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Falling in Older Adults

Definition of a fall

> A fall is an event that causes a person to rest
inadvertently on the floor or another lower level

Each vear 2.8 million adults are treated for fall
related injuries

> Broken bones, hip fractures, traumatic brain injury
> Results in 800,000 hospitalization each year
° Medical costs exceed $50 billion

Emotional Cost of falling
o Increase fear of falling
° Decline in physical activity
° Reduced social interactions
> Depression

Falls Prevention Research

> Research has focused on assessment, prevention, and

rehabilitation

o Prior research has focused on factors that attribute to

talling
° Qualitative- and mobility-based assessments
° Sensor systems for monitoring gait
> Machine learning for gait analysis
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31 Sensors for Gait Analysis

Sensor for Gait Analysis
° 3-D motion capture

° Pressure sensitive walkways

o Inertial sensors

Smartphones for gait measurement
> Suite of sensors ideal for monitoring falls risk

> Microelectromechanical Systems (MEMS) inertial
measurement units

° 6- or 9-axis inertial sensors
> Open development environment
> Powerful processing capabilities

> Mobile Machine Learning and Deep Learning APIs
> Continuous gait monitoring

° In-home gait monitoring

> Removes the need for domain experts to analysis test results

UNIVERSITY




+1 Deep Learning for Biomedical

Machine Learning and Deep Learning for Biomedical
> Detection of influenza epidemics using search engine data
o Skin cancer classification using deep convolutional neural networks

° Diabetic retinopathy detection using deep convolutional neural networks

Deep Learning for Gait Analysis and Gait Disorder Classification

> Gait parameter estimation (stride length, stride width, swing time, etc) foot mounted
inertial sensor data (CNN)

> Gait pattern classification from tomography sensor data (CNN)
> Detection of freezing of gait in Parkinson’s patients (CNN)

Deep Learning for Falls Risk Classification

° To our knowledge first to use deep neural networks for falls risk classification from
inertial sensor data (6-axis)

°> Propose using deep neural networks for learning features related to human motion

> Apply transfer learning to adapt a pre-trained network for falls risk classification
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71 Pedestrian Activity Recognition

Pedestrian Activity Recognition Models

° Trained using publically available large scale human activity recognition dataset

> Human Activity Sensing Corpus (HASC-PAC2016)
Models trained using O PyTorch
Trained and evaluated on 2x Nvidia GeForce® Gtx 980 GPUs
Network was trained fully supervised for 250 epochs

Network Parameter Optimization
° Mini-batch gradient descent (batch size of 64 examples)

° minimize cross-entropy loss (measure of difference between probability
distributions)

> Adaptive Moment Estimation (Adam) optimizer
° Learning rate of le-5

° 1.2 regularization with coefficient of 10e-2

Best Pedestrian Activity Recognition Model achieved accuracy of 98.8%




8 I Older Adult Gait Data

electronic
caregiver

Data collected in partnership with the
Electronic Caregiver Company

Sensor System:
° 2x Smartphones with custom apps
° Inertial measurements of gait

° 6 sensor channels, 3-axis accel, 3-axis gyro

Smartphone Data Collection:
° Data collected from 256 participants

o Attached to left and right hip using holster clip
and gait belt




91 Training and Evaluation
Models trained using () PyTorch

Trained and evaluated on 2x Nvidia GeForce®
Gtx 980 GPUs

Each model was trained fully supervised for
250 epochs 1 -

Network Parameter Optimization

o Stratified Mini-batch gradient descent (batch size
of 64 examples)
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° minimize cross-entropy loss (measure of
difference between probability distributions)

> Adaptive Moment Estimation (Adam) optimizer

° Learning Rate Scheduler = decreased learning , .
rate by 10 after 10 epochs of no improvement 0 50 100

AUC-ROC
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o 1.2 regularization with coefficient of 102 Epoch
° 80/20 Train/validation split

Network evaluated using Area Under the
Receiver Operating Characteristic Curve
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o1 Conclusions

Summary of Results

> Show how to pre-train a deep neural network to learn feature representation related to
human motion using publicly available pedestrian activity data

> Showed how to use a pre-trained deep neural network as feature extractor for falls risk
classification

> Showed how to classify falls risk using inertial gait measurements collected from a
smartphone

> End-to-end training of a deep neural network for falls risk classification from inertial
measurements of gait




