
Deployment and Usage of Containers
for Production HPC Applications

PRESENTED BY

Andrew J. Younge, Anthony M. Agelastos,
Aron Warren

Sandia National Laboratories

Unclassified Unlimited Releas

Sandia National Laboratories is a multirnission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-0594C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Contributors (alphabetical order)

SNL org. 1422: Scalable Computer
Architecture

Simon "Si" D. Hammond

SNL org. 9326: Scientific Applications
& User Support

Anthony M. Agelastos

Justin M. Lamb

Douglas M. Pase

SNL org. 1423: Scalable System Software
Gerald "Jay" F. Lofstead

Kevin Pedretti

Andrew J. Younge

SNL org. 9327: HPC Systems

Erik A. Illescas

Jeffry "Jeff B. Ogden

Aron Warren

3 Executive Summary

Hypotheses:
NNSA production applications that execute within HPC container runtimes exhibit native
performance characteristics
The security criteria for applications on classified networks should allow containers and
their runtimes

Methodology:
Build a production application natively and within a container, and compare runtimes and
memory footprint
Discuss and formulate security requirements with appropriate teams

Results:
Containers with Nalu exhibited near-native performance in runtime (or better) with an
extra 10 MB memory usage per rank
Containers can run on classified networks provided the relevant security criteria are met

Containers in HPC

BYOE - Bring-Your-Own-Environment
Developers define the operating environment and system libraries in which their
application runs

Composability
Developers explicitly define how their software environment is composed of modular
components as container images
Enable reproducible environments that can potentially span different architectures

Portability
Containers can be rebuilt, layered, or shared across multiple different computing systems
Potentially from laptops to clouds to advanced supercomputing resources

Version Control Integration
Containers integrate with revision control systems like Git
Include not only build manifests but also with complete container images using container
registries like Docker Hub

Container features not wanted in HPC

Overhead
HPC applications cannot incur significant overhead from containers

Micro-Services
Micro-services container methodology does not apply to HPC workloads
1 application per node with multiple processes or threads per container

On-node Partitioning
On-node partitioning with cgroups is not necessary (yet?)

Root Operation
Containers allow root-level access control to users
On supercomputers this is unnecessary and a significant security risk for facilities

Commodity Networking
Containers and their network control mechanisms are built around commodity networking
(TCP/IP)
Supercomputers utilize custom interconnects w/ OS kernel bypass operations

Developing Container Vision @ Sandia

Support software dev and testing on laptops
Working builds that can run on supercomputers
Dev time on supercomputers is extremely expensive
May also leverage VM/binary translation

Let developers specify how to build the environment AND the application
Users just import a container and run on target platform
Many containers, but can have different code "branches" for arch, compilers, etc.
Not bound to vendor and sysadmin software release cycles

Want to manage permutations of architectures and compilers
x86 & KNL, ARMv8, POWER9, etc.
Intel, GCC, LLVM

Performance matters!
Use HPC to "shake out" container implementations on HPC
Keep features to support future complete workflows

Container DevOps

Impractical for apps to use large-scale
mazon EC2

supercomputers for DevOps and testing
HPC resources have long batch queues

Dev time commonly delayed as a result

Create deployment portability with
containers

Develop Docker containers on your laptop or
workstation

Leverage GitLab registry services

Separate networks maintain separate
registries

Import to target deployment

Leverage local resource manager

CTS Cluster

I 141101.*.'

$ docker pull gitlab.sandia.gov/usr/app1:latest $ singularity pull appl .img

tiL4110

$ docker run -d -p 12500-13:00 ... appl docker://gitlab.sandia.gov/user/app1:latest
$ ssh ctl -C "mpirun -np X app1.exe $

•
qsub71.pbs

$ docker build appl
$ docker login gitlab.sandia.gov
$ docker push appl:latest

Gitlab Container Registr
Sen ice

$ singularity pull appl .img
docker://gitlab.sandia.gov/user/app1:latest
$ aprun -n X singularity exec appl .img appl .exe

1

8 Singularity Containers

Many different container options
Docker, Shifter, Singularity, Charliecloud, etc. etc.

Standard Docker containers not good fit for running workloads
Security issues, no HPC integration

Singularity best fit for our current needs
OSS, publicly available, support backed by Sylabs

Simple image plan, support for HPC systems

Docker image support, as well as custom Singularity builds

Support for multiple architectures (x86, ARM, POWER)

Large community support

•

cs1

9
Problem Description

SNL Nalu:
A generalized unstructured massively parallel low Mach flow code
designed to support energy applications of interest [1]

Distributed on GitHub under 3-Clause BSD License [2]

Leverages the SNL Sierra Toolkit and Trilinos libraries
Similar to bulk of SNL Advanced Simulation and Computing (ASC) Integrated Codes
(IC) and Advanced Technology, Development, and Mitigation (ATDM) project
applications

Milestone Simulation:
Based on "milestoneRun" regression test [3] with 3 successive levels
of uniform mesh refinement (17.2M elem.), 50 fixed time steps, and no
file system output

Problem used for Trinity Acceptance [4] and demonstrated accordingly
on Trinity HSW [5] and KNL [6], separately, at near-full scale

Euiree:1111:1••=1"111- 1.1..11111.111. j141

iftoft.44111111i111111.1.1ilimmi.11.1;
1..-..mimmimm.11111111111111

ftftlinaMMIZI

Emmiaira,

Mgt! !M ==1-1

 Nom

MN =Emil

---___________,..____-______________,.

....._____,--..,-_-=.:..'-----=.=--_--,.,___—_,__,_,,,,-,,,-,- ,,,,5_"--------'''' z-,- .-------m -. ._____--,---
-
..',,,:-,--,-------- .-----.-__,:--_--......,----- ___, 61,-.•■•= M..remze4z, ,-- ,-,,,

,E,-----...-01:-...wo - mNI
mm,..

amionkr....."'W...., pli I el 1.1 .. T. .. _ _. ss-
ioliMr*,...- - ----

, , __ __ ___ , _.- _ _, _ __ .. .__,. „ ,- A4_._1•* _
____........ -MIN%

--,---...--,----.""- ',....-....-
----- ,k -.._ -....-.._-4..-.....-

\\WV• 'Il
, . . . - f .._ 0,*._- - . .. - Sk-_. -4.-- -4. * ._ ..Z.z. . . .

"ZiN2ArgAr

•
-====1-•

1. S. P. Domino, "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc

2. "NaluCFD/Nalu," https://github.com/NaluCFD/Nalu, Sep. 2018.

3 "Nalu/milestoneRun.i at master," https://github.com/NaluCFD/Nalu/blob/master/reg tests/test files/milestoneRun/milestoneRun.i, Sep. 2018.

4 A. M. Agelastos and P. T. Lin, "Simulation Information Regarding Sandia National Laboratories' Trinity Capability Improvement Metric," Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, Technical report SAND2013-8748, October 2013.

5. M.Rajan, N.Wichmann, R.Baker, E.W.Draeger, S.Domino, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, and A. Agelastos, "Performance on Trinity (a Cray XC40) with Acceptance Applications and
Benchmarks," in Proc. Cray User's Group, 2016.

A. M. Agelastos, M. Rajan, N. Wichmann, R. Baker, S. Domino, E.W. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier, M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and T. Zhu,
"Performance on Trinity Phase 2 (a Cray XC40 utilizing Intel Xeon Phi processors) with Acceptance Applications and Benchmarks," in Proc. Cray User's Group, 2017.

1

10 System Description

SNL Doom:
CTS-1 HPC platform

Dual E5-2695 v4 (Broadwell) processors, with AVX2, per node

18 cores (36 threads) per processor, 36 cores (72 threads) total per node

Core base frequency 2.1 GHz, 3.3 GHz max boost frequency

32 KiB instruction, 32 KiB data L1 cache per core

256 KiB unified (instruction + data) L2 cache per core

2.5 MB shared L3, 45 MiB L3 per processor

4 memory channels per processor (8 per node)

DDR4 2400 MHz/s

512 GB per node

Intel Omni-Path HFI Silicon 100 Series (100 Gb/s adapter) for MPI communications

CTS-1 Platform Is Relevant to the Tri-Labs for Production HPC Workloads

11 Build & Environment Description

Doom Software Stack:
TOSS 3.3-1 (—RHEL 7.5)

gnu-7.3.1, OpenMPl 2.1.1

hwloc-1.11.8

Container Software Stack:
CentOS 7.5.1804 (—RHEL 7.5)

gnu-7.2.0, OpenMPl 2.1.1

hwloc-1.11.1

olv-plugin

Nalu Dependencies:

O zlib-1.2.11

O bzip2-1.0.6

boost-1.65.0

O hdf5-1.8.19

O pnetcdf-1.8.1

netcdf-4.4.1

parmetis-4.0.3

Notes:
Built with Docker, imported into Singularity

Container images available on Sandia GitLab repository

O superlu_dist-5.2.2

O superlu-4.3

suitesparse-5.1.0

O matio-1.5.9

O yaml-cpp-0.5.3

Trilinos-develop-7c67b929

Nalu-master-11899aff

Open Source Software Stack Enables Greater Collaboration and Testing Across Networks and Systems

12 Performance Testing Description
Test Characteristics:
Strong scale problem on 1, 2, 4, 8, 16, and 20 nodes
36 MPI ranks per node

No threading

Bind ranks to socket

Measure the the ‘mpiexec‘ process wall time for both native and container simulations

Extract the maximum resident set size (MaxRSS) for the ‘mpiexec‘ process and all of
its sub-processes on the head node for both native and container simulations
We want to gather all overhead the Singularity container runtime imposes over a native simulation

The tested methodology for the Singularity container simulation is:

mpiexec -> singularity exec -> bash -> nalu

Extract the maximum resident set size (MaxRSS) for all of the Nalu MPI processes
across all nodes and compute the "average" MaxRSS for Nalu
This value is computed for both the native and container simulations so that the former can be subtracted
from the latter to compute the container overhead

This was extracted via LDPXI using LD_PRELOAD to attach to the native and containerized Nalu
processes; LDPXI extracts this via ru maxrss from getrusage () at the end of the simulation

Wall Time and Memory Are Key Performance Parameters for Production Workloads

13 1

7,000

6,000

tT 5,000
cu

s'' 4,000
i

76 3
'
000

c
m
'L' 2,000

1,000

Container vs. Native for Strong Scaling of Nalu Wall Time

0 2 4 6 8 10 12

No. Nodes

14 16 18

I

I

1.200

1.150

1.100
CU

0-
_E
CUci_

1.050 La-,
.c
Es.6_,

1.000 g
u

0.950

0.900
20

—Native —x—Container Ratio

14 Memory Overhead per MPI Rank with Container
16

14

4

2

o
2 4 8 16 20

No. Nodes

Nalu Bash

15 Container vs Native Analysis

The container was faster, but used more memory?!

Dynamic linking of GCC 7.2 in container vs system GCC 4.8 Memory usage
Memory differences: gfortran & stdlibc++ libraries
GCC 7.2 libs much larger, -18MB total

Performance differences: OpenMPI libs
Container's OpenMPl w/ GCC7 provides usempif08 in OpenMPl

usempif08 iincludes MPI3 optimizations vs MPI2 with usempi

Position Independent Code (-fPIC) used throughout container compiles
Provides larger .GOT in memory, but often slightly improved performance on x86_64

Overhead with using bash in container to load LD_LIBRARY_PATH before exec
Constant but small, depends on .bashrc file

Demonstrates both the power and pitfalls of building your own HPC
application environment in containers

16 Container support at Sandia

Containers are primarily built on unclassified networks then moved to
classified networks via automated transfers.

Cybersecurity approvals necessary to run containers on unclassified and
classified networks.

Security controls used in running containers on HPC systems.

Automated Transfer Services to Classified Networks

Challenges of automated transfers
Size — 5GB-10GB are ideal
Integrity — md5 is enough
Availability — who are you competing against?
Transfer policies — executables, code, etc.

Takeaway: Containers will fully work with automated transfers.

17 Conclusions

Containers are a powerful tool for developing & deploying NNSA HPC
applications

Singularity used to deploy containers on production CTS resources

Nalu exhibited near-native performance within a Singularity container
Performance was faster (1-9%) in container due to newer libs

The Singularity runtime added minimal memory usage overhead
The overhead was, approx. -10MB per rank

There is a path forward for using containers on restricted and classified
networks

18 Future Work

Deployment of Singularity on Astra ARM supercomputer
Develop/integrate remote builder for ARM platforms

Evaluate scaling requirements

Investigate new Singularity 3.X features

Build ATSE software stack in container, with TOSS base image

Improve DevOps model
■ Continuous Integration (CI) coordination with containers in Gitlab

■ Integration with Spack packaging, site-specific configs

Foster interoperability across deployments and container runtimes

1

1•

I
ii

