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collection of hard, non-Brownian, and frictional particles
images: www.wikipedia.org



Granular Matter in the Industry

Li-ion electrode processing
(Ebner et al., Adv. Ener. Mater., 2013)
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agriculture

• second most widely used material in industry after water
• processing consumes 10% of world's energy
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(Zhou et al., App. Mater. Inter., 6, 2014)

energetic materials: powder packing all other images: www.wikipedia.org



Granular Matter in Nature

evolution of landscapes: creep earthflow vs. landslides
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2Ciamarra et al., Phys. Rev. Lett., 104, 238001, 2010
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bed load vs. creep
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Flow Regimes in Frictional Granular Matter
Forterre and Pouliquen, Ann. Rev. Flu. Mech., 40 (2008)
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Key Unresolved Issues and Implications

Issue #1: Highly stochastic transient behavior near solid-fluid transition. What are its statistics?
Implications: Extend deterministic steady-state rheology to include stochastic and transient events.

Issue #2: Does granular matter flow beyond simple shear? What is the rheology?
Implications: Granular rheology beyond simple shear will enable its practical deployment to predict

complex flow fields.
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Issue #3: Granular matter creeps below yield stress. What are the microscopic mechanisms of creep?
Implications: Creep of amorphous matter is long-standing challenge in classical physics. We aim to

improvise our understanding of this phenomenon.

transient, stochastic characterization of granular flows beyond simple shear, above and below yield



Constant Pressure and Shear Simulations
second Piola-Kirchhoff stress
(thermodynamic tension)

0 Ta 0

aa — Pai+ Ta 0 0

0 0 0 Parinello-Rahman dynamics
(isenthalpic-isotension ensemble)

• fully periodic with no surface
effects

• uniform boundary stress state
• homogenous boundary

deformation

• stable during jamming and
finite-rate flows
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Macroscopic
Observables:

volume fraction: 0(t)

accumulated strain (3D): € (t)

instantaneous strain rate (3D): E (t)

internal stress (3D): CT (t)



Constant Shear Stress and Pressure Simulations
initial low-density assembly:

harmonic contacts

0.05

applied stress

— PaI+ Ta
o

Coulomb microscopic friction 

II) F811 < P511F721
steady flow
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Strain-rate Evolution: (ft,
Arrest (creep) vs. Steady Flow
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Steady Flow:
shear-stress-dependent strain rate

Arrest/Creep:
massive drop in strain rate towards an
arrested state



Steady-State Flow-Arrest Phase Diagram
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Steady Flow:
• significant dilation to flow
• friction-dependent static yield stress

Arrest/Creep:
mild compaction during shear arrest
(shear jamming)



Mechanics of Flow and Arrest irti6 Sandiar National
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AE(t)  f fiAuidS aij
f 0 (Aui) 

dV
r iv axi

change in kinetic energy boundary traction work

Arrest (Jammed):

Yielding:

fLAuidS =fy a (Aui) dV
" Oxi

fr fiAu,dS > /7 a (Aui) dV
axi

second order work (constitutive)

equilibrium: balance of internal and external
stress

rapid increase in kinetic energy: imbalance of
internal and external stresses

Nicot et al., lJP, 29 2012

Hill, J. Mech. Phys. Sol., 6, 1958



Critical Flow-Arrest Phase Boundary

all flowing and arrested states of

granular matter can be described

on this phase diagram
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Stochastic Granular Arrest: Below Yield

same: applied shear below yield, pressure, particle friction
different: initial positions of particles
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• wide variation of times taken to arrest for same applied shear
• volume fraction, however, is invariant: pressure sensitive only
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Stochastic Granular Arrest: Statisti
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Granular Arrest: Critical Phase Transition
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friction-dependent
exponent

aus

• mean times to arrest diverge at critical yield stress as a
power law

• critical yield stress and power-law exponents are highly
friction-dependent

• no universality of criticality?



Stochastic Arrest: Practical Implications

flow/clogging through a hopper

Zhao and Shan, Powder Tech., 239 (2013)
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• mean times to arrest is akin to intermittent clogging through hopper

• wide distributions: engineering design very challenging

(lack of predictability)



Complex Flows of Granular Matter
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paradigmatic example of granular
flow fields in practice

Can existing rheological
constitutive laws predict
such complex flows?

complex flow field of granular
discharge through orifice
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Giusteri and Seto, J. Rheology, 62 (2018)
Rycroft, Kamrin and Bazant, J. Mech. Phys. Sol., 57 (2009)



Simple Shear Rheology of Granular Matter

simple shear flow scenarios
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Forterre and Pouliquen, Ann. Rev. Flu. Mech., 40 (2008)
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Rheology beyond Simple Shear
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Rheology beyond Simple Shear: Dilation
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Rheology beyond Simple Shear:
Normal Stress Differences
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Sub-Yield Creep in Granular Matter
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What is Creep?
creep: slow irreversible deformation of a solid under stress 

metal bar

load

t1/3 Andrade creep

e(t)

log(t) Logarithmic creep

colloidal glass (polystyrene particles)
102

102

le 0 2 4 5 6
10 10 10 10 10 10 10 10

M. Siebenbürger et al., Phys. Rev. Lett. 108, 1 (2012)
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"... strain-hardening, rather than turbulence, is most difficult
remaining problem in classical physics."- Alan Cottrell,
Dislocations in Solids. Vol. 11. Elsevier, 2002.

microgels (Carbopol)

P. Lidon et al., Rheol. Acta 1 (2016)

granular matter (glass beads)
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V. B. Nguyen et al., Phys. Rev. Lett. 107, 1 (2011)



Creep in Granular Matter: Novel Phenomena

(a)

Reddy et al., Phys. Rev. Lett. 106, (2011)
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Creep Simulations in Granular Matter
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Constitutive Law: Creep and Fluidity
Complex Fluids Rheology Pressure-dependent Granular Flows

17
 41=15\--0
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Otf = — a f2 re'y2

ageing rejuvenation

Soft Glassy Rheology

Derec et. al., Phys. Rev. Lett. 103, (2009)

Patp, = Ggp,+ Gt57
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granular fluidity at constant stress
inverse of viscosity
units: time inverse

Ginzburg-Landau + Plasticity Theory:

to:q A2 d2v2 g   g b

P2

ps 0/2 2
 Pig

1Kamrin and Koval, Phys. Rev. Lett., 108, 178301, 2012

2Henann and Kamrin, PNAS, 110, 17, 6730-6735, 2013

3 Aranson and Tsimring, Rev. Mod. Phys.,78, 641-692, 2006

• what is fluidity in terms of microscopic mechanisms?



Microscopic Mechanisms during Granular CreeVEL.
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Amon et al., Phys. Rev. Lett. 108, (2012)

• regions of large strain and non-affine
motion nucleate randomly with time

• regions of large strain and non-affine
motion grow in time

• local response is random and
heterogeneous

Srivastava and Fisher, Soft Matter, 13, (2017)



Microscopic Definition of Granular Fluidity
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:onclusions
Key Phenomena Identified:
• stressed granular matter exhibits a bifurcative behavior: (i) steady flow, and (ii) creep arrest

• transitions between these states is highly stochastic and friction dependent with power-law divergence

• full 3D stress-controlled simulations reveal rheological signatures beyond simple shear

• granular creep is often logarithmic, characterized by growing regions of high fluidity

• fluidity acts a potential state variable characterizing local velocity fluctuations

Publications•
K. C. Smith, I. Srivastava, T. S. Fisher, M. Alam, Phys. Rev. E 89 (4), 042203, 2014

I. Srivastava, T. S. Fisher, Soft Matter 13 (18), 3411-3421, 2017

I. Srivastava, L. E. Silbert, G. S. Grest, J. B. Lechman, "Flow-arrest transitions in frictional granular matter," arXiv:1810:00043
I. Srivastava, L. E. Silbert, G. S. Grest, J. B. Lechman, "Normal stress differences in granular shear flows," in preparation

I. Srivastava, L. E. Silbert, G. S. Grest, J. B. Lechman, "Hysteresis in granular shear arrest and flow initiation," in preparation

Sandia
National
Laboratories

email: isriva@sandia.gov



Second Moment of Distribution

0• c• DEP
O

0.1 0.2 0.3 0.4

Sandia
National
Laboratories

Ratio of standard deviation to mean



Creep Simulations in Granular Matter
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Granular Matter: Illustrious History
THE
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[FIFTH SERIES.]

DECEMBER 1885.

LVII. On the Dilatancy of Media composed of Rigid Particles
in Contact. With E.rperimental Illustrations. By Professor
OSBORNE REYNOLDS, LL.D., F.R.S.*

[Plate X.]

TDEAL rigid particles have been used in almost all attempts
1 to build fundamental dynamical hypotheses of matter :
these particles have generally been supposed smooth.

Actual media composed of approximately rigid particles
exist in the shape of sand, shingle, grain, and piles of shot ; all
which media are influenced by friction between tbe particles.

Reynolds Dilatancy
(1881)
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"Who could ever calculate the path
of a molecule? How do we know that
the creation of worlds are not determined
by falling grains of sand?"
Victor Hugo, Les Misreables (1862)


