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Introduction

= Due to the lack of an operating repository for the final disposal of spent
nuclear fuel (SNF) from commercial and defense-related activities as well
as high-level radioactive waste, nuclear utilities have been storing SNF on
site.

= As of December 2017, ~2/3 of the SNF inventory is stored in pools with
the remaining in dry-storage casks.

= By ~2022 it is projected that the majority of the SNF inventory will be in
dry-storage casks, and by mid-century 100% will be in dry-storage casks.

" Ten years ago the SNF management system in the US was based on bare
fuel assemblies being loaded into Transportation, Aging and Disposal
(TAD) casks and disposed of at the proposed Yucca Mountain Repository.

= There are several possible alternatives to address the current situation.

= This presentation examines the potential direct disposal of the dry-storage
casks.
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Timeline of U.S. Spent Nuclear Fuel Management

Nuclear Waste Policy Act
of 1982

Nuclear Waste Policy Amendments Act
selects Yucca Mountain as sole site for
further characterization
1987

-

Yucca Mountain Site Recommendation
Site is designated by DOE and President

G.W. Bush as suitable for repository Present Day
development and licensing Repository program remains suspended,
February 2002

but law is unchanged

Yucca Mountain Repository License i | ind
Application submitted to the NRC SNF continues to accumulate in dry storage

June 3, 2008 at commercial reactor sites

X X A 4
b x A

January 31, 1998 2010 Today
DOE fails to open a repository by the Obama Administration decides Yucca
statutory deadline Mountain is not workable;

Project suspended

Spent nuclear fuel continues to be
generated at ~2,200 MTHM/yr




SNF Management in the US: The Reality ) =,

Commercial SNF is in Temporary Storage at 75 Reactor Sites in 33 States

"Pool storage provides cooling and 2017
shielding of radiation
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US Projections of SNF Inventory ) e,

Commercial Spent Nuclear Fuel Inventory
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Approx. 80,000 MTHM (metric tons heavy metal) of commercial SNF in storage in the US as of Dec. 2017
Approx. 30,000 MTHM in dry storage at reactot sites, in approximately 2,900 cask/canister systems

= Balance in pools, mainly at reactors

Approx. 2200 MTHM of SNF generated nationwide each year




SNF Inventory in Dry Storage L=

Commercial Spent Nuclear Fuel in Dry Storage
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« Approximately 160 new dry storage canisters are loaded each year in the US
« By mid-century ~10,000 DPCs are expected to be in service.



Dry Storage Systems for Spent Nuclear Fuel i)t

Dual purpose canister (DPC)

» A canister that is certified for both storage and
transportation of spent nuclear fuel

Dry cask/canister storage systems

= The most common type of dry storage cask systems is
the vertical cask/canister system shown to the right, in
which the inner stainless steel canister is removed from
the storage overpack before being placed in a shielded
transportation cask for transport

= Can be constructed both above and below grade

» Horizontal bunker-type systems and vaults are also in
use

Some older fuel is also stored as “bare fuel” in casks
with bolted lids; few sites continue to load these
systems

Multiple vendors provide NRC-certified dry storage
systems to utilities

Attorney-Client Communication; Privileged & Confidential Attorney Work Product prepared in
anticipation of litigation, Draft - Not subject to FOIA; Not LSN Relevant




Observations on Current Practice 1) s _

=Current practice is safe and secure

= Extending current practice raises data needs; e.g., canister integrity, fuel integrity,
aging management practices

=Current practice is optimized for reactor site operations
® Occupational dose
= Operational efficiency of the reactor

= Cost-effective on-site safety

=Current practice is not optimized for transportation or disposal

= Thermal load, package size and package design, and criticality control

Placing spent fuel in dry storage in dual purpose canisters (DPCs) commits the
US to some combination of three options

1) Repackaging spent fuel in the future
2) Constructing one or more repositories that can accommodate DPCs
3) Storing spent fuel at surface facilities indefinitely, repackaging as needed

Each option is technically feasible, but none is what was originally planned
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Transportation Considerations L

= Some DPCs may Range of aging times required before
transport, shown as a function of burnup

require decades of
aging to cool spent fuel
before they can be
transported

= High-burnup fuels 20
may require longer
aging

= Cooling times are \l
design-specific (in A

genera|, Iarger DPCs Source: Adapted from

require longer 0w 2w w0 e Stockman and Kalinina,
. . Bumup GWd/MTU SAND2013-2013P
cooling times)

~—#—Transport Lower Range

===Transport Upper Range

= Transportation casks

remain to be certified Minimum cooling times for multiple cask/canister systems, based on
NRC certificates of compliance for specific designs as of 2013.
Variation in times is due to the diversity of the current inventory,
dominated by DPC size and heat transfer capabilities.

for some DPC systems




DPC Direct Disposal Concepts: Engineering

= Engineering challenges are feasible

= Shaft or ramp transport

= |n-drift emplacement

= Repository ventilation (except salt)

= Backfill before closure (except unsat.)

= Degradation of Al-based materials in
ground water = Postclosure criticality
control problem

[ SN = — e S 2

DPC Direct Disposal R&D, May 2018 10




Disposal Considerations:
Waste Package Size

= DPCs are massive, but not
unprecedented
= Transportation, aging, and disposal
canisters proposed for Yucca

Mountain were in the range of sizes
of existing DPCs

= With disposal overpack and
transport shielding, total mass could
be on the order of 150 metric tons

= Size poses engineering challenges
for handling during both

transportation and disposal, but
options are available
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Disposal Considerations: ) =
Thermal Management

Decay Storage Needed to Meet WP Surface Temperature Limits vs.

Temperature limits based WP Size or Capacity (PWR Assemblies; 60 GWd/MT Burnup)
on current international 600+
and previous US : . 7
concepts: = 500¢ *,v' o,
= 100°C for clay buffers and fgj 400k ;","
clay/shale media (e.g., SKB % Clay— . '{'
2006) S 300 vl e g
= 200°C for salt (e.g., Salt b4 i’ Granite
Repository Project, Fluor 8 200 ‘,",'—' ’
1986) @ 100} - :gfv" Sa}lt
Final temperature g . Yeun--a
constraints will be site- % o 4 8 8 10 12
and design-specific Number of assemblies
Source: Hardin et al. FCRD-USED-2011-000143 Rev. 2, 2011

Repository thermal constraints can be met by
1) Aging
2) Ventilation in the repository
3) Decreasing package thermal output (size and burn-up)
4)

Increasing package and drift spacing in the repository




Disposal Considerations: Thermal Management ) i
(cont.)

Power Limits at Closure (32-PWR packages)
100° Limit on Sedimentary Rock; 200°C for Hard Rock and Salt
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\ = — PWR40GWd/MT longer preclosure cooling times
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0 % % % % % accommodate large packages
0 50 100 150 200 250 300
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Source: Hardin et al. 2015, FCRD-UFD-2015-000129 Rev O Figure 2-29 13
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Disposal Considerations: Ciriticality Control

= Some already-loaded DPCs pose complications for licensing
analyses of post closure criticality control
= Flooding by groundwater following canister degradation is a pre-
requisite for criticality in any waste package
= Al-based neutron absorbers used in some DPCs will degrade in water
= Resulting reactivity increase can be offset by
= High-reliability disposal overpacks to exclude moderators
= Uncredited high-burn up margin in SNF configurations
= High chloride content in groundwater (e.g., in salt)
= QOther options include
= Open DPCs before disposal to add criticality controls (fillers, disposal
control rods)
= Case-by-case analysis of individual DPCs may be needed for licensing
(function of enrichment and burn-up)
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Direct Disposal of DPCs:2018-2019 i)
Planned Activities & Outcomes

® Planned Activities:

— Technical/Programmatic Solutions for Direct Disposal of SNF in DPCs
— Probabilistic Post-Closure DPC Ciriticality Consequence Analysis

— DPC Filler and Neutron Absorber Degradation R&D

— Multi-Physics Simulation of DPC Ciriticality

e Expected Outcomes:
— DPC disposition alternatives, R&D and resource needs
— Generic (non-site specific) preliminary PRA
— Preliminary multi-physics coupled models

— Model benchmarks

— Feasibility of thermal-setting phosphate cement as filler




Concluding Remarks

= The lack of an operating geologic disposal in the US for
commercial SNF has resulted in utilities needing to store the
growing inventory on site.

= While today ~2/3 of the inventory is still in pools, by ~2022
the majority of the inventory will be in dual-purpose
canisters, and by mid-century 100% will be in DPCs.

= One potential alternative being researched in the US program
is the direct disposal of DPCs in a geologic repository.

= |mplementing this alternative will require resolving several
challenges: package size and design, thermal loading and
criticality control.

= Qur ongoing research is addressing these challenges
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