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ADDSec

Artificial Diversity and Defense Security

Grid WANs have predictable communication paths and static configurations

To introduce unpredictability and enhance situational awareness, Chavez et al. developed the
ADDSec tool which leverages moving target defense (MTD)
• Anticipates and adapts against reconnaissance and Ethernet-based attacks using software-defined networking (SDN)
• Enables automatic reconfiguration of the system through IP randomization, port hopping, and instruction set

randomization

• Detects attacks using machine learning and notifies SDN controller to randomize
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Resilience Metrics •

Measurement of resilience costs considers:

o Systemic Impact (SI): cumulative impact that a disruption has on system performance

• Total Recovery Effort (TRE): total resources used for recovery efforts post-disruption

Calculate the recovery-dependent resilience (RDR) costs:

o Takes into account the effect the different recovery activities have

inesI
RDR =

Norm



Research Questions ■

Key 1.1. Does ADDSec increase resilience of the system
Questions: during an attack, specifically during reconnaissance?

1.2. What performance does the system exhibit
under different IP randomization rates?

1.3. What performance does the system exhibit
under different IP randomization rates during an
attack?

1.4. Are machine learning triggers effective for this
type of attack?

1.5. Do our resilience metrics provide useful insight
into the effectiveness of ADDSec?



Experimental Setup
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Experiment Plan

ADDSec Modes and Attack Presence

Baseli ne:
No ADDSec

Constant IP
Randomization

Triggered I
Randomization

• Worm 1"11111
• No Worm

6.• Worm
Pw• No Worm

With Varying I P
Randomization Rates

• Worm
• No Worm
6_

: Worm deployed on (an initially single) host(s) attempting to
ping addresses and make connections

• Ran 10 trials for each case
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Performance Metrics of Interest

Computing SI and TRE

Systemic Impact (SI)

° System Metrics:

1. Hosts Not Infected  (#)

Total Recovery Efforts (TRE)*:

System Metrics:

1. Latency (s)

2. Retransmissions (#)

3. Dropped Packets (#)

1

*Latency weighted most heavily, then dropped packets, and then retransmissions

Image source: ITPro, 2010 and Contemporary Research, 2017



Results Summary

System Metrics •

Average over
10 trials

(1000s/trial)

# Host
Infections

Latency

Retransmiss
ions

Dropped
Packets

Frequency of IP Randomization

None ML ls 4s 8s 16s 32s 64s 128s 256s

No
Worm

Worm 20 3 2.8 3.4 4.8 4.9 4.9 7.9 8.9 9.8

No
Worm 29.93 37.2 349.34 394.71 699.11 591.89 TBD 422.1097 48.88403 420.31

Worm 729.91 698.92 346.22 733.84 1000.42 1148.1 997 1187.3 1559.14 2351.07

No
Worm 6039 5928.7 37.2 37.2 37.2 37.2 TBD 4291.8 6887 2681.3

Worm 5417 2267.8 1966.1 2151.1 2451.9 2839.5 3911.3 6297.6 7182.3 3911.3

No
Worm 0 0 0.1 0 0.1 0 TBD 0 0 0

Worm 0 0.3 1 0.7 0.6 0.1 0 0.1 0 0



Results Summary

Resilience Metrics

Average over
10 trials

(1000s/trial)

SI

TRE

RDR

Frequency of IP Randomization

None ML ls 4s 8s 16s 32s 64s 128s 256s

No Worm 0 0 0 0 0 0 0 0 0 0

Worm 0.65146 0.05773 0.05378 0.06091 0.08202 0.08524 0.08373 0.1331 0.15133 0.16696

No Worm -0.00042 -0.00235 - 0.00341 0.01331 0.02631 0.01751 TBD 0.0202 0.00094 0.0442

Worm -0.1872 0.04558 0.02497 0.05158 0.06614 0.07078 0.05336 0.0504 0.05643 0.07413

No Worm 0.00042
-0.00235 -0.00341 0.01331 0.02631 0.01751 TBD 0.0202 0.00094 0.0442

Worm 0.46426 0.1033 -0.07874 0.11247 0.14817 0.15602 0.13709 0.18352 0.20777 0.24108



Results

Key
Question: 1.1 Does ADDSec increase resilience of

the system during an attack, specifically
during reconnaissance?

Yes! ADDSec improves resilience significantly.

Resilience Costs of ADDSec with Worm at Different Randomization Rates
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Results

Key
Question:

2 What performance does the system
exhibit under different IP randomization
rates?

Constant ls and Trigger Mode lower performance losses.

Resilience Costs of ADDSec with No Worm at Different Randomization Rates
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Results

Key
Question: 1.3 What performance does the system

exhibit under different IP randomization
rates during an attack?

Constant ls and Trigger Mode low performance overhead.
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Results

Key
Question: 4 Are machine learning triggers

effective for this type of attack?

Triggered randomization exhibited similar behavior to faster
randomization rates; Constant ls Mode always outperforms.
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Results

Key
Question: 5 Do our resilience metrics provide

useful insight into the effectiveness of
ADDSec?

Trends are seen in relation to ADDSec randomization
rate/strategy; found that Constant ls Mode most effective.

Resilience Costs of ADDSec with Worm at Different Randomization Rates
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Key Takeaways

Resilience analysis provides
useful insight into ADDSec
performance and optimal

modes

Automated triggers can be
effective

IP randomization is
effective but subject to

variability

• SI metric captures infection impact to system dynamically, over time
• TRE metric can be tuned to give more weight to important quantities (e.g., latency >
retransmits)

• RDR provides more granular insight that might be missed with only intuition (e.g., 32s
case)

• Reconnaissance activity is stopped even during period of the randomization rate
• Higher resilience than constant rate
• Caveat: algorithms need to be tuned to detect the attack

-1

-\

I

1

• Quantitative analysis shows that faster randomization rates improve resilience on average
• Increasing randomization decreases number of infected hosts and time to first infection

• Stochastic behavior means that there is no guarantee of improved resilience with faster
randomization

J
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Thanks! Questions?



Summary

Energy systems target of cyber attacks; WANs predictable and static
r 1

Does moving target defense effectively defend against reconnaissance and Ethernet-based
attacks?

L 

ADDSec: Artificial Diversity and Defense Security (Chavez et al., 2016) employs MTD

Automatically reconfigures system with IP randomization and port hopping

o Can detect attack and then randomize using machine learning algorithms

E Does ADDSec make the system more resilient?

Using quantitative resilience metrics and analysis, results indicate:

ADDSec does improve system resilience during a reconnaissance attack!

ADDSec is worth the cost of implementation for our target system.



Cyber Resilience •

Many critical systems are the target of evolving, sophisticated attacks
° Cannot stop every attack — need to improve cyber resilience

Vugrin et al. on resilience:
Given one or more disruptive event(s), resilience describes the system's ability to reduce the magnitude and
duration of deviation from targeted performance levels

Quantitatively evaluate resilience features such as ADDSec to make informed decisions by
examining:

O Effectiveness of tool during a disruption

O Impact on normal system operations

o Resilience costs of different implementation strategies

Resilience

Systemic Impact &
Total Recovery Effort

Resilience Capacities

Resilience Enhancement Features

Informally, cyber resilient systems are able to execute required
mission Parameters despite a hostile c ber-threat environment.

Image source: adapted from Vugrin et al., 2013



ADDSec Machine Learning

Machine learning algorithms are deployed to each host

Features extracted from logs on each host:
O System status and performance statistics

o System call stack

o Packet capture, Bro network analytics

Classification is performed by an ensemble of techniques (primarily decision trees)

When the machine learning is first turned on, a baseline is taken. The feature set is periodically
compared against a baseline and if an alert is triggered, a signal is sent to the controller to undergo
randomization.

Normal Behavior
****************,*
Normal Behavior
********************
Normal Behavior
********************
Normal Behavior
********************
Attack Detected
Sending force randomization command.

STARTING TESTING

STARTING TESTING

STARTING TESTING

STARTING TESTING

********************

********************

********************

*******************:*



2 0 ADDSec Exhibits Stochastic Behavior
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Estimated additional number of obs needed to acheive significance

ML 1 c 4c 8c 16c 32c

Mode
64c 128c 256c

Significant

• FALSE

• TRUE

21 Testing for Significant Differences in RDR

Mean RDR and 95% confidence interval

4c 8c 16c 32c 64c 128c 256c

Mode

p-values and significance for test of mean difference

0.014

0 0.001 0 0.092 0.014

0 0.016 0.061 0.005 0.092

0.116 0.418 0.187 0.005

0.007 0.545 0.187 0.061 0.001

0.02 0.545 0.418 0.016

0.017 0.02 0.007 0.116

0.017 0

.004 0.453 0 0 0.01

ML 1c 4c 8c 16c 32c 64c 128c 256c

Mode

Significant

• FALSE

• TRUE



22 Lessons Learned and Future Experiments

•Pre-processing took substantial effort
• Automated many processes compared to initial ADDSec analysis

•ADDSec behavior stochastic, needed to collect more data to see more clear trend
• Difference-in-mean analysis useful for understanding results and if more data needed
• Gained insight into how to best improve ADDSec behavior:
• For a predictable scan, randomize among IP ranges that have already been scanned or are not initially scanned.

• Significant effort spent on debugging experiment, determining good data collection strategy and selecting
metrics
• Emulation requires more resources than simulation — deploy experiments on bigger cluster
• VM resources need to be tuned so that machine learning buffers do not cause crashes
• Future experiments could be automated with time-based scripts — or port experiment to Firewheel which has time

triggers

■


