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Manufacturing Nano-Featured Materials
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• Simpler processing
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Transparent Electronics
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Roll-to-Roll Nanoimprint
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Developing economic nano-patterning for higher volume market
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Process Configuration of Jet and Flash
Imprint Lithography (J-FILTM)
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Dispense Photo-Polymer (Resist) via lnk-Jet
Inkjet - reduces resist volume, viscous

resistance and layer thickness
- allows resist delivery to features

Resist fills template pattern
Imprint

Resist is cured with light

Flash

Separation

Many challenges arise when implementing this process



Physics Regimes of Nanoimprint

Lithography
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Focus on processing barriers in the droplet merge regime
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Process Scaling Barriers
Release layer Non-Uniform Residual Layer Thickness

etch depth
Residual

-- Etch barrier Results in non-uniform

- Transfer layer thickness
varies

UV Imprint and

Incomplete
cavity filling

Variation in

I Etch
expose

Nonuniform
etch-depth 1— parasitic

lateral
etching

_J   Base layer
Gas Trapping

Etch base layer

and transfer layer

Residual laver is any resist
that is not part of the pattern

Resnick, D. J., Sreenivasan, S. V. and Wilson, G. C., 2005, Step & flash

imprint lithography: Materials Today, February.

Results in non-fill defects

(1) (2)

Taylor, H., 2011, Simulation and mitigation of pattern process dependencies in nanoimprint

lithography: Journal of Photopolymer Science and Technology, v. 24, n. 1, p. 47-55.

Model are used
to optimize

processes and
minimize these

barriers

(3) (4)

Liang, X., Tan, H., Fu, Z., Chou, S. Y., 2007, Air bubble formation and dissolution in dispensing

nanoimprint lithography. Journal of Photopolymer Science and Technology, v. 24, n. 1, p. 47-55.



Breaking Down the Droplet Merge Regime
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Feature length — 50 — 100 nm

Substrate width — 1 cm

Gap thickness — 100 nm — 2 [.tm
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Fast simulations are needed
to effectively integrate
modeling into process

design
Reduced-order models are needed
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Reduced-Order Models for Thin Gap
Multiphase Fluid Flow

Reynolds, O., 1886, On the Theory of Lubrication and Its Application to

Mr. Beauchamp Tower's Experiments, Including an Experimental

Determination of the Viscosity of Olive Oil: Philosophical Transactions

of the Royal Society of London, v. 177, p. 157-234.
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In thin gaps momentum equations reduce to
2-D expression
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Disperse representation enables large area

simulations with coarse discretization

Va k

Separated Disperse



Gas Mass

Balance

Ideal Gas Law

Lumped Parameter

Dissolution Model

Gas Dissolution
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Analytic dissolution model

Reduced order models for two-phase, thin-gap, gas dissolving flow

Cochrane, A., Tjiptowidjojo, K., Bonnecaze, R. T., Schunk, P. R. 2018 Multiphase model for nanoimprint lithography. International Journal of

Multiphase Flow.



Drop Density Varied for Fill of Non-

Uniform Pattern
Thin film transistor

Metallization of Metal Oxide
via Plasma Treatment

Choi, Y., W.-Y. Park, M. S. Kang, G.-R. Yi, J.-Y. Lee, Y.-H. Kim, and J. H.

Cho, 2015, Monolithic metal oxide transistors, ACS Nano, p. 4288-4295.

Pattern mask
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Sensitivity Analysis

Relative Work Comparison

Comparative Work Function

• No Surface Tension

• No Deformation

t f dh
E= P dA —

dt
dt

0 A

Base Case: 

6 pL water drops in N2

Squeezed from 1 micron to 100 nm

Is processing rate increased because

viscous dissipation is high or because it

takes a long time to dissolve the gas?
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Sensitivity of Work to Percent Change

in Base Case Processing Parameter

Drop Volume

Henry's Law Constant

Dissolved Gas Diffusivity

Gas Molecular Weight

Gas Viscosity

Experimentally Realizable parameter adjustment 

Reduce liquid viscosity 20% Reduce Work by 9%

Change N2 to CO2 Reduce Work by 8%

-1;11 - 20
Percent Change

40

Both viscous dissipation and gas

dissolution can have an effect on

processing rate



Structural Model
Membrane Mechanics

VII • TII + rn = 0

TxxKx + TyyKy + Ps 0

• Constitutive Relationship

h2
vII = 121,t VIIP

Ps = P + SaK

Tjiptowidjojo, K., 2014, Structural Mechanics

of Roll-to-Roll Nanoimprint Lithography:

17th International Coating Science and

Technology Symposium.

Wrinkled membrane

Reduced order model for web-structure mechanics



Membrane Mechanics Model
Coupled with Disperse Flow Model
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Saturation
1.00e+00

0.75=

0,25-

O. 00e+00=

/50
,ACT":10. 1 A4 
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Pinch-off in crossweb direction suggests membranes
are too pliant
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Cylindrical Shell Model Coupled
with Multiphase Lubrication

h2 a
vt Liquid Mass Balance v 1 12pti kri P
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Cylindrical Shells

Tangential Force Balance
dT 0
+ K — (KD) + Pt = 0

Normal Force Balance 
a 
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Geometry 

d2x dy
+ K = o

2

Ot + (hv1) + —(Sh-ua) — 
2 
—Svd —h = 0

-

Pressure driven flow Top/Bottom boundary
motion terms 

Displacement-Gap Thickness Coupling 

h = h, — n • 8

Lubrication-Normal Pressure Coupling

Pn = P Patm

With this coupled model we explore how bending
stiffness affects web deformation in a closing nip

Carvalho, M. S. (2003) Elastohydrodynamics of tensioned web roll coating

process. international Journal of Numerical Methods in Fluids, 41, 561-576.



Effects of Web Stiffness on Single
Phase Lubrication Thickness Profile
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Even for pliant web material, bending

stiffness has an effect on web

deformation



Conclusions & Future Work
• In drop merger, both viscous dissipation and gas dissolution can effect processing rate
• Bending stiffness is an important physical aspect that needs to be included in

simulations of web deformation
• Using coupled reduced order models many simulations can be iterated through

quickly to determine effects of various properties in a given process
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• Push forward with cylindrical shell model and two-phase flow
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Membrane + Reduced-Order,
Separated Reynolds Lubrication

Squeezing of liquid film
Membrane Deformation
+ Reynolds Lubrication
+ two-phase model -4 -4 -4 -
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Disperse Drop Merger Between

Tensioned Web and Rotating Roller

• a,

Model implementation continues with
boundary condition formulation
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Two Phase Lubrication Flow in

Rolling Imprint Mode
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The next challenge is to smooth out the intersection of
partially saturated and fully saturated zones


