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The COHERENT collaboration
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Coherent elastic neutrino-nucleus scattering

PHYSICAL REVIEW D VOLUME 9, NUMBER 5 1 MARCH 1974

(-1 l? -‘r ‘1 Coherent effects of a weak neutral current
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.v,k o ~ \ . .. The idea is very simple: If there is

a weak neutral current, elastic neutrino-nucleus
scattering should exhibit a sharp coherent forward
peak characteristic of the size of the target just
as electron-nucleus elastic scattering does...
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What makes CEVNS interesting?

For the Neutrino Physics community:

* Non-standard Neutrino Interactions * Neutron distribution functions

P. Coloma et al., JHEP 12 021 (2005) K. Patton et al., PRC 86, 024216 (2012)
K. Scholberg, PRD 73 033005 (2006)

J. Barranco et al., PRD 76 073008 (2007)
P. Coloma, T. Schwetz, PRD 94 055005 (2016)
M. Masud, P. Mehta, arxiv:1603.01389 (2016)

Sensitive tool for Sterile neutrino searches * Neutrino Magnetic Moments

A.). Anderson et al., PRD86 013004 (2012) A. C. Dodd, et al,. PLB 266 (91), 434
A. Drukier & L. Stodolsky, PRD 30 2295 (1984)
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WIMP-nucleon cross section

What makes CEVNS interesting?

Beyond the Neutrino Physics community:

* Irreducible background
for WIMP searches
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Measure CEvVNS to understand nature of background
(& detector response, DM interaction)

* Majorrolein

Supernovae dynamics

J.R. Wilson, PRL 34 113 (1974)
D.N. Schramm, W.D. Arnett, PRL 34,

113 (1975)
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* Astrophysical signals
(solar and SN)

Potential application
in reactor monitoring
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Number of events (A.U.)

CEVNS signature: low-energy nuclear recoils
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« Both CEVNS cross-section and maximum
recoil energy increase with neutrino energy.

 Want energy as large as possible while
satisfying coherence condition: g < %
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Spallation Neutron Source
as a
Neutrino Source

Proton beam energy: 0.9-1.3 GeV
Total power: 0.9-1.4 MW

Pulse duration: 380 ns FWHM
Repetition rate: 60 Hz

Liquid mercury target

Target Container
Cooling Channels



Neutrinos at the SNS

* Decay-at-Rest Neutrino source 7+ =t )  PROMPT: monochromatic 29.9 MeV v,
« vflux4.3x10’ vem2stat20 m ¢
. DEL
e Pulses 800 ns full-width at 60 Hz pt et ”“ bet\,ﬁ\égﬁ aﬁé‘ﬂ, range of energies

Capture: %@

Decay at rest
T; #2.2 psec

_e

Timing energy

Decay at rest -
1: ~26 nsec
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Neutrino energy
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Neutrino Alley

* Quiet basement location: extensive BG program
determined that intermediate energy (10-100
MeV) beam neutron rates are ~5 orders of
magnitude lower than on the experimental hall.

« Steady-state background rate also lower due to ~
8 m.w.e. overburden.

« Alley is 20-30 meters from the target.
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Neutron measurement data from various SNS locations.




First CEVNS observation witr

14.6- kg Csl[Na]

30+ Beam OFF

15¢

Res. counts / 2 PE

Beam ON

August 2017
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1.4*102 (~ 0.22g) POT
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8
33 —
E, //
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= i
0 = -
Aug 2015 Oct 2015 Dec 2015 Feb 2016 Apr2016 Jun 2016 Aug 2016 Oct 2016 Dec 2016

9 11 1 3 5 7 9 11
Arrival time (us)

Beam OFF: 153.5 live-days
Beam ON: 308.1 live-days, 7.48 GWhr

Still collecting data with Csl detector
Twice more statistics accumulated
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Signal, background, and uncertainty g

173 events
Beam ON coincidence window 547 counts 25 ]’
Anticoincidence window 405 counts { | No CEVNS E
| | 20} i i
| Beam-on bg: prompt beam neutrons | 7.0+£1.7 rae:%(f;es '
| Beam-on bg: NINs (neglected) | 40+1.3 | E
“Signal counts, single-bin counting | 136 + 31 E o C—
Signal counts, 2D likelihood fit 134 £ 22 " 10} Best fit: 134 £ 22 s
i observed events |}
Predicted SM signal counts 173 £ 48 :
| | |
ar i
2c 7 '
N R .
Uncertainties on signal and background predictions 0 0 W = & SN A
| | CEuNS counts
Event selection (signal acceptance) 5%
Flux 10% ‘ . .
| | For any detector technology, a high-precision
Quenching factor (QF) | 25% | CEvVNS program requires:
Form factor 5% « calibrate SNS neutrino flux

Total uncertainty on signal | 28% » high-precision QF measurement
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COHERENT: multi-target CEVNS program

X-section (1049 cm?)

)
=
o

w

NIN cubes

Cross section (10*° cm?
o
N

10
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Neutron number

A l—Csl(ielayed(ZOm 14kg)
To untangle effects of nuclear form factors we L ese

need measurements at the wide range of target

[u—y

—J
(5]
|

LAIP delaged (29 m, 35kg)

masses: Light, Middle, and Heavy . N 2 = Na ablaved (29 m, 21 NaD)
T - Na promp

To have handle on axial current it is interesting z 10

to have close targets with different spins. £

Example 4°Ar s=0 and 23Na s=3/2 S 1l

Targets near neutrino less double beta decay [

isotopes (e.g. Ge) are of special interest. 10!

0 10 20 30 40 S0 60 70 80 9 100
recoil energy keVnr



Beam Delivered
Neutron Scatter Camera (BG Neutrons)
LS in Csl Shield (NINs)

Neutrino Alley
Initial activi

Pb Nube (NINs)

. I
t I e S —— Csl (CEVNS)
—— SciBath (BG Neutrons)
= NalVE (CC)

CENNS-10 (CEVNS)
Fe Nube (NINs)

Protons on Target [10%3]

Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 0

ur "

SANDIA —Csl NIN Cubes
CAMERA

(LAF)

Several Neutrino and Background
detectors deployed at various times:

O

v,CC on 17| CEVNS

neutron neutron neutrino induced
backgrounds backgrounds neutrons




Neutrino alley
Current activities

Single phase Liquid Argon detector CENNS-10

Since December 2016 (more next)

185 kg of Nal since July 2016
« taking data in high-threshold mode for v,CC
PMT base modifications to enable low-
threshold CEVNS running

Pilot deployment
for 2T array

Neutron background
monitoring (

2017)

Plastic scintillator and Gd
layers, no shielding.

Affected by high 511-keV
gammas BG from hot off-gas
pipe, considering shielding.

S iy 1Y 3
o

Study of Neutrino Induced Neutrons
(NIM) on Lead and Iron (2016).

-

NINs are background for CEVNS and
signal for Supernovae neutrino
detectors (HALO)

Working on upgrade using PROSPECT
Li loaded scintillator.



Slngle Phase Liquid Argon

22 kg fiducial mass
e TPB coated teflon side reflectors
e 8in TPB-coated PMT readout

Eirresh ~ 20 keVnr, enough to see CEVNS

* Running since 12/16, anticipate 6.5GWhr by 12/18

e ~100 detected CEVNS expected

CENNS-10 with full
shielding

Kr83m Calibration Spectrum

Mean: 41.5
Sig: 8.86%

Detector from FNAL, previously built (J. Yoo et al.) for CENNS@BNB

(S. Brice, Phys.Rev. D89 (2014) no.7, 072004)
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Neutrino alley 1 ton LAr detector
P I dann ed d Ct|V|t|eS Need high statistics low background measurements of CEnNS

AmBe Source

09E=A

Particle *

(41.14) !

61 from 22 kg to 1 ton LAr

D detector. T,

8in VESSEL
RUPTURE VENT

Can fit at the same place where
presently 22 kg detector is sitting

o 100 200 300 400 500 600 700

Will reuse part of existing

Pof same A infrastructure e !
£ ~40 keV | | g
¥ v source |y Potentially use depleted Argon;

piggyback on DarkSide investments

| | Will see thousands of CEVNS
Wi events per year + higher-energy

BOTTOM 7/ /P rora.
FILLTUBE [/////

(28.00)

(6.00)

NC/CC interactions
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Neutrino alley

Planned activities

ransition from 185 kg to 2 ton array of Nal

T
detectors

Need electronics and HV; some funds are
secure

2t Nal detector array

Detectors are available

Need dual gain bases E
(prototypes has been build) &S

Potential to detect both CEVNS and CC
reactions




Neutrino alley

Planned activities

Cross sections of neutrino interaction with
Deuterium are known with 2-3% accuracy:

S.Nakamura et. al. Nucl.Phys. A721(2003) 549

PromptNC{ ,+d - 1.8*104'cm?
Delayed NC { , o+ d > 6.0*1041 cm?
Delayed CC% +d - 5.5*104! cm?

120

(2]
E [ —— ccvd i
% 100 [ —— CCv,0 -
51 : Precision (Above Threshol :
C)N 80— —
(=] r -
& C 10 cm H20 g
T 60— —
> - -
Q Lo =
= C ]

(2]
£ 40— —

=
§ e I .
20 | + —
bt i, T
0 L HH T T N 1 Ly |++4+'h+'|-'-ﬂ—k +++'+ N
0 10 20 30 40 60

Reconstructed Energy [MeV]

0.12

0.1

0.08

0.06

Precision

0.04

0.02

0

Neutrino Flux Calibration

Presently we assume that neutrino flux at SNS is known within 10%

‘b |\ i
i L
“N‘l il

1» LT

*Nlt i

v Flux calibration and CC
measurements on Oxygen

Well defined D,O mass constrained
by acrylic tank.

10 cm of light water tail catcher

Outer dimensions 2.3*2.3*1.0 m3

For 1 t fiducial mass detector ~
thousand interactions per year

Detector calibration with
Michel Electrons (same energy range)



Neutrino alley
Planned activities| New Germanium Target

» Use state-of-the-art PPC Ge technology to perform a precision measurement of
CEVNS. >800 events/yr from 10 kg array, with signal/background of ~15 (this
was ~1/4 for Csl[Na] result).

* Demonstrated analysis threshold of 120 eVee/600 eVnr allows measurement of

3
2
2
15
1
0,
0

full CEnNS recoil spectrum. Accompanying ongoing effort in quenching factor
characterization.
% 120
» Two first detectors (6 kg) funded at University of Chicago through DARPA and =
NSF. Shield will be designed to accommodate additional two units. Support from %
ORNL/NSCU on shield design and installation. S w -
20 [} 29eV on small crystal
» Demonstration of threshold and background in 2018. Start of data-taking at SNS T e e e e T
during fi rst quarter Of 201 9. i Y‘ear State-of-the-art commercial PPCs
' ‘\ — SM_C?BN 51040 C)I_LFN;\:’,'\ rN\f\\’)/\;‘:%:’” éﬁ) PNNL LDRD
- \ o3 == :inoimwi“ LB via NSF PHYS-1003940 NA-22 SBIR
:, ‘\ g )l:= 1.5x10"° pz
B [ w=10x10"y
b = ‘\ _— ;.: =50x10" u:

Improved sensitivity to v electromagnetic
properties, non-standard v interactions,
MiniBooNE/LSND anomaly (steriles), DM
models...

\\ From LSND

R
o
o

T
/

events / keV / 10 kg / year
&
o
T

o

o
TT
4

[
o
B E
]
-
=
-
o

E | (keVnr)

rrrrr

Crystal Mass (kg)



Present goals - after first CEVNS observation with CsI[Na]:
« Accumulate more statistics with Csl[Na]
« CEVNS detection with multiple targets: expecting LAr
* NIMs detection for Lead and lron

Next goals - new deployments:
* Deploy low-threshold Ge detectors
 Measure SNS v flux
» High precision CEVNS studies. Look for physics beyond SM.
« Measure v CC to support Supernovae physics and Weak interaction
physics (Lead, Argon, Oxygen, lodine)
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