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2 I PROJECT OVERVIEW

Explore key safeguards challenges
confronting the IAEA today and how
autonomous and artificial intelligence
(Al) technologies could help.

Artificial intelligence Machine Learning
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Framework for identifying and
evaluating autonomous and Al
methods consists of five elements:
I ) I.D. principal safeguards

verification challenges;
2) Develop criteria that autonomous

and Al methods would need to
address;

3) Develop inventory of methods;
4) Develop safeguards use cases;
5) Technical Evaluations. 1



3 I . SAFEGUARDS TECHNICAL CHALLENGES

Safeguards Challenge

Increase in new types of
facilities and next
generation reactors.

Increase in number of
facilities under safeguards.

Need to protect
safeguards information.

Transmit secure, authentic
communications.

Increases in More countries bringing
environmental samples, into force the Additional
sample processing and Protocol.
data management.urilr.
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Global nuclear
expansion of trade in
equipment, materials
and know-how.

Increasing data flows from
information collection systems.
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Increased amount of
nuclear material
under safeguards.

Need for efficient and effective
technology
acceptance/adoption.

More states with Constrained IAEA resources.
Broader Conclusions.



4 I 2. CRITERIA

Safeguards Challenges
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Activity:

Perform
inspections;
audit nuclear
material
inventories;
perform PIV

Increase in new
types of facilities;
next-gen reactors

Criteria:

l) Reliably identify
and explain significant
anomalies 2) Reduce
time in the field
without reducing
quality of SGs
inspections and
conclusions; 3)
Verification of
Operator
declarations; 4)
Increase efficiency
and productivity
while reducing costs.

Increased # of
facilities under
safeguards

Criteria:

l) Reliably identify and
explain significant
anomalies); 2) Reduce
time in the field
without reducing
quality of SGs
inspections and
conclusions; 3)
Verification of
Operator
declarations; 4)
Increase efficiency and
productivity while
reducing costs.

Consistent need to
protect safeguards
information and
transmit secure
communications

Criteria:

l) Reliably control access
to and ensure security of
information and
communications; 2) detect
threats to information
security; 3) Reliable,
secure and controlled
access to computer
networks; 4) detection of
threats to computer
networks; 5) backup
systems for operating
through attacks on
computer networks.

Increasing data flows
from safeguards data
collection systems

Criteria:

l) Reliably identify and
explain significant anomalies
without violating SGs
agreements (IP, legal
constraints, data
authentication); 2) Sufficient,
resilient bandwidth for data
flows; 3) timely detection
and adjustment to capacity
limitations; 4) verify normal
operations; 5) identify
outliers and anomalies; 6)
detect meaningful patterns
across time and space for
SGs conclusions; 7) Increase
efficiency and productivity
while reducing costs.



5 SELECTED METHODS

I. One-Class SupportVector Machine
(OCSVM)

2. Convolutional Neural Networks (CNN)

DESCRIPTION

• Traditional support vector machines (SVM) trained in a one-class sense
• ML models with associated learning algorithms for classification and

regression analysis
• An unsupervised SVM that is trained on data that can be divided into

classes

• A class of deep, feed-forward (information moves in only one direction)
artificial neural networks (computing systems that learn tasks based on
examples, e.g. image recognition)

• Successfully applied to analyzing visual imagery
• Applications in image and video recognition, recommender systems and

natural language processing

3. Networked Autonomous Robots • Networked system of cooperative, interactive, autonomous robots
managed through Al

• Leverages cloud processing of observations and environmental data
• ML behavior-based system allows adaptive tasking of robotic units
• System tasks robotic devices connected via a wired and/or wireless

communication network

I

I
1
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6 USE CASE IA

OCSVM for Data Analysis and Anomaly Detection at
Reprocessing Plants

E•1
Description Use case explores reducing amount of person days in the field, by using

unattended monitoring data at a reprocessing plant to train an OCSVM algorithm
to detect anomalies or off-normal conditions.

Basic Flow
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Graphical representation of a safeguards
system using the OCSVM.
Source: Shoman, N., Cipiti, B. Unsupervised
Machine Learning for Nuclear Safeguards.
INMM Annual Meeting, 2018.

I. Unattended monitoring and sampling data from reprocessing plant from a
period of normal operations is used to train an OCSVM algorithm.

2. OCSVM is used to automatically monitor unattended data in an MBA
where Pu and U are separated.

3. During automated review, OCSVM indicates a threshold has been reached
for detection of a possible anomaly, triggering onsite inspection.

4. Anomaly + results of onsite sampling leads to determination that there
have been other minor differences in solution inventories, indicating
possible protracted diversion.

5. Further inspection and discussion required with senior inspector and plant
operator.



7 USE CASE I B

Use Case Name Convolutional Neural Networks (CNNs) for
Physical lnventoryVerification

Description A CNN is used to support PIV at a fuel fabrication plant. An IAEA inspector reviews
slow-frame video from the Next Generation Surveillance System (NGSS). Inspector
focuses on fuel rod assembly hall over the past year to verify the number of assemblies
as declared by operator to IAEA in support of material accountancy. CNN is trained to
recognize standard PWR fuel assemblies using thousands of open source and IAEA
archived images. Slow-frame video data is uploaded onto trained CNN software
program. After filtering, CNN software identifies fuel assemblies, clusters or classifies
them, and calculates an item count number. Result indicates that the number of
assemblies in the hall matches the number declared, reducing or eliminating the need for
an inspector to do a physical count.
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Source: International Safeguards in the Design of Fuel
Fabrication Plants, IAEA Nuclear Energy Series No. NF-T-
4.7. IAEA. Vienna, Austria. 2017.

1. Inspector downloads CNN software on laptop at IAEA HQ, prepares for
onsite inspection;

2. Inspector arrives at fuel fabrication plant; accesses slow-feed video
(1 frame/second);

3. Surveillance data uploaded onto laptop and run on CNN software.
4. Trained CNN software filters through imagery.
5. Once filtering is complete, CNN software clusters fuel assemblies into

objects and counts total number of assemblies to support PIV.
6. CNN software produces a time series of counts identifying that there are

64 of 193 fuel assemblies in the hall awaiting packaging and shipment.
7. IAEA inspector compares this number against number of assemblies

declared by the operator and verifies that they match, eliminating need to do
a physical count.

8. Inspector records findings and writes a report.
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8 I USE CASE I C

Use Case Name Networked Autonomous Robotics to Improve
Safeguards at Encapsulation Plants

Description

Basic Flow

A networked autonomous robotics system managed through cloud processing is used to support
safeguards activities at an encapsulation plant, including inventory counting of canisters in temporary
storage. Robots collect data through on-board cameras and sensors for object recognition and counting,
environmental monitoring, and event detection. Data is transmitted to the cloud where ML methods
such as anomaly detection or Bayesian processing are deployed for adaptive control of the robots.

ROS
MASTER

Robotics Operating System.
Source: Miratabzadeh, Seyed et al. Cloud Robotics: A Software
Architecture. 2016 World Automation Congress. IEEE.
Rio Grande, Puerto Rico. 06 October 2016.

I. Cloud network comes online; autonomous
Robot units deployed at encapsulation facilities.

2. Network pings robot units for signs of life;
Allocates first instructions;

3. Nuclear fuel arrives at encapsulation plant.
4. Network anticipates or prompts for verification data;
5. Robot unit locates canister ID or markers and sends ID data to

network;
6. Network compares data with operator declarations and other

information in database. If consistent, networks confirms
verification. If inconsistent, networks identifies discrepancy, self-
checks with backjumping, remotely transmits report to
inspectorate and operator.

7. Robot locates canisters and IDs in temporary storage; sends ID
and location data to network.

8. Network confirms consistency of ID and location in data archive



9 I TECHNICAL EVALUATION

Use Case l A: OCSVM for Data Analysis and Anomaly Detection
at Reprocessing Plants

Safeguards Deployment
Options

Risks and Challenges

Anomaly detection at Save time and resources for
bulk handling or analysts and inspectors by
reprocessing facilities detecting anomalies without
with large amounts of requiring labeled data;
heterogeneous
unattended monitoring With appropriate historical Robust feasibility study or
data. data on normal and off- proof-of-concept needed.

normal conditions, OCSVM
proof-of-concept could be
easily demonstrated to build
trust and transparency.

Collection of training data
could be expensive
depending on required size
of data set.

Corruption or manipulation
of training data or input data
by adversary might be
feasible.

5 years to test/validate.
Deployment thereafter,
depending on IAEA
safeguards acceptance
process.



10 TECHNICAL EVALUATIONS CONTINUED

Use Case I B: CNNS for PIV

Safeguards Deployment
Options

Benefits Risks and Challenges

Image recognition and Reduce time in the field for
item counting to support item counting.
PIV.

Provide more nuanced
picture of activity in a facility
that a human may not
otherwise see with naked
eye.

Detect anomalies or off-
normal conditions (Note:
Depends on quality of
training data.)

Improper training or poor
quality data could result in
false alarms or ability to
recognize items.

Training data could be
vulnerable to manipulation.

Explaining how CNN makes
decisions is open area of
research.Verified testing
needed to facilitate
acceptance and deployment.

5 years to test and validate
approach, possibly longer
depending on IAEA
safeguards acceptance
process.

1

1



11 TECHNICAL EVALUATIONS CONTINUED

Use Case l C: Networked Autonomous Robotics to Improve
Safeguards at Encapsulation Plants

Safeguards Deployment
Options

Benefits Risks and Challenges Timeframe

Support safeguards
verification activities such as
PIV (inventory count) and
material verification.
Autonomous robots
execute physical tasks; cloud
environment centralizes
data processing, supports
anomaly detection, and
facilitates information
management.

Enable more frequent inventory
verification;

Reduce potential vulnerabilities
such as injury or mistakes due
to human behavioral factors
(e.g., fatigue, inattention);

Increased accuracy and
verifiability of assessments due
to substantially more data being
collected and recorded;

Strong cost/benefit (assuming
accurate performance); and

Immediate distribution of
measurement results to multiple
locations;

Cyber vulnerabilities of cloud
network;

False alarm rates might be high
due to challenging environments
and sparse training data;

System behavior might not
always be intuitive or
explainable, raising questions
about trust;

Difficult terrain or
environments limit robot
mobility or sensing;

Manual verification of
autonomous system findings,
clearing false alarms, and
maintenance could exceed
workloads for manual
verification

I -3 years for deployment of
pilot system.

I O years or more for full
implementation.



12  CONCLUSION

Autonomous systems, Al and ML provide important opportunities to improve

effectiveness and efficiency of IAEA safeguards.

Current and emerging methods hold potential for:

Reducing time and resources needed for data analytics, inspections and safeguards implementation;

Recognizing patterns or anomalies that might not otherwise be observed by humans.

Non-trivial challenges:

Training and quality of data will impact systems' ability to learn, decide and act;

Manual re-verification could reduce efficiency; and

Training data and networks could have vulnerabilities.

Bottom Line: Robust training and evaluation required to increase trust,

transparency, and likelihood of adoption.
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