37,38
 Now if its optic axis is tilted off the 

z-axis by an angle   in the x-z plane, the permittivity tensor of hBN can be expresses as
41
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      Graphene is modeled as a layer of thickness  =0.3 nm with an effective dielectric function
36
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where 0  is the absolute permittivity of vacuum and s  is the sheet conductivity that includes 

the contributions from both the interband and intraband transitions. In the mid- and far-infrared 

region, s is dominated by the intraband transitions and can be approximately written as
36
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where e  is the electron charge,  is the reduced Planck constant,  is the relaxation time, and

 is the chemical potential. 

      Based on the fluctuation-dissipation theorem and the reciprocity of the dyadic Green 

function, the NFRHF between anisotropic media can be expressed as
38,42
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where    , 1Bk T
T e

     is the average energy of a Planck oscillator.   is the azimuth 

angle.  , ,     is called the energy transmission coefficient or the phonon tunneling 

probability, which can be expresses as
42
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where 0 /k c  is the wavevector in vacuum with c  the speed of light in vacuum.   is the 

wavevector component parallel to the x-y plane.
2 2

0zk k   is the wavevector component 

along the z-axis in vacuum. Note that the asterisk denotes conjugate transpose, and Tr( ) takes the 

trace of a matrix. I is a 2×2 unit matrix and  
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(7) 

are the matrices that include the reflection and transmission coefficients for incident s- and p-

polarized plane waves from vacuum to the emitter  or the receiver, respectively. The first and 

second letters of the subscript in each coefficient denotes the polarization state of incident and 

reflected (transmitted) waves, respectively. These coefficients can be obtained by using a 

modified 4×4 transfer matrix method (see the Appendix for detailed description). Note that 
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0T  if the incidence is on a semi-infinite medium. The matrix D  is given by 

 
1

2

1 2
zjk de


 D I R R . 

3. Results and Discussion 

In this work, we set the emitter temperature T1=300 K, the receiver temperature T2=0 K, d= 20 

nm, 370.  eV and 
1310  s. In addition, the tilting angles 

1  and 2  are first assumed as

1 2    . Four cases are investigated and compared to each other: bulk hBN, hBN slab with 

thickness of 50 nm, graphene-covered bulk hBN and graphene-covered hBN slab with thickness 

of 50 nm. The NFRHF as a function of the tilting angle is shown in Fig. 2 for the four cases. One 

can see from Fig. 2(a) that the NFRHF between two bulk hBN slabs (i.e., h ) is larger than 

that between two hBN slabs of 50h  nm at 
o0 . The heat fluxes of both cases decrease with 

the tilting angle, but the decrease is faster for the former than for the latter such that the heat flux 

of the former becomes smaller than that of the latter when   is larger than o65 . On the other 

hand, as shown in Fig. 2(b), the NFRHF between two graphene/hBN heterostructures of h    

is also larger than that between two graphene/hBN heterostructures of h 50 nm. But the heat 

fluxes of these two cases both increase with the tilting angle, and the increase is faster for the 

former than for the latter. In addition, one can find by comparing Fig. 2(b) with Fig. 2(a) that the 

NFRHF between two graphene/hBN heterostructures is larger than that between two bare hBN 

slabs by around one order of magnitude. 
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Fig. 2 NFRHF between (a) two bare hBN slabs and (b) two graphene-covered hBN slabs as a function of the tilting 

angle of hBN optic axis.  

 

      In order to elucidate the effect of the tilting angle of the hBN optic axis on the near-field 

radiative heat transfer between the two media, the corresponding spectral NFRHF is shown in 

Fig. 3 for   equal to 0
o
, 45

o
 and 90

o
, respectively. One can see that the NFRHF between two 

bare hBN slabs is mainly contributed from the two hyperbolic bands, as shown in Figs. 3(a) and 

3(b). For ease of analysis, the dispersion relation for EM wave propagating in bulk hBN is given 

below as
22,23
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where k  and k  denote respectively the wavevector component perpendicular and parallel to the 

optic axis. Note that the expression in Eq. (8) is in a different form from that in Refs. [22, 23], 

because the definitions of   and   are switched. Note also that 
zk k  and 2 2 2

x yk k k    when 

the optic axis is in the z-direction, whereas 
xk k  and 2 2 2

y zk k k    when the optic axis is in the 

x-direction, corresponding to the tilting angle   equal respectively to 0
o
 and 90

o
 in this work. In 

the two hyperbolic bands with opposite signs of   and  , the solutions to Eq. (8) for a given 
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frequency are three-dimensional (3D) open hyperboloids. As a consequence, thermal emission 

waves in hBN are propagating waves for k  and k  far exceeding 0k , which provides more 

channels for photon tunneling and thus greatly enhances the NFRHF compared to that in the 

other frequency bands. These channels for the enhanced NFRHF has previously been termed as 

hyperbolic phonon polaritons (HPPs)
35,36,43

 or hyperbolic modes
22,23

. But the heat flux 

contributed from these two hyperbolic bands is sensitive to the tilting angle of the optic axis. For 

two bulk hBN slabs, the heat flux contributed from the hyperbolic bands of Type I and Type II is 

43.18 and 17.27 kW/m
2
, respectively, when the tilting angle is 0

o
. The contributions from these 

two hyperbolic bands are 22.08 and 24.59 kW/m
2
 when the tilting angle is 45

o
, and are 14.25 and 

21.92 kW/m
2
 when the tilting angle is 90

o
. Therefore, the heat transfer contributed from the 

hyperbolic band of Type I decreases dramatically with the tilting angle while that contributed 

from the hyperbolic band of Type II does not change much. There is significant decrease in the 

heat flux around .   14155 10  rad/s as the tilting angle increases. Besides, there appears a peak 

at .   14285 10  rad/s for 
o= 45  and at .   14296 10  rad/s for 

o=90 . However, for the 

graphene/hBN heterostructures, the spectral NFRHF is greatly enhanced in two much wider 

frequency bands below and between the two hyperbolic bands, as shown in Figs. 3(c) and 3(d). 

This is due to excitation of surface plasmon polaritons (SPPs) at the vacuum/graphene and 

graphene/hBN interfaces. Therefore, the NFRHF between the graphene/hBN heterostructures is 

dominated by SPPs, instead of HPPs. In addition, the excited SPPs can couple with HPPs, 

resulting in the formation of a hybrid mode, to be discussed below. For comparison, the NFRHF 

between two free standing graphene sheets is also shown in Figs. 3(c) and 3(d), which is much 

lower than that between the graphene/hBN heterostructures. Note that from Fig. 3, not much 

change is found for the results when the hBN slab thickness h  is changed from 50 nm to  , 
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which comes from the fact that for 202 d  nm, a thickness of 50 nm is almost large enough for 

a hBN slab to be treated as bulk for near-field radiative heat transfer.  

 

 

 

Fig. 3 Spectral NFRHF between (a) bulk hBN slabs; (b) hBN slabs with thickness of 50 nm; (c) graphene-covered 

bulk hBN slabs; (d) graphene-covered hBN slabs with thickness of 50 nm.  

 

      The underlying mechanism of the effect of the tilted optic axis of hBN can be better 

understood by presenting the energy transmission coefficient   in the xk -
yk  plane. Figures 4(a) 

and 4(b) show the energy transmission coefficient   between two bulk hBN slabs varying with 

the wavevector components xk  and 
yk  at .   14155 10  rad/s when the tilting angle   is equal 

to 0
o
 and 90

o
, respectively. When   is equal to 0

o
, the optic axis is along the z-axis and the 

permittivity tensor of hBN possesses rotational symmetry in the x-y plane, which results in the 
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solutions to Eq. (8) possessing rotational symmetry in the 
xk -

yk  plane. Hence, the energy 

transmission coefficient also exhibits rotational symmetry in the xk -
yk  plane. As shown in Fig. 

4(a), the bright circular region centered at the origin and with radius far exceeding 0k  indicates 

excitation of HPPs in the hBN slabs, which greatly enhances the spectral NFRHF between the 

slabs. However, when   is equal to 90
o
, the optic axis is along the x-axis and the permittivity 

tensor of hBN has no rotational symmetry in the x-y plane in this case. In fact, the projected HPP 

isofrequency surface in the xk -
yk  plane is the region bounded by the hyperbolas corresponding 

to 0zk   in Eq. (8). In addition, it has been shown that hyperbolic surface phonon polaritons 

(HSPhPs), which are resonant modes confined on the surface of hBN, can be excited in this case 

due to the strong anisotropy of the surface, i.e., opposite signs of   and  .
38,43

 The dispersion 

of HSPhPs can, when the values of xk  and 
yk  are far exceeding the wavevector 0k , be written 

concisely as
38
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and those of the hyperbolas corresponding to 0zk   in Eq. (8) are given by 

                                                      
y

x

k

k




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(10b) 

assuming   and   are both real numbers. Considering the values of   and   at 

.   14155 10  rad/s and noting that 1d  , the square roots on the right-hand sides of Eqs. (10a) 

and (10b) are obtained as 0.297 and 0.265, respectively. For comparison, the asymptotes based 

on Eq. (10a) are also added in Fig. 4(b), which are found in excellent agreement with the 

numerical results. Furthermore, since the bright color is full of the region bounded by these two 

lines and the slope in Eq. (10b) is slightly smaller than that in Eq. (10a), it is difficult to 

discriminate the dispersion contours of HPPs from Fig. 4(b). Enhancement of the radiative heat 

transfer may, therefore, result from interaction of excited HSPhPs and HPPs. Nevertheless, the 

enhanced radiative heat transfer in this case is weaker than that due to HPPs alone for 
o0  , as 

seen from Fig. 3(a). Shown in Fig. 4(c) are the contours of the energy transmission coefficient 

for 
o45  , which are very similar to those in Fig. 4(b) except that the angle between the two 

lines bounding the bright color region is larger than that in Fig. 4(b). Therefore, we conclude that 

the enhanced energy transmission between the two hBN slabs for 
o45   may still result from 

interaction of excited HSPhPs and HPPs. This is because the projected HPP isofrequency surface 

in the xk -
yk  plane is still bounded by hyperbolas and HSPhPs can still be excited though they 

satisfy a dispersion relation in a form different from that in Eq. (9). 
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Fig. 4 Energy transmission coefficient between two bulk hBN slabs varying with wavevector components xk  and 

yk  at 1.55×10
14

 rad/s: (a) o  0 ; (b) o  90 ; (c) o  45  

      The energy transmission coefficient distribution at 2.85×10
14

 rad/s for two bulk hBN slabs is 

shown in Figs. 5(a) and 5(b) when the tilting angle is 0
o
 and 90

o
, respectively. This frequency is 

within the hyperbolic band of type II, at which 3.6397 0.1572 j     and 

|| 2.8085 0.0005 j   . Hence, the bright circular region shown in Fig. 5(a) for 
o0   is 

attributed to HPPs. When 
o90  , HSPhPs can be excited due to the strong anisotropy of the 

surface. Keeping in mind that 0   while 0  , and 1 0     while 2 1 0    when the 
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imaginary parts of   and   are neglected in this case. These inequalities give rise to the HSPhP 

dispersion curves being hyperbolas with the two focuses on the ky-axis, which can be determined 

from Eq. (9). Excitation of HSPhPs is clearly shown in Fig. 5(b) by the hyperbolas with focuses 

on the ky-axis. The two dashed lines in this figure also represent the asymptotes of the HSPhPs 

dispersion curves drawn based on Eq. (10a), which are clearly seen to be in excellent agreement 

with the numerical results. Furthermore, the projected HPP isofrequency surface in the xk -
yk  

plane is the region bounded by the hyperbolas that extend in the direction of kx and whose 

asymptotes are still described by Eq. (10b). Enhanced radiative heat transfer due to HPPs is also 

clearly manifested in Fig. 5(b) by the bright color in the region near the origin. Because the 

asymptotes of the HPP hyperbolas described by Eq. (10b) are close to those of HSPhPs in this 

case, they are not shown in Fig. 5(b). Plotted in Fig. 5(c) are the contours of the energy 

transmission coefficient for 
o45  . Similar results to those in Fig. 5(b) are also found except 

that the angle between the asymptotes of the HSPhP dispersion curves becomes smaller while 

that between the asymptotes of the hyperbolas that bound the region for HPPs gets larger. We 

also attribute the enhanced energy transmission in this case to the interaction of excited HSPhPs 

and HPPs, which may be the cause that broadens the HSPhP dispersion curves, as shown in Fig. 

5(c). 
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Fig. 5 Energy transmission coefficient between two bulk hBN slabs varying with wavevector components xk  and 

yk  at 2.85×10
14

 rad/s: (a) o  0 ; (b) o  90 ; (c) o  45  

 

      Figures 6(a) and 6(b) show the energy transmission coefficient   between two bulk hBN 

slabs varying with the wavevector components xk  and 
yk  at .   14296 10  rad/s, which is also 

within the hyperbolic band of type II, when the tilting angle   is equal to 0
o
 and 90

o
, 

respectively. At this frequency, 1.0421 0.0788 j     and
|| 2.8222 0.0004 j   . The energy 

transmission coefficient   distribution shown in Fig. 6(a) is similar to that in Fig. 5(a), owing to 

the contribution from HPPs whose dispersion relation in this case possesses rotational symmetry 
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in the xk -
yk  plane. When 

o  90 , since the relations 
||1 0    and 21 0   are satisfied 

when neglecting the imaginary parts of   and  , HSPhPs can be excited. However, 21   is 

very close to zero in this case. As such, the dispersion curves solved from Eq. (9) is in a 

transitional state from hyperbolas to an ellipse, corresponding to a transitional resonant mode 

from HSPhPs to elliptical surface phonon polaritons (ESPhPs). Figure 6(b) clearly shows this 

situation, which reveals that the dispersion curves at large |
yk | values have changed from 

hyperbolas to be flattened and closed. Similar results have also been obtained by Liu and Xuan.
38

 

In addition, similar to Fig. 5(b), the bright color regions on the two sides of the origin shown in 

Fig. 6(b) manifest enhanced radiative heat transfer due to HPPs. Note that the two dashed lines in 

Fig. 6(b) represent the asymptotes of the HPP hyperbolas and are drawn based on Eq. (10b). 

Those asymptotes based on Eq. (10a) are not shown since, in this case, the resonant mode is in a 

transitional state. Depicted in Fig. 6(c) is the energy transmission coefficient   distribution for 

o45  . Interestingly, the bright color region looks very different from that shown in Fig. 6(b). 

In fact, the bright color region is in an elliptical shape, indicating that the excited surface phonon 

polaritons are ESPhPs, instead of HSPhPs in this case. Therefore, the enhanced radiative heat 

transfer is due to the combined effect of ESPhPs and HPPs. 
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Fig. 6 Energy transmission coefficient between two bulk hBN slabs varying with wavevector components xk  and 

yk  at 2.96×10
14

 rad/s: (a) o  0 ; (b) o  90 ; (c) o  45 . 

 

      It should be pointed out that the above contour plots are only for the energy transmission 

coefficient between two bulk hBN slabs. The results for the NFRHF between two hBN slabs of 

h 50  nm are similar except that the HPP modes are discrete in this case due to wave 

interference effect in the slabs. More importantly, HSPhPs can be excited on both surfaces of the 

slab at large tilting angels, the coupling of which can strengthen the radiative heat transfer. As a 

consequence, the NFRHF between two hBN slabs of h 50 nm can exceed that between two 

bulk hBN slabs, as shown in Fig. 2(a). 
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     The contours of the energy transmission coefficient   between two graphene-covered bulk 

hBN slabs in the xk - 
yk  plane and at .   14100 10  rad/s are shown in Figs. 7(a) and 7(b) for   

equal to 
o0  and 

o90 , respectively. It has been shown that SPPs can be excited at 

vacuum/graphene interface such that the NFRHF between two graphene sheets can be enhanced 

in a broad band.
36

 However, the enhancement is not as significant as shown in Figs. 3(c) and 3(d) 

because the thickness of graphene is too small. For the case of near-field radiative heat transfer 

between two graphene-covered bulk hBN slabs, SPPs can be excited at the graphene/hBN 

interface, besides at the vacuum/graphene interface. Although   and   of hBN are positive at 

.   14100 10  rad/s, the real part of the dielectric function of graphene is negative at this 

frequency. Therefore, the dispersion of SPPs at the graphene/hBN interface can be satisfied, 

which in the case of 
o0   can be written as  

                                           2 2 2 2 2 2 2

0d x y d dk k k                ,                                      (11) 

where d  represents the dielectric function of graphene, as expressed in Eq. (3). The dispersion 

relation shown in Eq. (11) has the property of rotational symmetry in the xk -
yk  plane, so does 

that of SPPs at the vacuum/graphene interface. The enhanced NFRHF shown in Fig. 7(a), 

represented by the bright contours of the energy transmission coefficient  , is due to the 

coupling of SPPs excited at the vacuum/graphene interface and at the graphene/hBN interface. 

Rotational symmetry of the SPP dispersions in the xk -
yk  plane can be clearly observed. In the 

case that 
o90  , though the dispersion of SPPs at the vacuum/graphene interface still retains 

the rotational symmetry in  the xk -
yk  plane, the dispersion of SPPs at the graphene/hBN 

interface, same as in Eq. (9), represents an ellipse with its long axis along 
yk , since 
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7.0531 0.0036 j    and 
|| 3.6763 0.0047 j    at  .   14100 10  rad/s. It can be seen 

clearly in Fig. 7(b) that the inner ring of the bright contours of   indeed exhibits an ellipse with 

its long axis along 
yk  which, due to coupling of SPPs, causes the outer ring deviate from the 

circular shape. Change of the dispersion of SPPs at the graphene/hBN interface with the tilting 

angle   changes the NFRHF, as shown in Figs. 3(c) and 3(d). 

 

Fig. 7 Energy transmission coefficient between two graphene-covered bulk hBN slabs varying with wavevector 

components xk  and yk  at 1.0×10
14

 rad/s: (a) o  0 ; (b) o  90 . 

 

      Similar mechanisms apply to the enhancement of the NFRHF with the graphene coatings at 

other frequencies shown in Figs. 3(c) and 3(d) except for the regions close to the hyperbolic 

bands where SPPs may strongly interact with HPPs to induce the formation of a hybrid mode. 

For example, it can be seen from Figs. 3(c) and 3(d) that the radiative heat flux between the 

graphene/hBN heterostructures at .   14147 10  rad/s is influenced significantly by the tilting 

angle of the optic axis of hBN. This frequency is at the edge of the hyperbolic band of type I so 

that SPPs may interact strongly with HPPs. To see this, we plotted in Figs. 8(a) and 8(b) the 

energy transmission coefficient distribution at 1.47×10
14

 rad/s when the tilting angle   is 0
o
 and 
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90
o
, respectively. At this frequency, 7.6153 0.0084 j    and

|| 8.2826 75.7521 j   , both   

and 
||  are positive. It can be seen from Fig. 8(a) that for 

o0  , the bright contours of the 

energy transmission coefficient   is only concentrated around the origin of the xk -
yk  plane, 

which indicates that the NFRHF is very small in this case and is in accordance with the value 

shown in Fig. 3(c). This small radiative flux is the result of mode repulsion between excited 

SPPs and HPPs supported by the structure.
36

 But when 
o90  , the radiative heat flux is 

significantly enhanced compared to the case of 
o0  , as seen in Fig. 3(c). The corresponding 

contours of the energy transmission coefficient   are shown in Fig. 8(b), which indicate a 

hybrid mode excitation that comes from the coupling of SPPs and HPPs. In fact, HPPs are bulk 

modes whose impact is weak if the thickness of the hBN slab is small. We have checked that the 

distribution of   is very similar to that shown in Fig. 7(b) if the thickness of the hBN slab is on 

the order of 10 nm. As the hBN slab is getting thicker and thicker, the pattern shrinks in the xk  

direction and gradually changes to the hybrid mode pattern shown in Fig. 8(b). The reason is that 

the HPPs become stronger and stronger as the slab thickness increases and they eventually can 

couple with SPPs to form the hybrid mode. Note from Fig. 8(b) that the NFRHF due to HPPs is 

quite weak, which comes from the fact that the imaginary part of   is very large in this case. 
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Fig. 8 Contours of the energy transmission coefficient between graphene-covered bulk hBN at 1.47×10
14

 rad/s: (a) 

o  0 ; (b) o  90 . 

 

      Effect of the tilting angle   on the hybrid mode is further demonstrated in Figs. 9(a) and 

9(b) where the energy transmission coefficient   between two graphene-covered bulk hBN 

slabs at = .  14158 10  rad/s is plotted for   equal to 
o0  and 

o90 , respectively. This frequency is 

beyond but close to the hyperbolic band of type I, at which 7.8360 0.0106 j    and

|| 0.4324 0.0896 j   . Note that 
||  is close to zero in this case. From Fig. 9(a), strong mode 

repulsion is not seen for 
o  0 , and the distribution pattern of   indicates clearly the 

characteristic of coupled SPPs in this case. When 
o  90 , however, the distribution pattern of 

  is tortured dramatically due to the interaction of SPPs and HPPs and the formation of a hybrid 

mode. Especially, the ellipse due to the excited SPPs at the graphene/hBN interface is shrunk 

significantly in the xk  direction and the hyperbolas corresponding to HPPs in the hyperbolic 

band is clearly seen at small | |yk  values.  
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Fig. 9 Contours of the energy transmission coefficient between graphene-covered bulk hBN at 1.58×10
14

 rad/s: (a) 

o  0 ; (b) o  90 . 

 

      Finally, the effect of different tilting angle 1  and 2  on the NFRHF is investigated. The 

results are shown in Figs. 10(a) and 10(b) for the near-field radiative heat transfer between two 

bulk hBN slabs and between two graphene-covered bulk hBN slabs, respectively. It can be seen 

that in both cases maximum NFRHF is obtained when the values of 1  and 2  are equal. 

Furthermore, Fig. 10(a) shows that the largest NFRHF between two bulk hBN slabs is obtained 

when o

1 2 0   , the NFRHF decreases with increase of the tilting angle. In contrast, the 

NFRHF between two graphene-covered bulk hBN slabs is the largest when o

1 2 90   , and it 

decreases with decrease of the tilting angle. In other words, in order to enhance the NFRHF 

between two pure hBN slabs the slabs should be arranged with in-plane isotropy of the surface. 

But for the graphene-cover hBN slabs, the slabs should be arranged with strong in-plane 

anisotropy of the surface. 
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Fig. 10 Effect of different oriented optic axes of hBN on the NFRHF between (a) two bulk hBN slabs and (b) two 

graphene-covered bulk hBN slabs. 

 

4 Conclusion 

We numerically investigated in this work the effect of hBN orientation on the near-field radiative 

heat transfer between two hBN slabs as well as two graphene/hBN heterostructures. A modified 

4×4 transfer matrix method is employed to calculate the NFRHF between anisotropic materials. 

The numerical results show that the largest NFRHF between two bulk hBN slabs is obtained 

when the tilting angles of the optic axes are both equal to 
o0 , and the NFRHF decreases with 

increase of the tilting angle. In contrast, the NFRHF between two graphene-covered bulk hBN 

slabs is the largest when the tilting angles of the optic axes are both equal to 
o90 , and it decreases 

with decrease of the tilting angle. the NFRHF will decrease when the optic axis of hBN is tilted 

off the direction of the energy flow for bare hBN slabs. We showed that hyperbolic phonon 

polaritons (HPPs) excited in the hyperbolic bands of Type I are largely suppressed for tilted optic 

axis though surface phonon polaritons can be excited in the hyperbolic bands. On the contrary, 

the NFRHF between two graphene/hBN heterostructures is affected by the coupling of SPPs 

excited at the vacuum/graphene interface with those at the graphene/hBN interface and the 
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formation of a hybrid mode, by which the NFRHF is maximum when the hBN slabs are arranged 

with strong in-plane anisotropy of the surface. The results obtained in this work may provide a 

promising way for manipulating near-field radiative transfer between anisotropic materials. 
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Appendix: The modified 4×4 transfer matrix method 

In order to calculate the near-field radiative heat transfer, it is necessary to calculate the 

reflection and transmission coefficients at different values of the azimuth angle  . When   is 

not 0
o
, the plane of incidence is rotated off the x-z plane, as shown in Fig. A1. In order to 

simplify the calculation procedure, we calculate the reflection and transmission coefficients in 

the ' ' 'x y z coordinate system for this case. The permittivity tensor in the ' ' 'x y z coordinate 

system can be expressed as 

                                                          
1

xx xy xz

yx yy yz z z

zx zy zz

  

  

  



 
 

 
 
 

T εT ,                                                

(A1) 
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where 
zT  is the coordinate rotational transformation matrix, and ε  is the permittivity tensor of 

any anisotropic material in the xyz coordinate system. 
zT  is given by 

                                                       

cos sin 0

sin cos 0

0 0 1

z

 

 

 
 

  
 
 

T .                                                     

(A2) 

 

Fig. A1 Schematic of the medium and the coordinate systems in this work. The plane of incidence is tilted off the x 

axis by an angle  . 

This technique has been used by Rosa et al.
44, 45

 in their analysis of the Casimir interactions for 

anisotropic magnetodielectric metamaterials. If the incident wave is TM wave, The EM fields in 

the medium can be written with reference to the ' ' 'x y z  coordinate system as the following 

form
44

 

                                            exp ,  where , ,x y zz j t j x U U U   H U U ,                           

(A3) 
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                                              
1 2

0 0 exp ,  where , ,x y zj z j t j x S S S     E S S ,           

(A4) 

where the superscript  of the space variables has been dropped for brevity, and   is the 

wavevector component along the x-axis. The wavevector component along the z-axis is

2 2

0zk k   in vacuum. Substituting Eqs. (A1), (A3), and (A4) into the Maxwell equations and 

setting 0xK k , we can get the following differential equations  

                                                               0

x x

y y

x x

y y

S S

S Sd
k

U Udz

U U

   
   
   
   
      
   

A ,                                                   

(A5) 

where the coefficient matrix is 

                             

2

2

0 1

0 0 1 0

0

0

x zx zz x zy zz x zz

yz zx zz yx yz zy zz x yy x yz zz

xx xz zx zz xy xz zy zz x xz zz

jK jK K

K jK

jK

    

         

         

 
 
 
    
 

   

A .                 

(A6) 

The EM fields in the medium can be described by the eigenvalues and eigenvectors of the 

coefficient matrix A . We first consider a simple case that the structure consists of only one hBN 

slab of thickness d. The EM field vector components in the slab can be expressed as
46
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                                       
2 2

1, 0 1, 2 0

1 1

exp expx m m m m m m

m m

S z w c k q z w c k q z d 



 

      ,                

(A7) 

                                       
2 2

2, 0 2, 2 0

1 1

exp expy m m m m m m

m m

S z w c k q z w c k q z d 



 

      ,              

(A8) 

                                       
2 2

3, 0 3, 2 0

1 1

exp expx m m m m m m

m m

U z w c k q z w c k q z d 



 

      ,              

(A9) 

                                       
2 2

4, 0 4, 2 0

1 1

exp expy m m m m m m

m m

U z w c k q z w c k q z d 



 

      ,            

(A10) 

where 
,i mw  is the element of the eigenvector matrix W  of matrix A . mq  is the eigenvalue of 

matrix A , and the real parts of 1q  and 2q  are negative. 
mc  and 

mc  are unknowns, and can be 

determined by applying the boundary conditions. 

      We calculate the reflection and transmission coefficients by matching the tangential electric 

and magnetic field components at the top surface of the slab as 

                                       

0 0

1 2

0

0

0 0

0 0

1 1 0

z z

pp

psz

j k k j k k

rj

rk k





   
   

                 
   
   

C
W W X

C
                 

(A11) 

and at the bottom surface of the slab as 

                                                 

0

1 2

0

0

0

0

1 0

z

pp

psz

j k k

tj

tk k





 
 

             
 
 

C
W Y W

C
,                        

(A12) 
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where  1 2W W W is the eigenvectors of the matrix A . 
C  and 

C are vectors composed of 

the unknowns, X  is a diagonal matrix with the diagonal elements as  0exp - , 3,4mk q d m  , Y is 

a diagonal matrix with the diagonal elements as  0exp , 1,2mk q d m  .  

      Likewise, when the incident wave is a TE wave, the EM fields in the medium can be written 

as follows: 

                 exp ,  where , ,x x y zz j t jk x S S S  E S S  (A13) 

and        1 2
0 0 exp ,  where , ,x x y zj z j t jk x U U U     H U U .  (A14) 

By substituting Eqs. (A13) and (A14) into the Maxwell equations, the same differential 

equations as those in Eq. (A5) can be obtained with exactly the same coefficient matrix shown in 

Eq. (A6). One can express the fields in the uniaxial medium in the same forms as in Eqs. (A7-

A10) and apply the boundary conditions at the top and bottom surfaces of the slab, which are 

expressed respectively as  

                                     

0

1 2

0 0

0 0

1 0 1

0

0 0

z

sp

ssz z

k k

r

rj k k j k k

j





   
   

                
   
   

C
W W X

C
                 

(A15) 

and                                       

0

1 2

0

0

0 1

0

0

z

sp

ssz

k k

t

tj k k

j





 
 

           
 
 

C
W Y W

C
.                               

(A16) 
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      We extend the above analysis to an arbitrary L-layer structure by matching the tangential 

electric and magnetic field components at each interface. Take incidence of a TM wave for an 

example, all the boundary conditions are  

                           
     

 

 

0 0

1

1 1 1 2 1

0 1

0

0 0

0 0

1 1 0

z z

pp

psz

j k k j k k

rj

rk k





   
                             
   

C
W W X

C
,                 

(A17) 

                                   
     

 

 
     

 

 

1

1 1 1 1 2 1 2

1

l l

l l l l l l

l l

 



    



   
      
         

C C
W Y W W W X

C C
,                     

(A18) 

and                                     

 

 

0

1 2

0

0

0

0

1 0

z

L pp

L L L
pszL

j k k

tj

tk k





 
                     
 

C
W Y W

C
,                    

(A19) 

where 2,3,...,l L . 
 lW ,

 lX  and 
 lY  have the same definition as W , X  and Y described 

above. For each l,      1 2l l l
 
 

W W W . 

      To preempt the numerical instability associated with the inversion of the matrix, we propose 

to adopt the enhanced transmittance matrix approach.
40

 From Eq. (A19), one has 

                                                        
 

 
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1
1

1 2

1

L L

L L L

LL









   
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C f
W Y W t

gC
,                              

(A20) 

where  

                                        pp

ps

t

t

 
  
 

t ,
0 0

1 1

0 0
,

0 1 0

z z

L L

j k k k k

j
 

    
    

   
f g . 

In order to ensure that the matrix to be inverted in Eq. (A20) is numerically stable, we follow the 

procedure by Moharam et al.
40

 and rewrite it as the product of two matrices 

                                                   

 

   

1
1 1

1 2 1 2

0

0

L

L L L L L


  

        
  

Y
W Y W W W

I
.                

(A21) 
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The matrix on the right in the product is well conditioned, and its inversion is numerically stable. 

Therefore, Eq. (A20) can be rearranged as  

                                                                     
 
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1
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C Y a
t

bC I
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(A22) 

where I is the unit matrix and 
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.                           

(A23) 

      We adopt the substitution  
1

L LL

t a Y t  such as Eq. (A22) becomes 
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(A24) 

      Putting Eq. (A24) into Eq. (A18) for l L , we have  
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(A25) 

where  
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(A26) 

      Repeating the above process for all layers, we obtain an equation of the form 
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(A27) 

We can solve Eq. (A27) for 
ppr , 

psr  and 1t , then the transmission coefficients can be obtained 

as 
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The process is basically the same as above for incidence of a TE wave. Hence, we can get all the 

reflection and transmission coefficients using the above 4×4 transfer matrix method. 
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