

Fast Triangle Counting Using Cilk

IEEE High Performance Extreme Computing Conference, HPEC'18
September 26, 2018

Abdurrahman Yaşar^{1,2}, Sivasankaran Rajamanickam¹, Michael Wolf¹, Jonathan Berry¹ and Ümit V. Çatalyürek²

¹*Center for Computing Research, Sandia National Laboratories, Albuquerque*

²*Computational Science and Engineering, Georgia Institute of Technology*

. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Key Takeaways

KKTri was one of the “2017 Graph Challenge” champions. This work (KKTri-Cilk) is based on Cilk.

- KKTri-Cilk **surpasses 10^9 for the rate measure on a single multicore node** for the first time. Typical results for the fastest submissions in 2017 Graph Challenge were on the order of 10^8
 - Resolves scalability drawbacks of KKTri’s OpenMP implementation for larger problems and hyperthreads usage.
- KKTri-Cilk is **faster than OpenMP implementation on 63 of 78 instances**
- KKTri-Cilk is also **faster than state-of-the-art graph based implementation** (up to 7x)
- We show that the **scalability of the triangle counting is bounded by $O(n)$** when the 4/3-moment is bounded
- We show correlation between the high rates achieved and the **conductance of the graph**

Overview

1. Approach
2. Experimental Evaluation
3. Conclusion

KKTri-Cilk Algorithm

Parallelization strategy and the runtime is the main difference between KKTri-Cilk and KKTri.

The outline of the **KKTri-Cilk** algorithm:

1. **Rows are ordered** based on number of non-zeros depending on the algorithm:
 - LL: Rows are sorted in decreasing order of degree
 - LU: Rows are sorted in increasing order of degree
2. Partitions' borders are decided by trying to **balance number of non-zeros** within them.
3. Each **partition is spawned (in parallel) as a task**.
 - Partitions are disjoint; they can be executed in parallel.
 - A task runs matrix matrix multiplication to count the number of triangles within a partition.

Matrix form

								P_0
								P_0
								P_1
								P_1
								P_2
								P_2
								P_3
								P_3

LL Algorithm (L matrix)

7								P_0
6								P_0
2								P_0
1		1						P_0
5			1					P_0
4					1			P_1
3						1		P_2
0							1	P_3

LU Algorithm (U matrix)

0								P_0
3								P_0
4								P_0
5								P_1
1								P_2
2								P_2
6								P_3
7								P_3

KKTri-Cilk Algorithm: Tasks and matrix multiplication

Each task does a matrix multiplication on its partition.

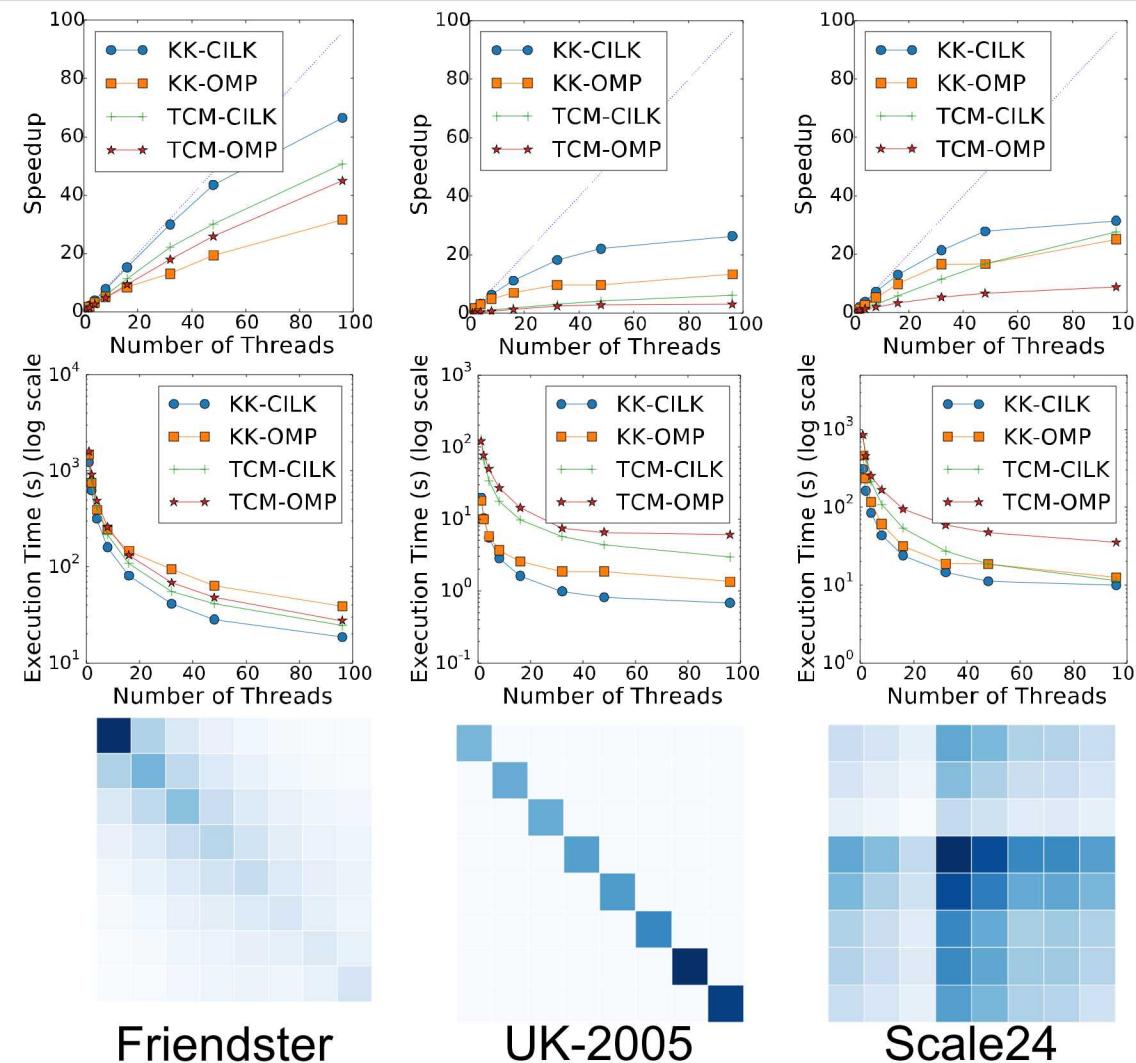
- **Linear algebra-based formulation:** sparse matrix-matrix multiplication followed by an element-wise matrix multiplication
- Using the **rightmost matrix as a mask** for the SpGEMM avoids explicitly storing all the non-zeros resulting from the multiplication.
- **Two linear-algebra based formulations** of triangle counting are implemented: $LU = (L \cdot U) \cdot L$ and $LL = (L \cdot L) \cdot L$.
- KKTri-Cilk implements an **in-place masking strategy** to reduce number of operations and also memory movement.

Experimental Setup

Three architectures with multicore processors. Intel compiler ([icpc](#)) version [18.1.163](#) is used to compile both KKTri and TCM codes. [2 hyperthreads](#) for Skylake and Haswell architectures are used.

	Server 1	Server 2	Server 3
Code Name	Skylake	Haswell	KNL
Model	Intel Xeon Platinum 8160	Intel Xeon E7-4850 v3	Intel Xeon Phi 7250
Cores/Freq.	$2 \times 24/2.1\text{GHz}$	$4 \times 14/2.2\text{GHz}$	$4 \times 68/1.4\text{GHz}$
Cache/Mem	33MB/196GB	35MB/2TB	1(MB)/16GB

Strong Scaling Experiments



KKTri-Cilk **scales the best** in all three problems

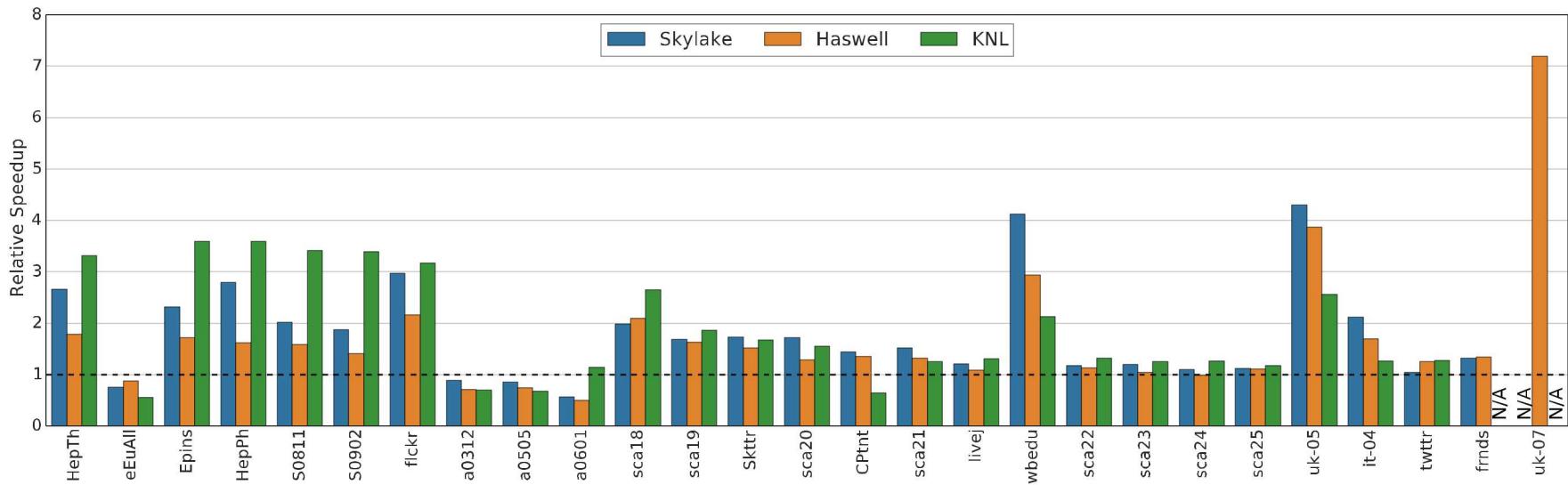
uk-2005 graph has a very good ordering: highly local computations (**best rate**).

scale24 graph has a very random distribution of the non-zeros. (**Poor cache usage**)

Friendster graph's distribution is in between (**best scalability**).

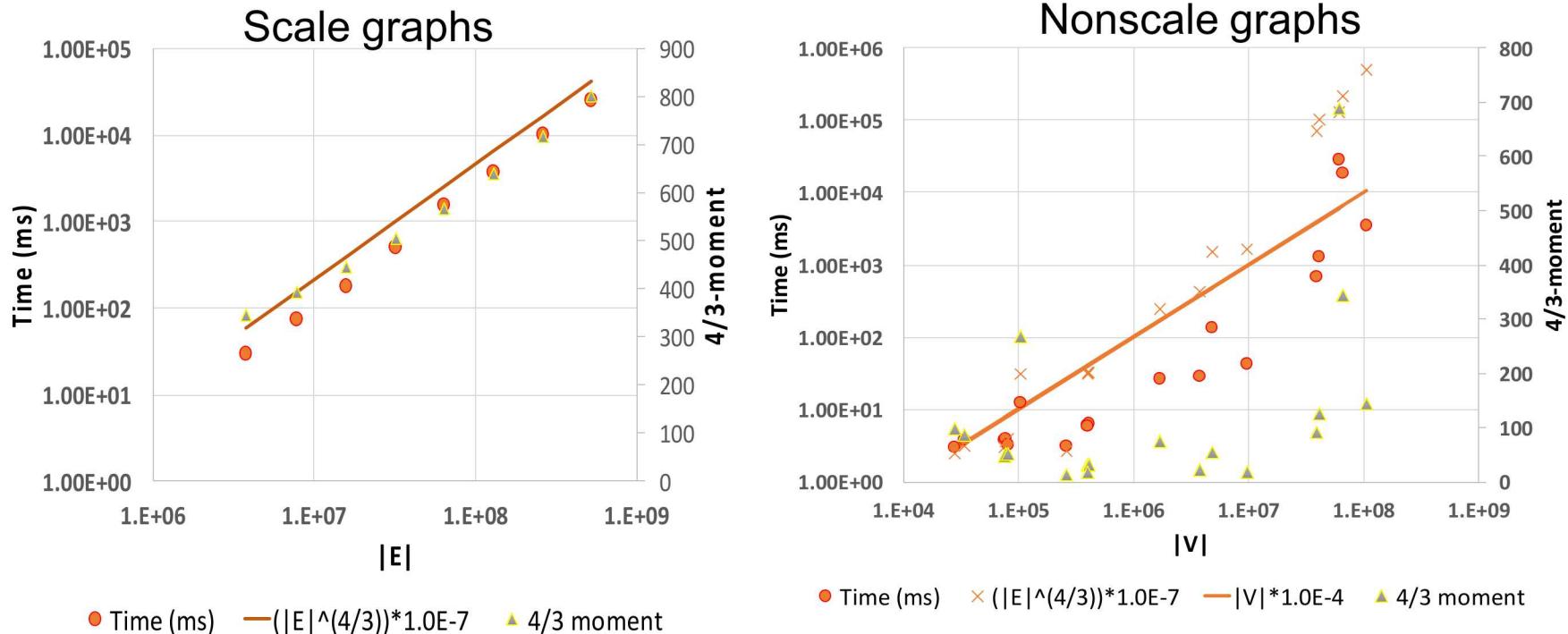
Scaling is with respect to the **best sequential execution time**.

Relative Speedup Experiments



- Relative speedup in **3 architectures** compared to TCM.
- KKTri outperforms TCM in **23 of 27** cases.
- KKTri can achieve up to **7x speedup** on graphs that have a good natural ordering such as wb-edu, uk-2005, and uk-2007

Scalability of Triangle Counting



Correlation coefficient between triangle counting time per vertex/edge and the $E^{4/3}$ or $4/3$ -moment

Graph Type	Time-per-vertex		Time-per-edge	
	$E^{4/3}$	$4/3$ -moment	$E^{4/3}$	$4/3$ -moment
Scale graphs	0.90	0.98	0.89	0.98
Nonscale graphs	0.26	0.95	0.02	0.76

Conclusion

- KKTri-Cilk **surpasses 10^9 for the rate measure on a single multicore node** for the first time
- KKTri-Cilk is **faster than OpenMP implementation on 63 of 78 instances**
- KKTri-Cilk is also **faster than state-of-the-art graph based implementation** (up to 7x)
- We show that the **scalability of the triangle counting is bounded by $O(n)$** when the 4/3-moment is bounded
- We show correlation between the high rates achieved and the **conductance of the graph**

We plan to explore the use of the Cilk implementation for other algorithms such as “k-truss” computation.

Thanks!

- For more information
 - Email ayasar@gatech.edu srajama@sandia.gov
 - Visit tda.gatech.edu, www.sandia.gov/~srajama

Backup

Conductance and 4/3-moment

- Conductance
 - Conductance is defined as the ratio between the number of non-zeros in a partition where rows of their column indices appear in different partitions, and total number of non-zeros within that partition.
 - We use the average of the conductance of 16-way 7 partition to study the locality of a graph
- 4/3-moment
 - $E[d_v^{4/3}] = \frac{1}{n} \sum_v d_v^{4/3}$, where d_v is the degree of a vertex v , and n the number of vertices