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Introduction

Breakdown initiation relies on feedback from surface processes. Even in streamers,
a sustained discharge 1s only possible with surface feedback. In Paschen’s theory,
surface effects are accounted for in the secondary electron emission coefficient, y.
This term encompasses many processes (Phelps, 1999), including those due to 10ns,
electrons, photons, and excited states. Each of these processes depend upon the
potential or kinetic energy of the incident particle, its angle of incidence, and many
other factors. The properties of the particles incident on the surface are a function
of the plasma properties and vice versa.

In this work, we describe initial efforts to assess the dynamics of the particles and
photons incident on a surface using kinetic models and 7z siz# measurements. These
predictions will feed into a larger body of work intended to further extend our
understanding of how surface effects impact breakdown.
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Aleph: PIC-DSMC Simulation Capability ‘ .‘
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Figure 1 Illustration of dynamic load balancing
capabilities of Aleph.

Photon transport, photoemission, photoionization
Advanced particle weighting methods
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Agile software infrastructure for extending BCs, post-processed quantities, etc.
Currently utilizing up to 64K processors (>1B elements, >1B particles)

e- approximations (quasi-neutral ambipolar, Boltzmann)
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4 | Discharge Conditions

* Background Gas: helium, 50 Torr
* Gap: 1.0 cm

* Applied Potential: 1 — 2 kV

* External ballast resister, 1 kOhm

* (Cathode

* 1” diameter wafer

* PVD-deposited Pt
Anode

* Polished stainless steel

* 0.25” radius hemisphere

! Stainless

Differentially-pumped =

aperture -

Photon/ion flux

Energy analyzer

Figure 2 Conceptual depiction of the discharge
geometry and the scenario modeled using Aleph.




s | Model Description

Regularly spaced 1D mesh, dx ~ 2.5
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Figure 3 Discharge properties after 40 ns from a
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e | Particle Interactions
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Figure 4 Plot of relevant cross sections used in
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simulations of breakdown dynamics.




7 1 Current Waveforms
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Figure 5 Calculated current during breakdown 103

initiation for a range of applied voltages.
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s I Cathode Photon Flux
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Figure 6 VUV photon flux to the cathode surface 0.0 -
during breakdown initiation for a number of , , , :
applied voltages. 0 20 40 60
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9 I Cathode lon Flux
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lon Velocity Distributions
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11 I Necessity for differential pumping
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Figure 6 Mean free path of resonance radiation Figure 7 Mean free path of ions for different
for different pressures and wavelengths. energies and different background pressures.

Figure 8 Two-stage differential
pumping apparatus designed for
coupling to VUV spectrometer and ion
I‘DI: PV energy analyzer.




12 I Experimental Setup

* Platinum-coated Si cathode

* 100 wm diameter aperture

* McPherson 234/302 vacuum
spectrometer

* 2,400 g/mm platinum grating
* PMT detector with phosphor
* UV photodiode used for triggering

breakdown
* DEI PVX-4140 high voltage switch

¢ Isolated ground return for current
sensing




13 1 Experimental Waveforms
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14 I Conclusions and Future Work

* Use recent algorithmic advances in photon transport (Roberds, GT1.00078)

Assess effects of additional plasma chemistry

Improve differential pumping system
* Higher operating pressures

* Reduced photon diffusion in spectrometer

Measure dynamic line shape profile of VUV photons for Doppler shift effects

Improve “1D-ness” of system

. Incorporate 1on cnergy measurements

Examine effect of changing cathode materials

Expand measurement parameter space
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