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r%j 120 Point-Focus Papers

Balance of Plant /

Systems Modeling

Receiver Systems

Heliostats & Optics

Dish Systems



25

20

Point-Focus Papers by Country

22 countries

"SolarPACES Olympics"
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Point-Focus Systems

• Heliostats, Dish Systems, and Optics

• Receivers

• Systems Modeling
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Point-Focus Optics Trends

30 total papers

• 14 papers

• 16 posters

Modeling

26%

29%

Design/
Experimental

Metrology
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Metrology Papers

Slope Error Schedlar, et al. Niefer, et al.; Les, et al;

Canting Andraka; Zhu;
_____

Tracking
_J

r—
Reflectance/

( Soiling

Atmospheric
Attenuation

Collins, et al.; Guo, et al.; Les, et al;

Wang; Bonanos, et al.;

Sanchez, et al.;



AIMFAST for Heliostats: Canting Tool

for Long Focal Lengths
(Andraka)

Target

Cxyz

Camera Lens

Camera Pixel Plane

Normal Vector

2-f

Facet

Figure 2. Two-projector target. Left, fringe patter extends across two projector images smoothly by using a single Windows
figure. Right, the grid line in the characterization grid is doubled at the discontinuity, shown in red.

5 co a r. IFDAMIC E 5 2 CP-1 ES

Figure 1. Single-facet test stand (left) and 24-facet lab-scale heliostat after initial alignment (right).
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Figure 8. 24-Facet Lab Heliostat before and after final alignment. Facet 6 adjustment screws could not be adjusted due to severe
galling. The blue vectors represent total canting error of each facet, while the red vectors indicate the adjustment needed at each
screw. The red reference arrow is lmm of adjustment, while the blue is 1 mrad of total canting error. Facet 6 is excluded from the

right hand image.
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Solar i="11,1

Heliostat Testing According of

SolarPACES Task 3 Guideline
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Solar Field Heliostat Selection Based

on Polygon Optimization
(Schöttl, et al.)

AREA
30014DARIES

FIGURE 1. Sketch qualitatively describing the optimization problem. Area boundaries are blue. heliostat field boundaries are

red, non-selected heliostats are white circles, selected heliostats are green circles.

b) Case A
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Point-Focus Systems

• Collectors and Optics

• Receivers

• Systems Modeling
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Trends in Receivers
Receiver Papers (45)

Particle
Advanced Materials/

Features

Molten Salt
Gas / Volumetric

5 co am- PACE 5 2 CP -1 23
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Receiver Papers

• Molten Salt

• Gas / Volumetric

• Particles

• Advanced Materials / Features
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Using Corrugated Tubes in External Molten Salt
Receivers

(Uhlig et al., DLR)

FIGURE 6. Helical ribs witch variable pitch and groove depth along tube length

1 4

FIGURE 7. Tailored receiver panel using different geometry of corrugated tubes

FIGURE 8. Partial helical ribs

CFD simulations sowed that helical ribs can induce internal mixing of molten salt to
reduce film temperature and enable higher fluxes and outlet temperatures. Need to
balance, flux, flow rate, and temperatures.
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Effect of eccentricity on the thermal
stresses in a bayonet tube for solar

power tower receivers
(Alvarez et al., University Carlos III of Madrid)

i

osco

E .0

011

290

Bayonet tubes with concentric flow:

eccentric shape reduces peak
temperatures and stresses on

irradiated tube.

Central Receiver Heat Transfer

Enhancement Using Jet
Impingement with Passive Velocity

Excitation
(Craig, University of Pretoria

Incoming
concentrated
solar irradiation

Secondary
reflector

(a) (b) (c)

;IRE 1. Proposed central cavity receiver (Craig et al [5]): a) absorber surface and secondary reflective surfaces, b) pyramid
array stnicture. c) intesnal geometty with jet pipe and impact zone

Light-trapping features with internal impinging
flows and passive flow perturbation to

increase heat transfer. Need to balance with
increase in pressure drop.

Scol2i1-FIDA4CES 2075
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Direct Absorption Volumetric Molten Salt Solar
Receiver/Thermal Energy Storage System and

Floating Modular Transparent Cover
(Calvet et al., MASDAR Institute, Khalifa University

Lahlou et al., MASDAR Institute, Khalifa University)

Final Optical Element (FOE)

Secondary concentrator

Hot salt region

(5004C)

Insulated

Divider plate

Cold salt region

(280 'C)

(a)

Concentrated Solar Flux

(b)

Direct beam-down molten-salt volumetric absorption tests showed uniform heating at
—475 C. Floating fused-silica spheres reduced salt and heat losses in bench-scale tests.

cs I 2s s- FIDA4C ES 2075
SoIar Povvar Er CV, a us, dic l Ersergy Sysia rr• s

20



Corrosion monitoring of ferritic-martensitic steels
in molten salt environments for CSP applications

(Perez et al., University of Madrid)

Fig. 3: SEM micrographs of P91 after 1000 h of testing: (a) superficial aspect: (b) cross-section.

Real-time electrochemical impedance spectroscopy demonstrated for diffusion controlled
porous-layer corrosion of P91 by molten salt and confirmed by SEM and XRD.
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Receiver Papers

• Molten Salt

• Gas / Volumetric

• Particles

• Advanced Materials / Features
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Design and testing of externally finned tube cavity
receiver for Brayton cycle preheating purposes

(Basson et al., Stellenbosch University)

Pressurised air out

Non-pressw-i;ed air in

Concentrated solar radiation

Pressurised air in

Non-pressurised

air out

Finned external tubes in a cavity receiver intended to provide radiative trapping and
reduced convective losses in a hybrid air receiver. Modelling shows mixed results.

cs s- FIDA4C ES 2075
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Experimental and numerical
evaluation of a small array of
ceramic foam volumetric

absorbers
(Zaversky et al., CENER, CIEMAT, Franhofer IKTS)

Performance Assessment of an
Improved Open Volumetric Receiver

Design with 240 MWth
(Stadler et al., DLR)

Modular sintered SiC foam with
optimized cell density and porosity, and
frustum shape to homogenize air speed,
have achieved 900 C.

E

A novel receiver design for a 240 MWth
solar tower was optimized for reduced
radiative losses and high air return ratios.
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Experimental study of a heat pipe pressurized air
receiver

(Bai et al., Chines Academy of Sciences)

las tuaulair
Heal pi pc reccri a

Heat pipes tested to heat pressurized air for solar hybrid gas-turbine system. Achieved air
temperature of —620 C with —80% efficiency.



Receiver Papers

• Molten Salt

• Gas / Volumetric

• Particles

• Advanced Materials / Features
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Numerical and experimental investigation of a novel
multi-stage falling particle receiver

(Kim et al., CSIRO)

1 0

8

0. 2

00
0

Overall Absorpt,vity

10 20 30

particle flow rate, kg/s-rn

40

Simulations and testing of multi-stage catch-and-release particle receiver showed
increase in opacity and solar absorptance relative to free-fall.

5 CD 21 FoffL4C E 5 2075
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On-Sun Particle Receiver Testing, Simulation, and Mass

Flow Control
(Ho et al., Sandia National Laboratories

Mills and Ho, Sandia National Laboratories)

Flux target

Slide gate for

particle mass flow
control

FPR with weigh hopper.pptx

Screw Elevator

Top Hopper

Receiver

Bottom Hopper

Weigh hopper

Bucket Elevator

—1 MWt on-sun particle receiver tests demonstrated automated particle temperature and

mass flow control with high temperatures (-700 C) and efficiencies of —80%. Simulations

showed significant impacts of wind and convective heat losses.

5 co am- PACE 5 2 CP -1 23
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Operational Experience of a

Centrifugal Particle Receiver Prototype
(Ebert et al., DLR)

Re[elver inlet temperature Twry

inside of hopper

Stationary

collector ring

Flexible hose

Collector outtet temperature

in outlet piping

Receiver outlet

temperature T„, . at

owe' end of rotating

part of receiver

Concentrated

sunlight

On-sun tests achieved —965 C average particle outlet temperature. Lessons learned
include ways to improve particle flow behavior and reduce particle loss through aperture.

Scslas-FIDA4CE5 2075
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Experimental Study on Thermal Performance of a Novel

Solar Particle Receiver
(Xie et al., Zhejiang University)

F:ui

Aper[ury

/I\
Suldr radiatuwl

(a)

Particle now layer

Doss n silo

71.1q:dy C

'3VVA~yx
M:gtytgli:.;

rd. rd. •
.7.

Particles

(b)

Fig. 1: Scheniatic of particle receiver (a) and pneumatic control valve (b).

Particles flowing down an inclined surface are irradiated from a beam-down system with
flow control from a pneumatic valve. Preliminary tests achieved 500 C at 60% efficiency.
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Receiver Papers

• Molten Salt

• Gas / Volumetric

• Particles

• Advanced Materials / Features
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Accelerated aging and characterisation of a novel
absorber coating on Inconel 625 and SS316L substrates

for high-temperature applications
(Tsuda et al., Nano Frontier Technology and ANU)

100
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(b) after 10 hours
'

(c) after 100 hours

Micro-textured multi-layer coating of TiO2 and black pigments showed superior

absorptance (97%) and aging relative to Pyromark 2500, which decreased from —96% to

—92% after 100 hrs at 850 C.
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Bladed Receivers

• Convective heat loss from a bladed solar
receiver, Torres et al., ANU

• Optical and Radiation Considerations in
Bladed Receiver Designs for Central Tower
Systems, Ye et al., ANU

• Towards testing of a second-generation
bladed receiver, Pye et al., ANU

u

Inlet ot
(nlrll Imes

Bladed receivers were studied numerically and experimentally to optimize solar
collection, minimize thermal losses, and perform technoeconomic analyses.

On-sun test is being prepared.
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Novel Low-Cost Quartz Window for Reducing Heat

Losses in Concentrating Solar Power Applications
(Sullivan and Kesseli, Brayton Energy)

Figure 1 — Ouart-tube window
mounted over a 250 kirm cavity receiver

aperature

Quartz tubes placed in aperture of cavity receiver reduced heat losses by 9 — 36%,
despite reflective losses.

Sco Mar FIDA4C ES 2075
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Heliostat Aiming Strategies for Novel Receiver Designs

Aiming Point Optimization for Advanced Aiming Strategy on the Next-CSP Receiver:

Coupling of TABU Search, Ray-Tracing Software

Solstice and Thermal Model
(Grange et al., PROMES-CRNS)

Tubular Receiver Designs
(Frantz and Flesch, DLR)

Aiming strategy developed for

novel STAR panel arrangement that

allows for increase in optical

receiver efficiency

Aiming strategy developed for

novel dense-suspension particle

receiver that increased uniformity

of flux distribution but reduced

particle temperatures.
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Point-Focus Systems

• Collectors and Optics

• Receivers

• Systems Modeling
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Multi Tower Systems and Simulation Tools
Arbes et al., SBP

tun
'kr ReeeKrer

. Sirrr

xteiestit

Halkistat R Fighelir

FIGURE 1: Improving a heliostats cosine efficiency

/10....."...-Efficiency per hellost

Evaluation

Large hebostat field

Cropping

11114

LC OE lor total ene•gy

Generating Optimization

Parameterlsl

FIGURE 4: basic principle of the heliostat field layout optnuization problem.

Simulations and tools developed and showed that introducing a 2nd tower can
increase efficiency of heliostat field through receiver switching.
However, LCOE not increased.
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CSP System Temperature Range Optimization for

Reduced LCOE
Buck and Giuliano, DLR
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Systems modeling evaluated trade-offs of higher temperatures and AT vs. costs of
heliostat field, receiver, transport, and LCOE. Results show lower LCOE with higher

temperatures and AT.
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Techno-Economic Assessment of New Material

Developments in Central Receiver Solar Power Plants

(Zoshke et al., Fraunhofer ISE and DLR)
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Developed tools to evaluate system behavior every minute of the year with dynamic

degradation of receiver coatings to assess the optimal reapplication interval and

minimum LCOE.
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Modeling and measurement of cloud passages

Improved Efficiency Prediction of a

Molten Salt Receiver

Based on Dynamic Cloud Passage

Simulation, Schwager et al, Aachen

University and DLR
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Optimization of Robust Aiming

Strategies in Solar Tower

Power Plants Considering Clouds and

Uncertainties, Richter et al., KIT

Need distributed DNI measurements

Spatial DNI Measurement for Accurate

Solar Flux Control in Megalim 121MWe

Solar Receiver Power Plant, Minis et al.,

BrightSolurce.

Use of PV module

on each heliostat

to monitor local

DNI

40



Object Oriented Modelling of the CSP-DSW Facility
Corbett et al., Cypress Institute

FIGURE 2. Left: ISTORE [8]: Right PROTEAS Operation Schematic: (1) heliostat field: (2) central receiver: (3) molten salt
storage tank: (4) steam engine: (5) MED desalination unit [8]

Modelica tools were used to simulate CSP for desalination of sea water. Prototype
multi-effect distillation units at Cyprus Institute were used to validate the model.
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Point-Focus Systems

• Heliostats, Dish Systems, and Optics

• Receivers

• Systems Modeling
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Conclusions

• —120 point-focus papers submitted

— 36 on heliostats and optics (30%)

— 5 on dish systems (4%)

— 45 on receiver systems (38%)

— 35 on balance of plant and systems modeling (28%)

• Focus on achieving higher temperatures (>700 C) while
mitigating convective and radiative heat losses

— Novel volumetric heating designs

— Particle-based systems

• Collector aiming and optics, reliability, system analysis, and
efficiency very important



wi

14i
•.44
• .• •

11 t

Sol rPACES 2018
Solar Power & Chemical Energy Systems

October 2-5, 2018 Casablanca, Morocco

• ,,r4 4: •tc<

__ __ _ , •

• )t...?...)

- . _

Thank you for your attention!

Point-Focus Systems
A Review of Papers Presented at SoIarPACES 2018

Clifford K. Ho and Julius E. Yellowhair

Sandia National Laboratories
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On-sun test of a single tube fluidized particle solar
receiver: Cristobalite powder as heat transfer fluid

(Lopez et al., PROMES-CNRS)
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On-sun tests of a dense suspension of Cristobalite powder flowing upward through a tube

demonstrated high heating (up to 740 C) at flow rates of 8 — 63 kg/m2/s
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Development of High Performance Solar
Absorber Coatings
(Harzallah, CMI, Belgium)

Silicon based absorber coating
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Plasma spray absorber coating

Intended for >700 C with 97% absorptance and lower emittance
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Particle Heat Exchangers

Integration, Control, and Testing of a High-

Temperature Particle-to-sCO2 Heat Exchanger
Albrecht et al., Sandia National Laboratories



Development of View Factor

Correlations for Modeling Thermal

Radiation in Solid Particle Solar

Receivers Using CFD-DEM
(Johnson et al., Middle East Technical University)
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Particle center-center distance (in particle radii)

Development of radiative view factor
correlation vs. distance for densely-packed
particles to be used in efficient CFD-DEM
models


