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Outline

■ Precision sensing with atom interferometers

■ Sandia atom interferometer efforts
■ Single atom interferometer

■ Compact atom interferometer for field use

■ Toward an atom interferometer with
entangled spins

■ Rydberg-dressed physics and entanglement

■ Error budget and outlook
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Light-pulse atom interferometers
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Photograph by Charles Watkins, White House photographer
Text by GB

Superb gyroscopes and gravity
gradiometers demonstrated as well
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Applications of atom interferometer sensors

• Al Gravimeter
10 m tower

• A. Peters et al, Metrologia 38, (2001) Prof. Kasevich
• Capable of 20 nano-g in 1.3 s Stanford

• Recent tower work infers pico-g level per shot  ►

• Performance far exceeds commercial Nav. Grade

• Al Gyro

• D. Durfee et al, PRL 97, (2006)

• Short-term stability —3µDeg/hr1/2

• High-accuracy navigation grade
< 700eg/hr bias stability

• Performance exceeds commercial Nav. Grade

• Al Gradiometer

• Aa=4 nano-g Hz-112, Biedermann, PRA 2015

• Yale, 2002 (Fixler PhD thesis); Fixler, Science,

2007.

• More recent: Florence, Nature, 2014
Precision 6G/G— 7.7x10-5

Systematic uncertainty 6.2x10-5

• CODATA 2014 relative uncertainty: 4.7x10-5

Stanford gradiometer—G.B. and many others

 ►
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Inertial measurements

Mass-spring accelerometer

x(t)

k
+

Inertial reference

platform

Free-fall accelerometer

Atom interferometers
• Inertial reference: laser-cooled atoms falling freely
• Positioning: laser ranging
• Truly accurate, turn-on calibration

platform
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An incomplete map of AI efforts
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Mobile atom interferometer
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Micro-g atom interferometers

©Noyespaca---

Power supply, laser
amplifier, free-space Fibre laser sources,

optical bench control electronics

Altitude (m)

8,500

7,500

6,000

R. Geiger, et al. , Nat.
Commun. 2, 474 (2011)

Science chamber
in its magnetic shield

11.9rn
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DLR
program

Successful
BEC in flight,
Jan. 2017

2.8 m

Science
Definition

Sept 2012

CAL Mission Overview

Development

2012-2017

Delivery

Apr 2017

Sequence Control
with Ground via
MSS

Data to MSFC
via White
sand.

Launch in
Pressurized

Cargo Vehicle in
soft stowage
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Launch

Aug 2017
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Cold Atom Lab, ISS, coldatomlab.jpl.nasa.gov

AI Gravitational Wave
Detector (20??)

Mark Kasevich, group website, Stanford

J. M. Hogan, et al., Gen. Rel. Grav. (2011)
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State-of-the-art Atom Interferometer instrumentation

100 kg, 300 W, 50 ng/All-lz

NASA/JPL ISS CAL

U.K. University of Birmingham
gravity imager

.111111111111

AOSense gravimeter
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Inertial Navigation

Basic idea:

x(t) = fl a(t) dt

Uncertainty in a drives uncertainty in x

Gyroscope gives
heading information

Estimated industry size 10 Billion/year

Applications 
• Space
• Marine
• UAVs
• Airliners_

Concorde: Wikipedia commons

Tactical, MEMs Navigation, HRG Strategic, ESG Atomic

stability
 ►
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Applications
Single spin 
coherence 

Quantum Fourier trr

(2FT
1

W

Sr lattice clock, Ye lab JILA
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Quantum simulation

Entangling 
interactions

Frustrated magnetism

irge-scale/rapid
itanglement for sensing
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AI phase shift: a simple perspective

Use atom to stroboscopically measure
lateral position (optical phase) at three
equal-spaced points in time

cosi = keff •

calculate curvature via finite difference
method

P3/2

A co = col — 2 co2 + co3

...and then

Aco
a)

gr =
keffT2

a)

Pl = — cos(A0 + 00))

Distance
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Simultaneously measure rotation and acceleration

0 vT
Distance along x

Platform acceleration 

2vT

Platform rotation 

AO = keff • (aT2 — 2(i; x 6)T2)

2v T

Santla
!Mond
laboratories
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Stimulated Raman transition
Laser configuration
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AI phase shift

Interferometer Recoil diagram
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AO = — 202 + 03

— keit • (eiT2 — 2(f; x 6)T2)

Interferometer
transition probability

(4 2 = (1 cos AO)
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State detection

F=4
0 0 5 1

phase/2%

cc
z

Video by Xinan Wu, Stanford

Radiation pressure spatially
separates F=3 and F=4 atoms
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Biedermann, et al., Opt. Lett. 2007
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Free-space matterwave interference

with a single atom

938 nal
laser

fl uorescence
fiber-coupled
to APD

2

3

• . Otopri• 
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wavepacket trajecto
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0

o -2
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Building fringe one atom at a time

• 1 atom per phase through
interferometer.

eff • 
. 
-Whf

Hirnt fief"

Scan laser phase
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National
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Parazzoli, et al., "Observation of free-space single-atom matterwave interference", Phys. Rev. Lett. 109, 230401 (2012) 19



Building fringe one atom at a time

o o

N
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• 2 atoms per phase through interferometer

Parazzoli, et al., "Observation of free-space single-atom matterwave interference", Phys. Rev. Lett. 109, 230401 (2012) 20



Building fringe one atom at a time

Al) (rad.) A (rad.)
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7,317 atoms

Parazzoli, et al., "Observation of free-space single-atom matterwave interference", Phys. Rev. Lett. 109 , 230401 (2012) 21



Force resolution of a single atom
interferometer

E. Rasel, Physics 5, 135 (2012) t

-20 .
0 100 26.0 300 '44M 500

nterrogation time (ps)

Parazzoli, et al., Phys. Rev. Lett. 109, 230401 (2012)

g T2
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Force resolution of a single atom
interferometer

E. Rasel, Physics 5, 135 (2012) t
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Parazzoli, et al., Phys. Rev. Lett. 109, 230401 (2012)
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High-bandwidth interferometer
Key features
• small package
• large measurement duty cycle
• high update rate
• reduced average laser power

0.7

0.6

0.5

0.4

03
0

Interferometer signal

2 4 6

Phase (rad)
10 12

600 ng at 50 Hz

Rarnan Bearns

Sande
Mond
laboratories

Probe

Trapping Coils

MOT Bearn

H. J. McGuinness, et al., Appl Phys Lett 100, 011106 (2012). 25



One measurement cycle

Example, (50 Hz)-1 cycle:
• Laser cool 106 atoms (4.3 ms)

• 77 ;----,5p.K
• Release atoms
• Raman pulse sequence
(14 ms, T = 7 ms)

• Detect
• Recapture (1.7 ms)

photodiode

•
Sandia
National
Laboratories
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High bandwidth interferometer results

Operating under dynamics

- LPAI Accel
Episensor 

— 100 Hz -

3

Time (s)

4 5 6
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2000
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Interferometer comparison

•
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H. McGuinness, A. Rakholia, G. Biedermann Appl. Phys. Lett. 100, 011102 (2012) 28



Rotation rate limit

Mechanized A.I. Sensor
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What will it take?
Atom interferometer physics

0

0 7

0 6

0 5

0 4

0 3

Acceleration —>

2 4 6 8

Phase (rad)

New project at S N L 

r
U H V vacuum system 

Raman Beams

Dynamic range servo 

(

Custom optomechanics

Sandia
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Control electronics

Trap current

Repump Intensity

Depump Intensity

Raman Intensity

Probe intensity

Agile & stable laser system 

H. J. McGuinness, et al., Appl Phys Lett 100, 011106 (2012). 3 0



A multi-channel laser system front end

Packaging of 4-channel design Automated wire-bonding
NOW 10111111e7

,,„ 111, 1111 lo
11111W-111"1111TITITIMITITIPTIlfill 110111 

mo
/U/0
urn

140
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A nanofiber guide for matterwaves
Atom Interferometer guided via

tapered optical fiber (TOF)
Raman

Red-detuned
Blue-detuned

• Analog of fiber optics for light
• Guide atoms near surfaces

• Casimir-Polder effect
• Constrain 5th force theories

Atoms
guided here

0.5

OA

0- 03
-a

g 02
0.1

Calculated intensity
distribution
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Trap depth vs. fiber diameter

600.0 700.0

Fiber diam

1000.0



A nanofiber guide for matterwaves

Stitched images of a 15 micron diameter fiber .1

Sandia nanofiber rig—NEW

Stitched images of a TOF

• Fiber 1
• Fiber 2
• Fiber 3
* Fiber 4

Fiber 5

4 6 8 10 12 14 16 18 20 22

Fiber Axis [mm]
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Al operated with entangled atoms
Single atom

1g ± le) 7rt2 7r 7/ 2 (14)
• • 

cos 01

T T 01 = K • a T2

Two entangled atoms

Igg) + 1 l ee,

'\/

San&
National
laboratories

7 7/2 (II) — cos 02
 • •
T T 02 = K • (al + a2) T2

N entangled atoms (H)
Ig - • - g) ± le - - - e) 

7 7/2
•

-\/ T T ON

KIT) (-1)N1

COS 0 N

N

a=1

a, T2

35



New pulse sequences for Al operation

Al with Doppler-sensitive initial entangled state

7r 7/2

p hK
19, 13

k 2

kl

Raman beam configurations for K and -K pulses

- k2 = K

- k2 = -K

k2

k1

Sandia
National
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Al with Doppler-free initial entangled state

and two additional pulses: Tr(K) and Tr(-K)

7F 7r7r(-K) ( -K)
T

g,p) +

13)
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Effect of temperature

1 .0

0.5

>,
2 0.0
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N = # atoms 

Sandia
National
Laboratories

2.0 2.5  3.0

Phase Shift (rad.)
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In these simulations
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Applications
Quantum simulation

N

Hp = Lhicyz(i
i,

Pairwise entangling gates
between two neutral atoms Goal of our research 

Achieve exquisite
control of interactions

Sandia
National
Laboratories

Frustrated magnetism

Large-scale/rapid
entanglement for sensing



Interaction between neutral atoms

J,,, cc J2 /u

Atom 1 Atom 2

• Interaction between ground state atoms is small -100 Hz
• Thermal energy scales too large (e.g., QSIM)
• Long gate times (e.g., QIP)

One solution: use Rydberg states

Sandia
National
Laboratories

S. Trotzky et aL, Science 319, 295-299 (2008)

I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267-276 (2012)
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Interaction between neutral atoms

Valence electron
in Rydberg state

co•

orbital radius a n2

Valence electron
in Rydberg state

• Excite valence electron to Rydberg state nearly ionized
• Atom becomes highly polarizable strong interactions

jl

Sandia
National
Laboratories
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Interaction between neutral atoms

d1

van der Waals interaction

Parameter scaling 

van der Waals

U nil

Lifetime

(X 71

DC polarizability

n7

• Even the presence of another atom can cause a massive response >> 10 MHz
• Induced Electric Dipole-Dipole Interaction oc 1 / r6

Sandia
National
Laboratories

Entanglement demonstrations
• Madison: Phys. Rev. Lett. 104, 010503 (2010)
• Paris: Phys. Rev. Lett. 104, 010502 (2010)
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Rydberg blockade—the nitty gritty
-A
d2

Weighted Rydberg Energy levels: Excitation from ground-state to 64P3/2
x-polarized light; B= 4.8 G; E = 6.4 V/m;
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We want something

8 10 smooth and tunable

Phys. Rev. A 89, 033416 (2014) 42



Direct Rydberg Rydberg-Dressed

Ground to 64P3/2, x-polarized, B=4.8 G, E = 6.4 V/m
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Apparatus

Tweezers

Lens
\

.

Rydberg laser
(into page)

.

Raman laser
(out of page)

igillmi Atoms

\ f
Electrodes (2 of 8)

J. Lee, G.B., I.D., et al.,Phys. Rev. A. 95, 041801(R), (2017) 44



Rydberg Rabi oscillations with 318 nm laser
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Creating Rydberg-Dressed states

A

QL

.....

J=3}AL3
r)

319 n m
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Light-shift Hamiltonian 

H = 11 -20L
2
( 

ili,

h ni
A =

4 AL
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Creating Rydberg-Dressed states
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1-atom Rydberg-dressed states
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Dressed F=4 state Autler-Townes splitting
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Rydberg-Dressed interaction
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2-atom Rydberg-dressed states
Microwave spectrum
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Extending to N atoms symmetric
Analogous to Jaynes-Cummings Ladder
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Sample Control Task

• Create a 7-atom cat state:

0.5

10,g>
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4 Milk
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GO

0)

I6,r>

16,r> 10,g>
I6,r> I0,g>

• Find the sequence of microwave phases that does this with maximum fidelity
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Arbitrary control
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T. Keating et al., Phys. Rev. Lett 117, 213601 (2016)
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control

The nonlinearity of the JCM, together with externally applied fields
makes the system fully controllable on the symmetric Dicke
space; we can generate an arbitrary superposition state.
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Creating entanglement with a single step
The "spin-flip blockade"
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Creating entanglement with a single step
The "spin-flip blockade"
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Spin-flip blockade

Verify the entanglement via parity measurements
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1. Prepare Bell state
2. Apply global 7/2 with

given phase
3. Measure parity Q
4. Obtain bound on

fidelity =0.81(2)
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Generating Entanglement

Phase:
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Simulated CPHASE gate fidelities
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• Motional errors set a high
floor on error for the single-
beam scheme.

limited by the much smaller

1.0 1.5 2.0 2.5 3.0 photon scattering rate.
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Dressed CPHASE gate
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Error budget for CPHASE gate
Error budget: informing an experimental strategy

• Trace over external parameters to calculate effect on

state fidelity, using measured parameters.

Fidelity = 0( , tarl, 0out ' , 11)tar)

BEI MI

LO noise

State purity

Atomic position spread

Wave-packet overlap

Atomic velocity spread

318 nm Laser frequency noise

Spontaneous emission

318 nm laser amplitude noise

delity
reduction

7/2 J 4i- J 7/2
)

100),H 
n
ll_,{ilpout)}
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Raman laser noise,

Noise: 318 nm Laser noise,
Atomic motion, etc.

t T

10% ±0.1%(stat.) Clean Raman laser/pWave cavity
±2%(sys.)

<30k

3%±0.5%

<0.1%

<0.1%

0.2%±0.1 %

Clean Raman laser/pWave cavity

Sideband cooling to ground state

Sideband cooling to ground state

Sideband cooling to ground state

Pre-stabilized seed lasers, different
detuning, dynamical decoupling

0.4%±0.2% Higher principal quantum #

<0.1% Install "noise eater" on laser
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