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Manufacturing Nano-Featured Materials
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Developing economic nano-patterning for higher volume market



Process Configuration of Jet and Flash
Imprint Lithography (J-FIL™)

Inkjet Dispense \  Capillary Fill Y\ UV Flash Separation
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J-FIL™ R2R
Implementation

Dispense Photo-Polymer (Resist) via Ink-Jet
Inkjet - reduces resist volume, viscous
resistance and layer thickness
- allows resist delivery to features
Resist fills template pattern
Imprint
Resist is cured with light
Flash

Many challenges arise when implementing this process 3



Physics Regimes of Nanoimprint
Lithography

\»

Droplet Merge Flash Peel-Off
Gas Trapping Phase/Volume Change  Pattern De-adhesion
Capillary Forces Residual Stresses Feature Deformation

Substrate Deformation
Pattern Filling

Focus on processing barriers in the droplet merge regime
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Process Scaling Barriers

S Roloase layer Non-Uniform Residual Layer Thickness
/ Etch barrier Results in non-uniform etch depth

Residual
thickness
varies

Incci)m;:_lll?ite

UV Imprint and § e cavity flling

expose . Variation in

I I Nonuniform
w e B parasitic
o O g By N B etcl|1-depth lateral
Taylor, H., 2011, Simulation and mitigation of pattern process dependencies in nanoimprint
L|_ L e o _,_| lithography: Journal of Photopolymer Science and Technology, v. 24, n. 1, p. 47-55.
—I Base layer

Gas Trapping
Results in non-fill defects

Model are used
Etch base layer

and transfer layer v v to optimize
processes and

Residual layer is any resist minimize these
that is not part of the pattern barriers
Resnick, D. J., Sreenivasan, S. V. and Wilson, G. C., 2005, Step & flash
imprint lithography: Materials Today, February.
(3)

Liang, X., Tan, H., Fu, Z., Chou, S. Y., 2007, Air bubble formation and dissolution in dispensing
nanoimprint lithography. Journal of Photopolymer Science and Technology, v. 24, n. 1, p. 47-55.
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Breaking Down the Droplet Merge Regime

—— _T = —I ————— | Not drawn to scale!
emplate

I P | Feature length ~ 50 — 100 nm

I Fea'ture flow _ | Substrate width ~ 1 cm

I+ Solid deformation | Gap thickness ~ 100 nm — 2 pm

I Two fluid phases

I * High viscous stresses
I+ Gasdissolution

I+ Capillary forces

Fast simulations are needed

| Substrate | to effectively integrate
:‘ Solid deformation : modeling into process
* Web tension .
I. Rigid flexure ' de5|gn
] I Reduced-order models are needed
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Reduced-Order Models for Thin Gap
Multiphase Fluid Flow

h <L In thin gaps momentum equations reduce to
h 2-D expression
Rez K1 h?

h’ L

Reynolds, 0., 1886, On the Theory of Lubrication and Its Application to
Mr. Beauchamp Tower’s Experiments, Including an Experimental
Determination of the Viscosity of Olive Qil: Philosophical Transactions
of the Royal Society of London, v. 177, p. 157-234.

Relative Permeability
h2
Vg = —mkr ViP

Disperse representation enables large area

simulations with coarse discretization
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Gas Dissolution
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Analytic dissolution model

Reduced order models for two-phase, thin-gap, gas dissolving flow

Cochrane, A., Tjiptowidjojo, K., Bonnecaze, R. T., Schunk, P. R. 2018 Multiphase model for nanoimprint lithography. International Journal of

Multiphase Flow.



Drop Density Varied for Fill of Non-
Uniform Pattern

Thin film transistor

Metallization of Metal Oxide ' v
3 U
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Choi, Y., W.-Y. Park, M. S. Kang, G.-R.Yi, J.-Y. Lee, Y.-H. Kim, and J. H.
Cho, 2015, Monolithic metal oxide transistors, ACS Nano, p. 4288-4295.

Regions require different |jquid bridge Full gap Overfull gap

Pattern mask 3 mounts of resist formation
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Model can represent varied density drop pattern
by variation across initial saturation field 9



Sensitivity Analysis
Relative Work Comparison

Comparative Work Function
 No Surface Tension
e No Deformation

bf dh
e [7[ paalia

Base Case:
6 pL water drops in N,
Squeezed from 1 micron to 100 nm

|s processing rate increased because
viscous dissipation is high or because it
takes a long time to dissolve the gas?

Sensitivity of Work to Percent Change
in Base Case Processing Parameter
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Work Done by Plates on Fluids, ergs

— Drop Volume

—— Henry’s Law Constant

—— Dissolved Gas Diffusivity
Gas Molecular Weight

—— @Gas Viscosity
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Experimentally Realizable parameter adjustment Both viscous dissipation and gas

. : 5 s
Reduce liquid viscosity 20% — Reduce Work by 9% dissolution can have an effect on

Change N, to CO, - Reduce Work by 8%

processing rate 10
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Structural Model

Membrane Mechanics

Vi T+t =0

Tyxky + Tyyky + P =0

e Constitutive Relationship

hZ
vy=——V,P
11 121 11
P, =P + Sok
Wrinkled membran
o . Reduced order model for web-structure mechanics
Tjiptowidjojo, K., 2014, Structural Mechanics

of Roll-to-Roll Nanoimprint Lithography:
17th International Coating Science and

Technology Symposium. =



Membrane Mechanics Model
Coupled with Disperse Flow Model

Saturation
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Pinch-off in crossweb direction suggests membranes

are too pliant .



Cylindrical Shell Model Coupled
with Multiphase Lubrication

h2 9
f, Liguid Mass Balance VL= g g P
a(Sh)+a(h )+a Sh Lvgh=0
ot gz ) 57 (Shva) = 55va 5z h =
7 N\ /

Pressure driven flow Top/Bottom boundary
motion terms

Cylindrical Shells

Tangential Force Balance Displacement-Gap Thickness Coupling

ar o h=h,—n-8

d—€+Ka—€(KD)+Pt=0 0

Norrgal Force Balance Lubrication-Normal Pressure Coupling
—Ka—gz(KD)-FKT-{-Pn:O B,=P—Pyn

Gzeometrv With this coupled model we explore how bending
ﬂ + Kd_y —0 stiffness affects web deformation in a closing nip
dé? dé

Carvalho, M. S. (2003) Elastohydrodynamics of tensioned web roll coating
process. International Journal of Numerical Methods in Fluids, 41, 561-576. 13



Effects of Web Stiffness on Single
Phase Lubrication Thickness Profile
=
l /
/
Membrane Even for pliant web material, bending
stiffness has an effect on web

«— Lubricated region
—Membrane
-1 0 1 Z 3 4 5
—Membrane
Bending 0 -le-2 -8e-3 -6e-3 -4e-3-2e-3 0 2e-3 4e-3 6e-3 8e-3 le-2
D,=10cm
v =1 micron/s ¢
deformation 14

di =850 nm Mylar 0.21(10)3

h_. =1 micron Stainless Steel 7.7(10)3

min



Conclusions & Future Work

* In drop merger, both viscous dissipation and gas dissolution can effect processing rate

* Bending stiffness is an important physical aspect that needs to be included in
simulations of web deformation

e Using coupled reduced order models many simulations can be iterated through
quickly to determine effects of various properties in a given process
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Membrane + Reduced-Order,
Separated Reynolds Lubrication

Squeezing of liquid film
Membrane Deformation
+ Reynolds Lubrication
+ two-phase model

Demonstrated coupling of multiphase flow and

structural mechanics
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Disperse Drop Merger Between

Tensioned Web and Rotating Rolle
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Two Phase Lubrication Flow in
Rolling Imprint Mode
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The next challenge is to smooth out the intersection of
partially saturated and fully saturated zones



