

LTD Development at Sandia National Laboratories

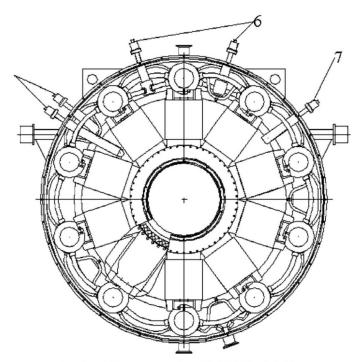
CONTRIBUTORS: Mike Cuneo, Jon Douglass, Brian Hutsel, Owen Johns, Josh Leckbee, Diego Lucero, Mike Mazarakis, Randy McKee, Tommy Mulville, Mark Savage, Matt Sceiford, Brian Stoltzfus, Bill Stygar, Matt Wisher and Joe Woodworth

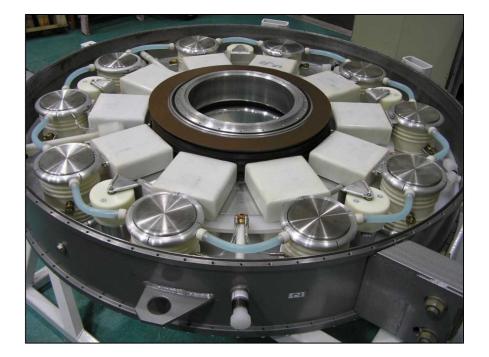
PRESENTED BY

Jon Douglass

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline


- Brief history of LTD development at Sandia
- The 6th generation "Z-Next" LTD
 - Motivation for a new LTD
 - Early development
 - Issues encountered
 - Modifications
 - Recent results
- The path ahead for high-current LTD development at Sandia
 - Plans for the immediate future
 - Looking further...


2004 to 2018

2004 - LTD-R (aka LTD-100)

- Russian made LTD with ~50 ns rising pulse for radiography
- Peak output current of 125 kA
- Predecessor to Ursa Minor (first seven cavities)

- A. A. Kim et. al, ICHPPB 2002

2004 - LTD-I

- First Russian made "high current" LTD
- 2-m diameter
- 75 ns rise-time
- ±90 kV charge, 40 nF caps
- 450 kA peak current, 40 GW
- Intended for "ZX" IFE program

2006 - LTD-II

- Second Russian made "high current" LTD
- 2.1 m diameter (increase from 90 kV to 100 kV)
- 20-bricks
- 75 ns rise-time
- ±100 kV charge, 40 nF caps
- 500 kA peak current, 50 GW
- Intended for "ZX" IFE program

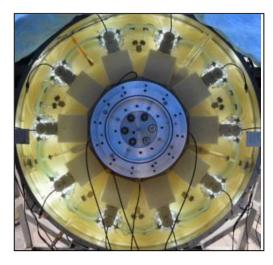
(No picture available)

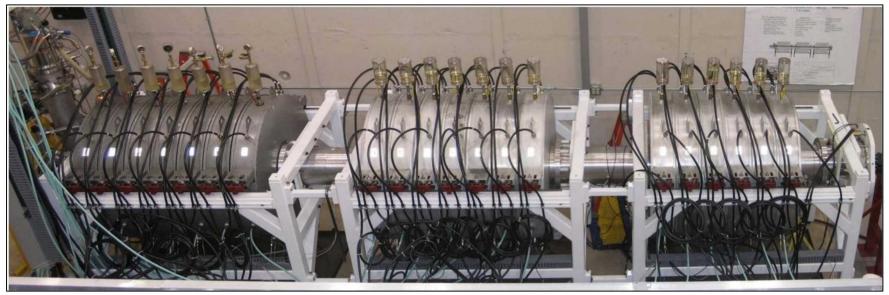
2008 – 1MA LTD (Mykonos cavities)

- First Russian made megaAmpere LTDs
- 3-m diameter
- 36 to 40-bricks
- 100 ns rise-time
- Up to ±100 kV charge, 40 nF caps
- 1-MA peak current, 80 GW per cavity
- Intended to demonstrate muti-cavity module, high current and high voltage

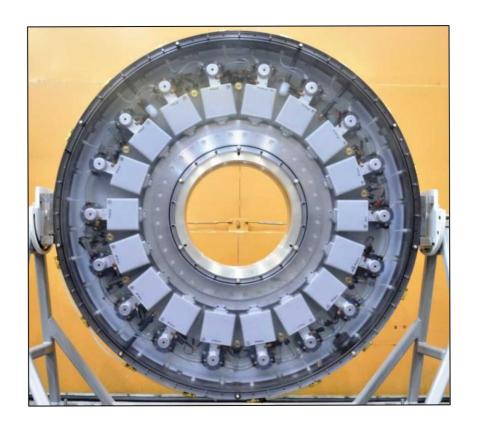
2010 - LTD-III

- Russian made "high current" LTD
- 2.1 m diameter, 20-bricks
- 75 to 100 ns rise-time
- ±100 kV charge, 40 to 60 nF caps
- 810 kA peak current, 80 GW
- Test bed for LTD component experimentation and refinement
 - First use of Metglas cores
 - Numerous switches evaluated
 - Tried mixing different capacitor values
 - Experiments with various types of charging resistors
 - Employed various triggering topologies
 - Developed diagnostics for full switch coverage





2010 – Ursa Minor

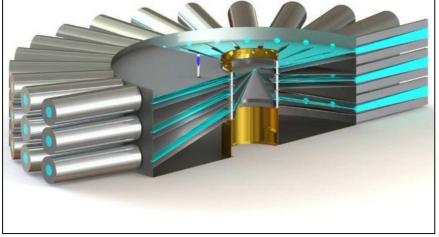

- 21-cavity LTD module for radiography
- 7 Russian made LTD-R cavities, 125-cm OD
- 14 US made cavities inspired by LTD-R 128-cm, OD
- ~50 ns rise-time
- ±100 kV max charge, 20 nF caps
- Up to 2.5 MV output

2014 - 18-Brick Cavity

- High power LTD for radiography
- 2-m diameter
- ~50 ns rise-time
- ±100 kV max charge, 12 nF caps
- 2 built, one given to LLE, other remains at Sandia

2014 – LTD-IV (Pluto)

- First US made "high current" LTD
- 2.2-m diameter, 24-bricks
- 100 ns rise-time
- ±100 kV charge, 40 nF to 80 nF caps
- I.I MA peak current
- Demonstration cavity for proposed 50-stage LTD module to produce a 12-MeV x-ray source
- Tested caps from various vendors
- Evaluated performance of various custom switch designs

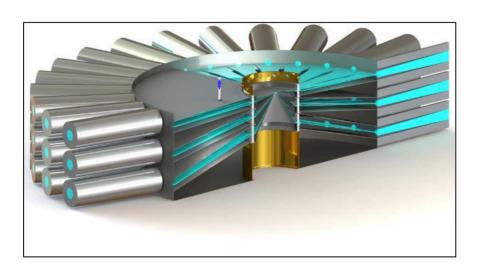


2017 – "Z-Next LTD" (LTD-IV)

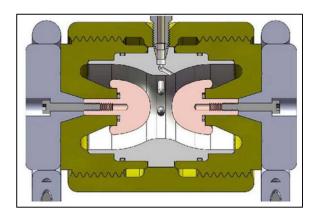
- First US made "high current" LTD
- 2.2-m diameter, 20-bricks
- All components designed to minimize inductance at considerable cost
- 100 ns rise-time
- ±100 kV charge, 80 nF caps
- I.05 MA peak current
- Demonstration cavity for +50 MA IFE driver with 9,000 cavities

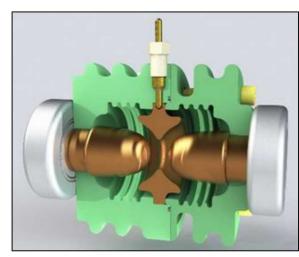
Comments on 14 years of LTD development at Sandia and elsewhere

- Experiments that <u>do not</u> work are practically never published
 - · Ask around before trying a "new" idea, chances are good that SNL has already tried it
- The published record on LTD development is not the complete story
 - It has been a long and painful path to get to the performance and reliability we have today
 - Most LTD designs did not work "out-of-the-box", revisions of critical components were required
 - Authors often report the maximum capabilities of a design, not typical operating conditions
 - Be skeptical of statements like "Not a single pre-fire was recorded..."



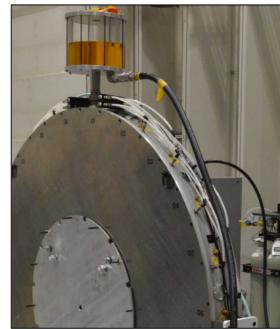
The 6th Generation "Z-Next" LTD


2017 to Present

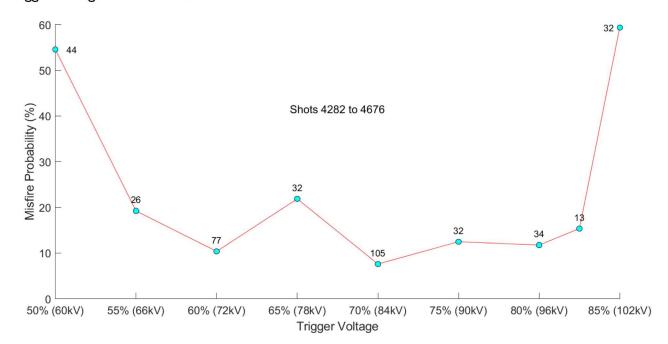

Motivation for the latest high-current LTD at Sandia

- Much has been learned from LTD-I through LTD-III
- High-current LTDs still considered experimental technology
 - They generally did not work "out-of-the-box"
- Maturity level required to justify an LTD-based Z-Next (IFE driver) needed to be demonstrated
 - With 9,000 cavities the pre-fire rate needs to be very low (1/1,000)
 - Catastrophic component failures (inside cavities) must be very rare
- Needed to demonstrate the compact (2-m) technology operating in a multi-cavity module

- Switch development and testing
 - Russian multi-gap switches considered bulky and difficult to assemble
 - L3 switches considered to have larger OD than necessary and high jitter*†
 - Custom Sandia switches were the most compact and had the lowest jitter*
- Went through several custom 200 kV switch design iterations
 - Started with a fairly complex switch with exotic materials intended for very high pressure
 - By the third revision the switch had half as many parts, was much easier to assemble and is now very reliable
 - Main lessons learned:
 - Keep it simple!
 - Eliminate trapped air volumes (like at the bottom of blind tapped holes)
 - Need to consider neighboring structures and churning oil
 - Maximize gas flow (large ports)
 - Copper-Tungsten electrodes are worth the extra cost, 75/25 W/Cu seems to work just as well as 80/20
- Latest custom switches have over 6,000 shots on them and exhibit no degradation
- Oil-contaminated switches that were rebuilt (cleaned) resumed ideal operation without any conditioning

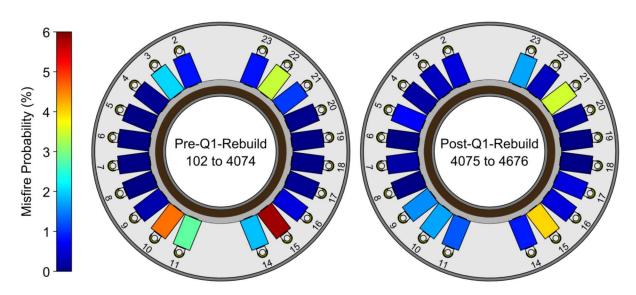


- * Switch testing reported by J. R. Woodworth et. al, PRSTAB 2010
- [†]Other testing indicates superior jitter from modern L3 switch J. Leckbee 2014

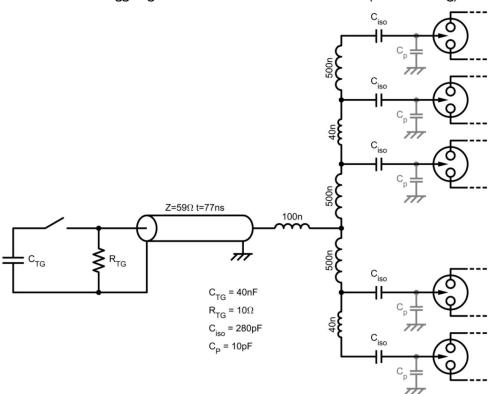


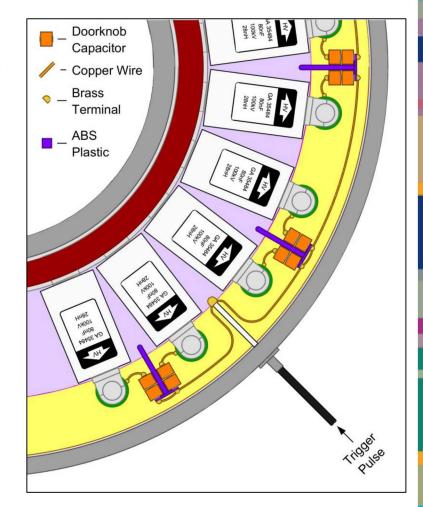
- Trigger wire routing was changed
 - Trigger wire was originally routed in a groove along the outer edge of the middle insulator
 - Dendrite growth in the polycarbonate middle insulator motivated relocation
 - Trigger bus wire now runs outside of the switches about 1.0" inside the cavity wall
- Gas line plumbing modified for improved flow and isolation
 - · Early-on single-brick testing pre-fire rate was high
 - Increased gas flow (flush/purge) possible solution to pre-fires
 - Parallel gas line provided higher gas flow
 - Early-on single-brick testing switch failure was common
 - Parallel gas lines helped prevent oil cross-contamination of switches
 - One-way check valves were also tried but provided no benefit
 - More recently, series connected lines have demonstrated that parallel routing is not necessary

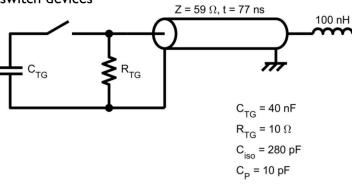
- Early-on pre-fire rate was high
 - Switch gas pressure was increased to discourage pre-fires
 - 10% increase in gas pressure reduced pre-fires by ~2x
 - Gas pressure increase also resulted in more late-firing switches
 - 10% increase in gas pressure increased late-fire rate by ~5x
 - Trigger voltage was increased in an attempt to improve late-fire rate
 - 20% Trigger voltage increase had no significant effect
 - 30% Trigger voltage increase made late-fire rate worse

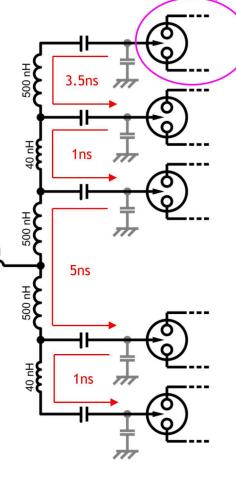


- Switch late-fires are considered far less serious than pre-fires
- As development continued the occasional pre-fire would usually motivate a slight increase in switch gas pressure with the hope of completely eliminating pre-fires
 - The switch gas pressure was steadily increased over the course of ~5,000 shots, eventually reaching 240 psig
 - The switch late-fire rate demonstrated a correspondingly steady increase
 - Pre-fires remained stubborn



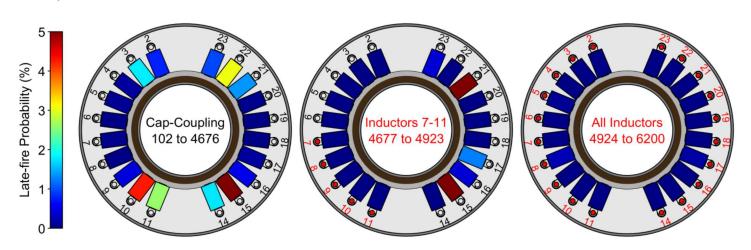

- Switch late-fires are considered far less serious than pre-fires
- However, our late-fire rate had gotten really bad
- Data analysis clearly indicated that late-fires were not randomly distributed among the
 20 bricks in the cavity
 - Late-fires were strongly correlated with switch position on the trigger bus
 - Bricks 6, 7, 18 & 19 practically NEVER late-fired!
 - · Merely opening the cavity for inspection affected the late-fire distribution in the cavity


- Trigger circuit is arranged in four identical quadrants
 - Each quadrant triggers five bricks
 - Trigger routing varies and is not symmetric
 - Original trigger circuit used capacitive coupling to isolate switches and trigger generator in case of malfunctions (DC blocking)

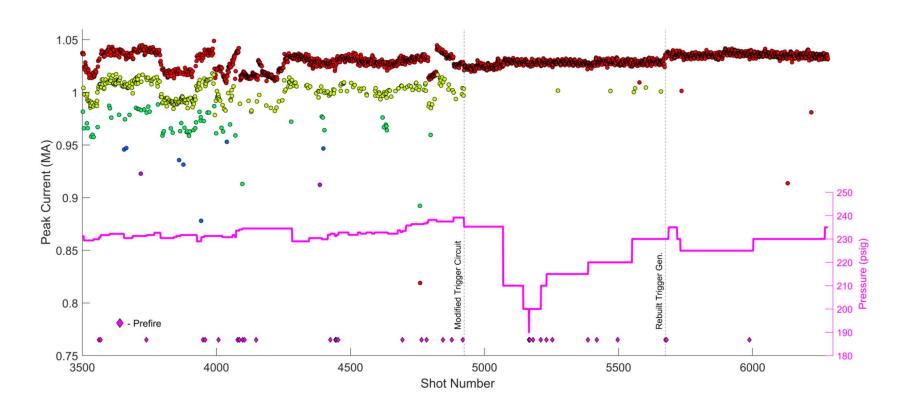


- Problem with capacitively coupled trigger
 - Trigger electrodes are floating, known source of pre-fires!
 - Switch-to-switch trigger isolation is almost entirely from trigger bus wire parasitic inductance
 - Switches with coincident trigger bus pick-off point have practically no isolation from each other, example scenario:
 - Switch A triggers first (due to random jitter), pulls down the trigger voltage at switch B, thus preventing B from triggering, i.e. switch B late-fires
- Why use capacitive coupling?
 - Unlike aqueous resistors, ceramic doorknobs are maintenance-free
 - Limits the energy that can get back to the trigger generator
 - · Ideal for single switch devices

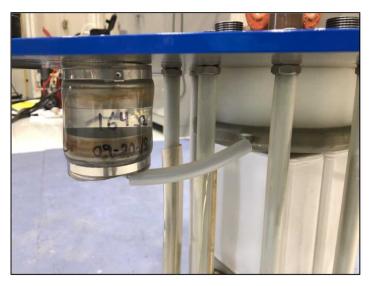
Only switch with >2ns isolation from all neighbors



- Alternatives to capacitively coupled trigger
 - Conventional LTD uses resistive isolation
 - Provides ~20ns switch-to-switch isolation
 - Switch trigger electrodes pulled to ground through trigger generator, should help prevent pre-fires
 - Limits energy fed back to trigger generator
 - Resistors permeate water and need to be replaced annually
 - Inductive isolation is an emerging option
 - Wire-wound inductors ~10uH
 - Deployed by Zhou et. al in China
 - Used on Sphinx Marx generator at Sandia since 2014
 - Nylon all-thread form left in place
 - Provides ~20ns switch-to-switch isolation
 - Switch trigger electrodes are well grounded through trigger generator, should help prevent pre-fires
 - Maintenance free
 - Ringing gain produces higher voltage at switch trigger pins
 - Does not limit energy coupled back to trigger generator

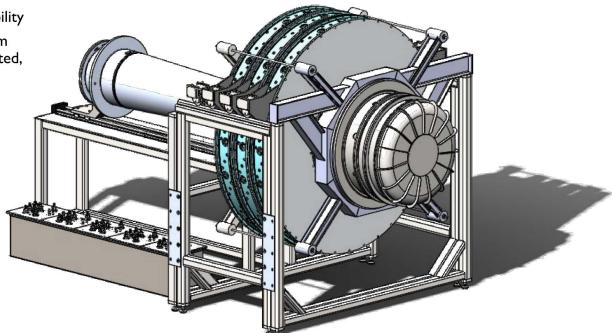


- Results from inductively isolated trigger circuit
 - Started by fielding inductors in one quadrant
 - Ran for ~250 shots with zero late-fires in the inductor quadrant
 - Opened cavity for inspection, found turn-to-turn arcing in some inductors
 - Modified inductor dimensions for larger turn-to-turn gaps
 - Wound on 1"-8 all-thread, 3" long, stretched to 3.5" installation
 - Installed revised inductor design in all bricks
 - The only late-fires that have occurred since inductor installation were during attempts to find minimum trigger generator charging voltage
 - Pre-fire rate has also decreased to it's lowest value ever: 0.3%
 - Despite accumulation of over 6,000 shots on switches


- Results from inductively isolated trigger circuit
 - Consistency of output and rate of pre-fires and late-fires is unprecedented for a high-current, 100-ns LTD

- Results from inductively isolated trigger circuit
 - Pre-fires occurred while investigating lowest practical operating gas pressure and trigger voltage
 - These pre-fires appear to have rapidly degraded the grounding resistor in the trigger generator
 - Degraded resistor results in quasi-floating switch trigger electrodes
 - Floating trigger electrodes produces more pre-fires
 - Snowball effect
 - Original grounding resistor not intended to handle much energy or sustained high voltage
 - Trigger generator was rebuilt with a robust grounding resistor
 - Appears to have solved trigger generator issues

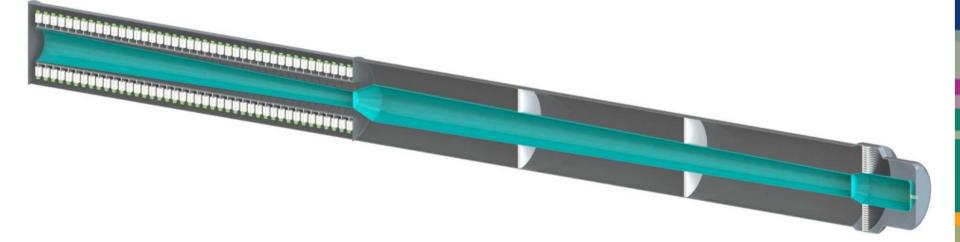
The Path Ahead for High-Current LTD Development at Sandia


Four year outlook

Future High-Current LTD Development at Sandia

Plans for the immediate future

- Assembling two more cavities identical to the "Z-Next" LTD
 - · All hardware is on-hand
 - Estimated completion in early 2019
 - Aim to verify that "known-good" hardware configuration and operating regime is transferable between identical LTDs
 - · Intend to verify reliability of capacitors from other vendors
- Design and procurement of components for a 10-cavity module
 - Expected to be operational in 2021
 - Emphasis on modularity and portability


 Aim to demonstrate that a system with many LTDs can be constructed, operated and maintained in a practical way

Future High-Current LTD Development at Sandia

Looking further...

- Proposal to start design and procurement of a 42-cavity "Z-Next" module in 2021 is in the works
 - Strong support from DOE
 - Will serve as a versatile testbed
 - Power flow
 - Insulator flashover
 - Dielectric bulk breakdown
 - Pulse shaping
 - Demonstration of LTD module maturity
 - Precursor to +50-MA IFE driver

