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 316L AM Part
* Goal: Predict Tensile Failure
» 21 Participant Teams

EHT=1000kv ~ WD=188mm  Signal A= SE2




s | Sandia/NM Predictive Approach

1. Fit robust plasticity model to calibration test data with
porosity distributions as initial damage

2. Run many iterations of challenge geometry with many
porosity distributions

3. Perform statistical analysis on results to enrich result
distributions

SNL/NM Team Members: Kyle Johnson, John Emery, Kurtis Ford,
Joe Bishop, Judy Brown, Chris Hammetter, Spencer Grange

Additional help from Kyle Karlson (SNL/CA)




Tension Data Was Taken Using High Throughput Test —
.| Method .W

Longitudinal Tensile Tests
800

700

(o2}
o
o
\

|

v
o
o

iy

400

DIC Camera

300 '

200

Engineeering Stress (MPa)

100

0 L1\l !
0O 5 10 15 20 25 30 35 40 45 50 55
Engineering Strain [VICGauge0] (%)

 B.L. Boyce et al., “Extreme-value statistics reveal rare failure-
critical defects in additive manufacturing”, Advanced Engineering
Materials, 2017.

« B.C. Salzbrenner et al., “High-throughput stochastic tensile
performance of additively manufactured stainless steel”, Journal
of Materials Processing Technology, 2017.




71 BCJ Material Model

= Temperature and history-dependent viscoplastic internal state variable model
Stress is dependent on damage ¢ and evolves according to

. _(E_ ¢ .
O'=(E—1_¢>O'+E(1—(]5)(E—Ep)

Flow rule includes yield stress and internal state variables for hardening and damage

T _
1_
€y, = fsinh™ (+— 1)

The isotropic hardening variable kK evolves in a hardening minus recovery form.

K = K% + (H(8) — Rz (B)K)é,

(Bammann et al. 1993, Brown and Bammann 2012)




AM Parts Can Contain Many Pores
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3D uCT surface render 3D uCT internal porosity

Tremendous variation in pore content from sample to sample
Pore locations reminiscent of AM laser raster pattern

J. Madison, T. Ivanoff, O. Underwood
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Incorporating porosity as initial damage

EHT =10.00 kV

WD =18.8 mm

Signal A = SE2

30 ym

EHT =10.00 kV

WD =18.8 mm

Signal A = SE2

Width = 670.9 um

Void Nucleation

Fine scale voids (< 1um) indicate

nucleation
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Void Growth

Pre-existing voids captured by void growth

.2, 1-1—-¢)™ . [2@2m—1) (p)
¢ = 3°p 1—¢)™ S 2m+1 o,

(Horstemeyer & Gokhale 1999)




w0 | Porosity Distribution Directly Mapped to Mesh
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Tensile Calibration Results
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2 | Calibration Results With Void Growth and Nucleation
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« Each test has unique parameter set
» Challenge geometry was simulated using all 20 parameter sets




Porosity Distribution Directly Mapped to Challenge
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iu | Performance Prediction and Experiments

Sample A21
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Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




2| Participant Predictions Covered A Wide Range of

s | Responses

21 Predictions and Bounds with Exp. Average and Bounds

SFC3 Challenge Geometry Load vs. Displacement*
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21 Nominal Predictions with Exp. Average and Bounds

SFC3 Challenge Geometry Load vs. Displacement*
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Blind Predictions of Force-Displacement Curves
s | Compare Reasonably Well With Experiments
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71 Inherent Strain Model for Residual Stress Prediction

Part size is challenging for full solution
Inherent strain method developed for
weld stress prediction
* (Ueda, Fukuda, Tanigawa 1979;
Ueda, Kim, Yuan 1980, Hill and
Nelson 1995)
Strain tensor is applied in layers over
time
* Quick approximation for distortion
and stress
Does not capture local variations due to
different thermal gradients
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18 I Residual Stress Decreases Force Prediction
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oI Summary

* Continuum scale modeling of AM part performance compared well in blind
predictions

* Significant scatter in tension data may not translate to scatter in part
performance

* Crack initiation and propagation was correctly predicted

* Porosity can possibly be accounted for using a damage formulation

Future Work

* Investigate effects of surface roughness

* Add rate dependence to model




