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4 Sandia Fracture Challenge
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I5 Sandia/NM Predictive Approach

Fit robust plasticity model to calibration test data with
porosity distributions as initial damage

Run many iterations of challenge geometry with many
porosity distributions

Perform statistical analysis on results to enrich result
distributions

SNL/NM Team Members: Kyle Johnson, John Emery, Kurtis Ford,
Joe Bishop, Judy Brown, Chris Hammetter, Spencer Grange

Additional help from Kyle Karlson (SNL/CA)

I



Tension Data Was Taken Using High Throughput Test
6  Method

b)

4mm

r
800

700

°- 6002

500

1.n
0,0 400

21; ▪ 300 '

.E0 200
1.61

100

0  

0

Longitudinal Tensile Tests

5 10 15 20 25 30 35 40 45 50 55

Engineering Strain [VICGauge0] (%)

• B.L. Boyce et al., "Extreme-value statistics reveal rare failure-
critical defects in additive manufacturing", Advanced Engineering
Materials, 2017.

• B.C. Salzbrenner et al., "High-throughput stochastic tensile
performance of additively manufactured stainless steel", Journal
of Materials Processing Technology, 2017.



7 BCJ Material Model

• Temperature and history-dependent viscoplastic internal state variable model

• Stress is dependent on damage 0 and evolves according to

ci- = 
(EE 1 -( (P) 

o- + E (1 - ow - Ep)

• Flow rule includes yield stress and internal state variables for hardening and damage

1 Cje (h K

ep = fsinhn (-- ' 
Y 

1

• The isotropic hardening variable K evolves in a hardening minus recovery form.

k = K -11 + (H (9) — Rd(9)K)ep
11

(Bammann et al. 1993, Brown and Bammann 2012)



I8 AM Parts Can Contain Many Pores

3D liCT surface render

5000

4000

3000

2000

1000

• •

A .
1;

-g .44 '" '7' ' •
O 5001 00C1 500

X Lurn

6000

5000

4000

E
•—• 3000

N

2000

•

e
`?'••
-• •

1000 oh .. A

• :(- 1.: .
... : '. ? .:
, * qb I ... • 0.• •

-Z-.- P8# t *-..•1. ' .':- .. • .
.-. 0 5001 004350124.000

X [ prn A

3D liCT internal porosity
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9 Incorporating porosity as initial damage

Void Nucleation 

Fine scale voids (< 1p.m) indicate
nucleation

r/ep

EHT = 10.00 kV IND = 18.8 mm Signal A = SE2

Void Growth 

4 
— J1] 

27 J3 
+ N2

J3 
+

2

Pre-existing voids captured by void growth

3 P (1 - 21n + 1 a,

2e 1 — 
(1 °)Tn+1 sinh [

2 (2m — 1) (p)1
(b =

EHT = 10.00 kV WD = 18.8 min Signal A = SE2

(Horstemeyer a Gokhale 1999)



10 Porosity Distribution Directly Mapped to Mesh
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11 Tensile Calibration Results
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12 Calibration Results With Void Growth and Nucleation
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• Each test has unique parameter set
• Challenge geometry was simulated using all 20 parameter sets



Porosity Distribution Directly Mapped to Challenge
13  Geometry
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14 Performance Prediction and Experiments
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21 Participant Predictions Covered A Wide Range of
15 Responses

21 Predictions and Bounds with Exp. Average and Bounds 21 Nominal Predictions with Exp. Average and Bounds
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Blind Predictions of Force-Displacement Curves
16 Compare Reasonably Well With Experiments
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17 Inherent Strain Model for Residual Stress Prediction

• Part size is challenging for full solution
• Inherent strain method developed for

weld stress prediction
• (Ueda, Fukuda, Tanigawa 1979;

Ueda, Kim, Yuan 1980, Hill and
Nelson 1995)

• Strain tensor is applied in layers over
time
• Quick approximation for distortion

and stress
• Does not capture local variations due to

different thermal gradients
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18 Residual Stress Decreases Force Prediction

As-built Residual Stress
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19  Summary

• Continuum scale modeling of AM part performance compared well in blind
predictions

• Significant scatter in tension data may not translate to scatter in part
performance

• Crack initiation and propagation was correctly predicted

• Porosity can possibly be accounted for using a damage formulation

Future Work

• Investigate effects of surface roughness

• Add rate dependence to model


