

Falls Risk Classification Using Smartphone Based Inertial Sensors and Deep Learning

PRESENTED BY

Matthew Martinez

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 | Falling in Older Adults

Definition of a fall

- A fall is an event that causes a person to rest inadvertently on the floor or another lower level

Each year 2.8 million adults are treated for fall related injuries

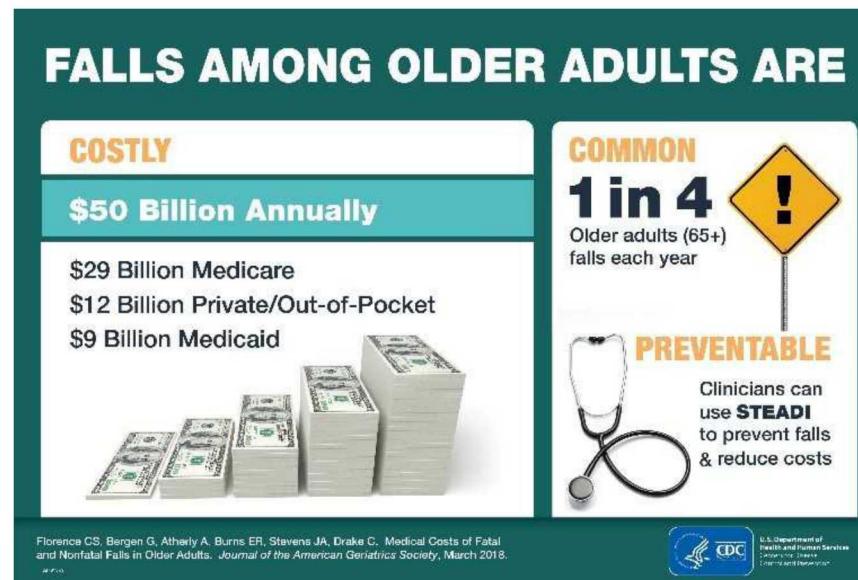
- Broken bones, hip fractures, traumatic brain injury
- Results in 800,000 hospitalization each year
- Medical costs exceed \$50 billion

Emotional Cost of falling

- Increase fear of falling
- Decline in physical activity
- Reduced social interactions
- Depression

Falls Prevention Research

- Research has focused on assessment, prevention, and rehabilitation
- Prior research has focused on factors that attribute to falling
- Qualitative- and mobility-based assessments
- Sensor systems for monitoring gait
- Machine learning for gait analysis



3 Sensors for Gait Analysis

Sensor for Gait Analysis

- 3-D motion capture
- Pressure sensitive walkways
- Inertial sensors

Smartphones for gait measurement

- Suite of sensors ideal for monitoring falls risk
- Microelectromechanical Systems (MEMS) inertial measurement units
 - 6- or 9-axis inertial sensors
- Open development environment
- Powerful processing capabilities
 - Mobile Machine Learning and Deep Learning APIs
- Continuous gait monitoring
 - In-home gait monitoring
 - Removes the need for domain experts to analyze test results

Deep Learning for Biomedical

Machine Learning and Deep Learning for Biomedical

- Detection of influenza epidemics using search engine data
- Skin cancer classification using deep convolutional neural networks
- Diabetic retinopathy detection using deep convolutional neural networks

Deep Learning for Gait Analysis and Gait Disorder Classification

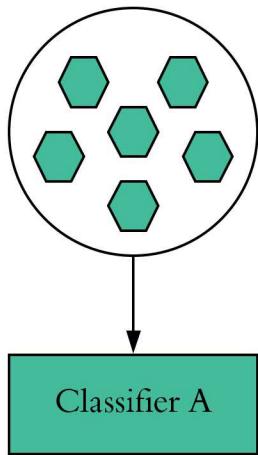
- Gait parameter estimation (stride length, stride width, swing time, etc) foot mounted inertial sensor data (CNN)
- Gait pattern classification from tomography sensor data (CNN)
- Detection of freezing of gait in Parkinson's patients (CNN)

Deep Learning for Falls Risk Classification

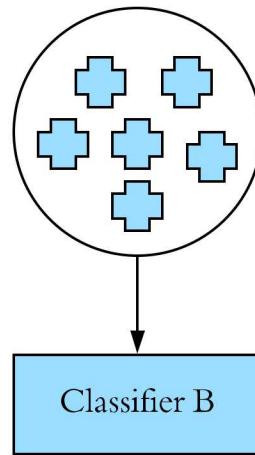
- To our knowledge first to use deep neural networks for falls risk classification from inertial sensor data (6-axis)
- Propose using deep neural networks for learning features related to human motion
- Apply transfer learning to adapt a pre-trained network for falls risk classification

Transfer Learning For Neural Networks

Traditional ML



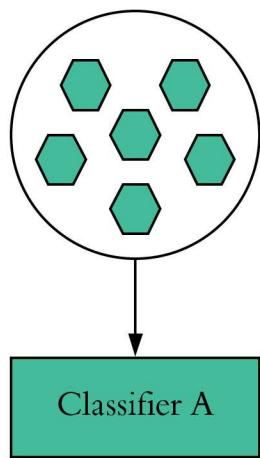
Human
Activity
Recognition



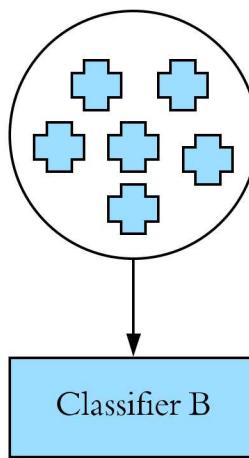
Falls Risk
Classification

Transfer Learning For Neural Networks

Traditional ML

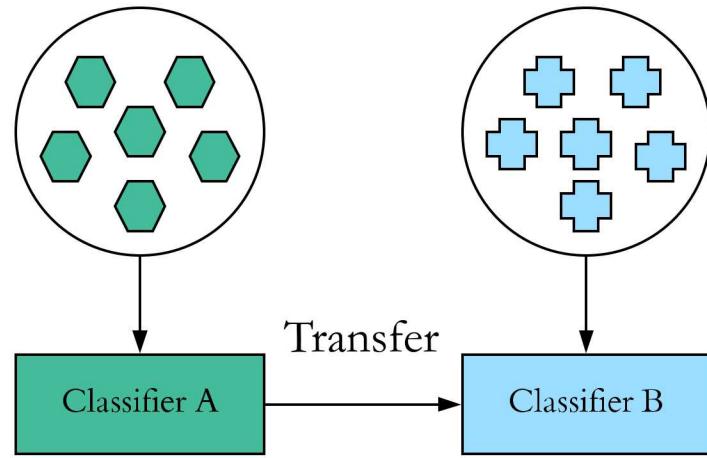


Human
Activity
Recognition



Falls Risk
Classification

Transfer Learning



Human
Activity
Recognition

Falls Risk
Classification

Pedestrian Activity Recognition

Pedestrian Activity Recognition Models

- Trained using publically available large scale human activity recognition dataset
- Human Activity Sensing Corpus (HASC-PAC2016)

Models trained using PyTorch

Trained and evaluated on 2x Nvidia GeForce® Gtx 980 GPUs

Network was trained fully supervised for 250 epochs

Network Parameter Optimization

- Mini-batch gradient descent (batch size of 64 examples)
- minimize cross-entropy loss (measure of difference between probability distributions)
- Adaptive Moment Estimation (Adam) optimizer
- Learning rate of 1e-5
- L^2 regularization with coefficient of 10e-2

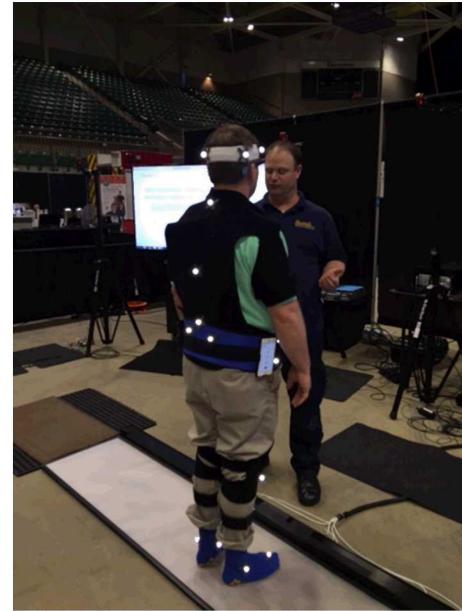
Best Pedestrian Activity Recognition Model achieved accuracy of 98.8%

Older Adult Gait Data

Data collected in partnership with the Electronic Caregiver Company

Sensor System:

- 2x Smartphones with custom apps
- Inertial measurements of gait
- 6 sensor channels, 3-axis accel, 3-axis gyro



Smartphone Data Collection:

- Data collected from 256 participants
- Attached to left and right hip using holster clip and gait belt

Training and Evaluation

Models trained using PyTorch

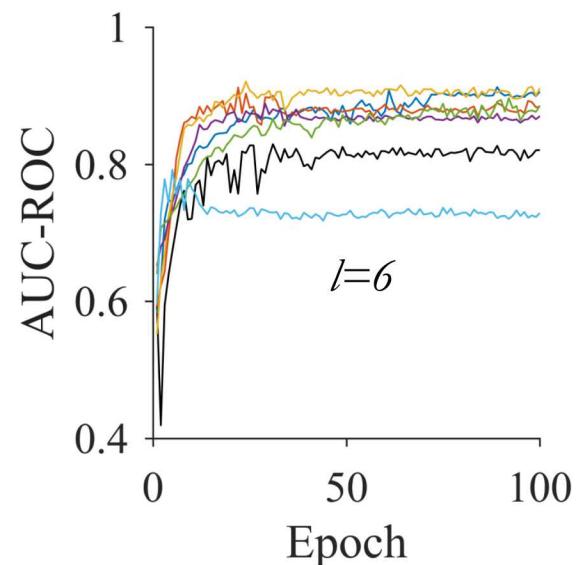
Trained and evaluated on 2x Nvidia GeForce®
Gtx 980 GPUs

Each model was trained fully supervised for
250 epochs

Network Parameter Optimization

- Stratified Mini-batch gradient descent (batch size of 64 examples)
- minimize cross-entropy loss (measure of difference between probability distributions)
- Adaptive Moment Estimation (Adam) optimizer
- Learning Rate Scheduler → decreased learning rate by 10^{-3} after 10 epochs of no improvement
- L^2 regularization with coefficient of 10^{-2}
- 80/20 Train/validation split

Network evaluated using Area Under the
Receiver Operating Characteristic Curve



Conclusions

Summary of Results

- Show how to pre-train a deep neural network to learn feature representation related to human motion using publicly available pedestrian activity data
- Showed how to use a pre-trained deep neural network as feature extractor for falls risk classification
- Showed how to classify falls risk using inertial gait measurements collected from a smartphone
- End-to-end training of a deep neural network for falls risk classification from inertial measurements of gait