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Outline LL

" Precision sensing with atom interferometers
= Sandia atom interferometer efforts

= Single atom interferometer
= Compact atom interferometer for field use

" Toward an atom interferometer with
entangled spins

= Rydberg-dressed physics and entanglement

= Error budget and outlook




Light-pulse atom interferometers ) &=
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Stanford »atom interferometer gravimeter ,
Steven Chu. 1990’s Superb gyroscopes and gravity
’ gradiometers demonstrated as well




Applications of atom interferometer sensors

= A| Gravimeter 10 m tower

= A Peters et al, Metrologia 38, (2001) Prof. Kasevich
= Capable of 20 nano-gin1.3s Stanford

= Recent tower work infers pico-g level per shot >
=  Performance far exceeds commercial Nav. Grade

= Al Gyro
= D. Durfee et al, PRL 97, (2006)
= Short-term stability ~3uDeg/hr'/?

= High-accuracy navigation grade
= < 70uDeg/hr bias stability
=  Performance exceeds commercial Nav. Grade

= Al Gradiometer
* Aa=4 nano-g Hz'"/2, Biedermann, PRA 2015

= Yale, 2002 (Fixler PhD thesis); Fixler, Science,
2007.

= More recent: Florence, Nature, 2014

=  Precision 6G/G~ 7.7x10>
=  Systematic uncertainty 6.2x10>

= CODATA 2014 relative uncertainty: 4.7x10




Inertial measurements )

Mass-spring accelerometer Free-fall accelerometer

X(t) X

%
SO

Atomic inertial
Inertial reference reference

platform platform

Atom interferometers

 Inertial reference: laser-cooled atoms falling freely
« Positioning: laser ranging

» Truly accurate, turn-on calibration



An incomplete map of Al efforts @&

Arctic Ocean

| ¢ \ z :
L Birmingham | 7 d
. I e ‘| Hannover
erkeley | . *© _ - s T
y = el gl polond ¢T:Q A f £
i W, : khstan \‘\
Stanford uQuans :
- | AOSense .| Florence "“3‘% ) P oo
NPS Sandia | ... Y, ) |
L 7‘ ”\\'; ""“"'ii}’jgﬂ""‘-;, Gus B - garsia vj—
B Pl T : . u...:;)'\ P T T T D i Catow) AR e ;" . B i T -
JPL e =4 ff”; Nanyang o

Y AC 2 | (
m‘z/‘ 5, STF ORI A S e |

!
Zambla
| & "'(?uzlmh{w!

L @ Il

£ Bolivia o ' » |

- z w oral Sea !

Jwe Madagascar Indian ! !

4 2 ’ Ocean = ‘

(A : = |

’ y Y wa :

Kt o L)% South i i |
LD v Atlantic 5 ; |
gosss { (N Ocean o R ‘
Jcean ( S - |

Argentina |

J {

Tosman Sea |

Tas e New |

Zealind {

Southern
Ocean

~ Google My Maps




Mobile atom interferometer =,

Biedermann, Ph.D. Thesi

2%

s, S

Model
® Measurements

Gravity Gradient Tyy [Eotvos]

-4 2 0 2 4

Distance from outer wall [m]

Wu, Ph.D. Thesis, Stanford, 2009

electronics 9”7x15”

Tunnel exposure



Micro-g atom interferometers
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Power supply, laser ™ S
amplifier, free-space gip, o 1aser sources,

optical bench control electronics | —

6,000
\

R. Geiger, et al. , Nat.
Commun. 2, 474 (2011)

Science chamber
in its magnetic shield

11.9m |

DLR
program

Successful
BEC in flight,

Jan. 2017

CAL Mission Overview

Science - Target
il » il » Wil » QISR o I
Sept 2012 ; he Aug 2017

Pressurized Cargo Vehicle:
Space-X13

Cold Atom Lab, ISS, coldatomlab.jpl.nasa.gov

Al Gravitational Wave
Detector (2077?)

Mark Kasevich, group website, Stanford
J. M. Hogan, et al., Gen. Rel. Grav. (2011)



State-of-the-art Atom Interferometer instrumentation (122,

g
U.K. Univers

.i»ty of Bi;ﬁ;ingham
gravity imager
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NASA/JPL ISS CAL AOSense gravimeter




Inertial Navigation Estimated industry size ~ 10 Billion/year

s

Gyroscope gives
heading information

Concorde: Wikipedia commons

Tactical, MEMs Navigation, HRG Strategic, ESG Atomic
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Applications ) .

Quantum simulation

Single spin
coherence

Entangling
interactions

arge-scale/rapid
tanglement for sensing




Al phase shift: a simple perspective

Use atom to stroboscopically measure Distance "

lateral position (optical phase) at three
equal-spaced points in time I

— Y 0
@, _keﬁ’ "X

calculate curvature via finite difference

method
Ap =@ —20, + ¢, I

...and then
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Simultaneously measure rotation and acceleration (i,
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Ap=k, -(@T* =23 xQ)T?)




Stimulated Raman transition

Laser configuration

atom

@, @,

Relevant energy diagram (Cs)
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Al phase shift )

Interferometer Recoil diagram Transition rules
O (O . .
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7| Netora

State detection
Biedermann, et al., Opt. Lett. 2007
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Video by Xinan Wu, Stanford 10
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Effective Atom Number
Radiation pressure spatially Achieves near atom shot-noise limited
separates F=3 and F=4 atoms performance.
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Free-space matterwave interference e
with a single atom

938 nm L.I.F. at 852 nm

lager dichroic

mirror

/

fluorescence
fiber-coupled

to APD \

wavepacket trajectory

~ Position (um)
o N

APD signal (a.u.)




Building fringe one atom atatime @i,

N=1 « 1 atom per phase through
interferometer.

Counts
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Building fringe one atom atatime @i,
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« 2 atoms per phase through interferometer




Building fringe one atom atatime @i,
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Force resolution of a single atom
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Force resolution of a single atom

Sandia
) Nation
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High-bandwidth interferometer ) .

Key features

« small package
large measurement duty cycle
high update rate
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One measurement cycle 7l

Example, (50 Hz)" cycle:

Laser cool 10 atoms (4.3 ms)
« T=5uK

Release atoms

Raman pulse sequence

(14 ms, T =7 ms)

Detect

Recapture (1.7 ms)

photodiode




High bandwidth interferometer results ) =

Operating under dynamics
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Interferometer comparison

Sensitivity (ug/tHz)
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Rotation rate limit )=,
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What will it take? s

UHV vacuum system

Atom interferometer physics Control electronics

Dynamic range servo
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New project at SNL

Agile & stable laser system

Custom optomechanics




A multi-channel laser system front end ) e,

Packaging of 4-channel design
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A nanofiber guide for matterwaves @&

_ _ Calculated intensity
Atom Interferometer guided via

' ' distribution
tapered optical fiber (TOF)
Raman Atoms

Red-detuned guided here
Blue-detuned

"/ ”

/2

7

Trap depth (mK)

» Analog of fiber optics for light
« Guide atoms near surfaces
« Casimir-Polder effect
« Constrain 5t force theories

0.0

4000 500.0 6000 7000 800.0 9000 1000.0
Fiber diameter (nm)
o



A nanofiber guide for matterwaves @&

Stitched images of a TOF

Sandia nanofiber rig—NEW
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Al operated with entangled atoms )

Single atom
9) + |e) 7r£2 TI 7T£2 (IT) = cos ©4
v T T @1 =K aT2
Two entangled atoms
lgg) + |e€) 7T /2 (II) = cos O
V2 T O, =K. (a; +a)T"
N entangled atoms <H> — cos On
lg...g)+e...e) 7: 7T£2 N
\/5 T T @N =K Z s Y T2

a=1




New pulse sequences for Al operation @&.

Al with Doppler-sensitive initial entangled state Al with Doppler-free initial entangled state
and two additional pulses: m(K) and (-K)

T m(K) w(=K)

,p) + |e, —|—FLKi
l9,P) + |e, P ) )

Raman beam configurations for K and -K pulses

A

ko| | ki — ks =K ko

\
A

ki ki —ky=-K| | kg
|/

A
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Effect of temperature )

N = # atoms

z - f
Dc_!?5 001 — N=2.0 Harmonic
: —— N=3.0 oscillator
~0.5} “ —— N=4.0
' ‘ n=1
| ‘A‘ N n=0
1ol— - — ,_. N= 6.0. o
2.0 2.5 | |
Phase Shift (rad.) In these simulations

(n) =1




Applications

Pairwise entangling gates

between two neutral atoms

!

_U_

Quantum simulation

Goal of our research
Achieve exquisite

control of interactions  Frustrated magnetism

Large-scale/rapid
entanglement for sensing




Interaction between neutral atoms @&,

Atom 1 Atom 2

© ©

 Interaction between ground state atoms is small ~100 Hz
« Thermal energy scales too large (e.g., QSIM)
* Long gate times (e.qg., QIP)

One solution: use Rydberg states

S. Trotzky et al., Science 319, 295-299 (2008)
|. Bloch, J. Dalibard, and S. Nascimbéne, Nat. Phys. 8, 267-276 (2012)




Interaction between neutral atoms @

Valence electron Valence electron
in Rydberg state in Rydberg state

orbital radius a n?

« Excite valence electron to Rydberg state—nearly ionized
* Atom becomes highly polarizable—strong interactions



Interaction between neutral atoms @

Parameter scaling

van der Waals
U x n't

Lifetime

DC polarizability
a(0) cxcn”

van der Waals interaction

» Even the presence of another atom can cause a massive response >> 10 MHz
- Induced Electric Dipole-Dipole Interaction oc 1/ 7°

Entanglement demonstrations
Madison: Phys. Rev. Lett. 104, 010503 (2010)
Paris: Phys. Rev. Lett. 104, 010502 (2010)




Rydberg blockade—the nitty gritty @&

Weighted Rydberg Energy lewels: Excitation from ground-state to 64P3/2
x-polarized light; B=4.8 G; E = 6.4 V/m;

0.7
Ground to 64P3/2, x-polarized, B=4.8 G, E = 6.4 V/m
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Direct Rydberg — Rydberg-Dressed @&z

Ground to 64P3/2, x-polarized, B=4.8 G, E = 6.4 V/m
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Apparatus

Rydberg laser Raman laser
Tweezers  (into page) (out of page)
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Electrodes (2 of 8)




Rydberg Rabi oscillations with 318 nm laser

Direct excitation, measured through loss
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Creating Rydberg-Dressed states =

Light-shift Hamiltonian

p . h (—ZAL QL)
Q; 0
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Energy
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Creating Rydberg-Dressed states ) =,

Ground state response
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1-atom Rydberg-dressed states ) s,

Dressed F=4 state Autler-Townes splitting
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Rydberg-Dressed interaction
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2-atom Rydberg-dressed states )

Microwave spectrum
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Extending to N atoms—symmetric @i,

Analogous to Jaynes-Cummings Ladder
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Sample Control Task

atom cat state:

Create a 7/

Find the sequence of microwave phases that does this with maximum fidelity




Arbitrary control ) =,

T. Keating et al., Phys. Rev. Lett 117, 213601 (2016)

2Zm T T T T T T T T T T
(/2 =5MHz ) =
Oy /27 = 12.5 MHe g
‘&i\r'l‘f"zﬁ = _.;;!.lj :\.[[I}l J =
In) + ’]-) Iglﬁ Dﬂ ngi n.,:v l:ula old ) c:s ) ﬂ‘ﬁ nl.' -'IIS °I9 : |”> 86 + |l>®b
1 Pin = | ——== Time [fis) ; Pout = —————F———
i ﬁ i 3 14

V2

|6.r=

|6, 10.g= [, r=

) QN , . :
A.[9,,0)]= T““”Z(e % O[1),(0]+ €| 0),(1]) = A (cOS[By ()] +sin[ B, ()] ],)
i=1
control
B (2)
The nonlinearity of the JCM, together with externally applied fields
makes the system fully controllable on the symmetric Dicke - @\UNM

space; we can generate an arbitrary superposition state.




Creating entanglement with a single step

The “spin-flip blockade”
”
g
: | 2 excitations
- Ito |F = 4)
o T —
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Creating entanglement with a single step

(0-20,.)/Q

(0 - o,)/ Q

Relative populations

The “spin-flip blockade”

Microwave Rabi oscillations
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Spin-flip blockade )

Verify the entanglement via parity measurements

1 = ¥)=110,1)01,0) x2=0.81 % 0.01
= i - |

|

. Prepare Bell state

. Apply global ©/2 with
given phase
Measure parity Q
Obtain bound on
fidelity =0.81(2)

N —

Parity: O(¢)

B w

10] ® [©)=10,0/p1,1)x2=0.81+0.02

0 1 2 3
Relative phase offset (¢) of n/2 pulse (rad)



Generating Entanglement £,
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Simulated CPHASE gate fidelities ) B,

109
= 0= —» 3 Mt
N | .. _ AP = 6 ~» 0 W
| N g Doppler-sensitive dressing [ 3.7 K
= 10 E ’l. E— =16 pi
u - L ]
* - R T T T T LLL
fj [ *.  Motional errors set a high
= -2 *e floor on error for the single-
5z 107 Doppler-free %24, &
@) - : 2, beam scheme.
- dressing 2204,
I A TN [} "*2%044,6 .
10-3L L/ N4 =" "N * The Doppler-free scheme is
E | | | | | limited by the much smaller
1.0 1.5 20 95 3.0 photon scattering rate.

Gate duration (us)




Dressed CPHASE gate ) i,

~10 us ) = ITT) + 1)
n/2[m/2 V2

/2 [
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Error budget for CPHASE gate ) .

Error budget: informing an experimental strategy Raman laser noise,
NO|Se 318 nm Laser noise,

= Trace over external parameters to calculate effect on Atomic motion, etc.
state fidelity, using measured parameters. /2 ] / ]/n

/2
Fidelity = <¢tarlpout|¢tar> |00) _j_ _I__’ {llpOut»

Pa— po—
T T
LO noise 10% +0.1%(stat.) Clean Raman laser/uyWave cavity
+2%(sys.)
State purity <3% Clean Raman laser/yWave cavity
Atomic position spread 3%+0.5% Sideband cooling to ground state
Wave-packet overlap <0.1% Sideband cooling to ground state
Atomic velocity spread <0.1% Sideband cooling to ground state
318 nm Laser frequency noise  0.2%%0.1% Pre-stabilized seed lasers, different
detuning, dynamical decoupling

Spontaneous emission 0.4%%0.2% Higher principal quantum #
318 nm laser amplitude noise <0.1% Install “noise eater” on laser



CQulC-Sandia Team

Sandia mountains viewed from the Rio
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