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Granular Matter: Definition i) S

collection of hard, non-Brownian, and frictional particles

images: www.wikipedia.org



Granular Matter in the Industry i) e,

Li-ion electrode processing
(Ebner et al., Adv. Ener. Mater., 2013)

e second most widely used material in industry after water
* processing consumes 10% of world’s energy
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Granular Matter in Nature e

gouge failure in earthquakes

evolution of landscapes: creep earthflow vs. landslides
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Flow Regimes in Frictional Granular Matter T

Forterre and Pouliquen, Ann. Rev. Flu. Mech., 40 (2008) macroscopic 0.6 da Cruz et al., Phys. Rev. E, 72 (2005)
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Key Unresolved Issues and Implications ) B

Issue #1: Highly stochastic transient behavior near solid-fluid transition. What are its statistics?
Implications: Extend deterministic steady-state rheology to include stochastic and transient events.

Issue #2: Does granular matter flow beyond simple shear? What is the rheology?
Implications: Granular rheology beyond simple shear will enable its practical deployment to predict
complex flow fields.

Issue #3: Granular matter creeps below yield stress. What are the microscopic mechanisms of creep?
Implications: Creep of amorphous matter is long-standing challenge in classical physics. We aim to
improvise our understanding of this phenomenon.

transient, stochastic characterization of granular flows beyond simple shear, above and below yield



Constant Pressure and Shear Simulations T

second Piola-Kirchhoff stress
(thermodynamic tension)

0O 7, O
Tg = pa.[—l- 7., 0 O —_ .
0 0 0 Parinello-Rahman dynamics Macroscopic

(isenthalpic-isotension ensemble) Observables:

volume fraction: ¢ (t)

 fully periodic with no surface . _ ( )
offects accumulated strain (3D): € t

* uniform boundary stress state

* homogenous boundary instantaneous strain rate (3D): € (t)

deformation

* stable during jamming and

finite-rate flows internal stress (3D): O (t)
—




Constant Shear Stress and Pressure Simulations@ i

initial low-density assembly: ¢ = 005

arrest

applied stress
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Strain-rate Evolution: e
Arrest (creep) vs. Steady Flow
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Steady-State Flow-Arrest Phase Diagram ) i

open symbols: arrested
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* significant dilation to flow
» friction-dependent static yield stress

Arrest/Creep:
mild compaction during shear arrest
(shear jamming)



Mechanics of Flow and Arrest =

1% 0z
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Critical Flow-Arrest Phase Boundary ) i
— 04
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Stochastic Granular Arrest: Below Yield i) S

same: applied shear below yield, pressure, particle friction
different: initial positions of particles

1073 ¢ strain rate 0.6l volume fraction
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t t

* wide variation of times taken to arrest for same applied shear
* volume fraction, however, is invariant: pressure sensitive only



Stochastic Granular Arrest: Statistics
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Granular Arrest: Critical Phase Transition

mean critical time to arrest
(statistics from 108 simulations)

friction-dependent
critical shear stress
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mean times to arrest diverge at critical yield stress as a

* critical yield stress and power-law exponents are highly



Stochastic Arrest: Practical Implications

flow/clogging through a hopper

Zhao and Shan, Powder Tech., 239 (2013)

distribution of times between clogs
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Zuriguel et al., Sci. Reports, 4 (2014)

* mean times to arrest is akin to intermittent clogging through hopper

» wide distributions: engineering design very challenging
(lack of predictability)



Complex Flows of Granular Matter .
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Simple Shear Rheology of Granular Matter ) .
simple shear flow scenarios ,u( ]) rheology
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* dense granular rheology for simple shear is well-characterized by ,LL(I) rheology

* what about more complex flows?



Rheology beyond Simple Shear
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Rheology beyond Simple Shear:
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Rheology beyond Simple Shear: ) R
Normal Stress Differences
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Sub-Yield Creep in Granular Matter
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What is Creep?

creep: slow irreversible deformation of a solid under stress
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t1/3 Andrade creep
metal bar e(t)r\.}

“... strain-hardening, rather than turbulence, is most difficult
log(t) Logarithmic creep remaining problem in classical physics.”- Alan Cottrell,

oy Dislocations in Solids. Vol. 11. Elsevier, 2002.
oa
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V. B. Nguyen et al., Phys. Rev. Lett. 107, 1 (2011)



Creep in Granular Matter: Novel Phenomena .

120 ;
|
100 | s
|
|
_ 80 |
= I
';; |
g o0 l
“ I
40t :
|
|
20 :
|
A |
| 0 1 L L L
; ' 0 100 200 300
) DU Amon et al., Phys. Rev. Lett. 108, (2012)
Reddy et al., Phys. Rev. Lett. 106, (2011) ’ !
(a) Stress: o 120 T T T T T T T 6 % 10_5
imposed torque - Laser ’E: A
Feedback T Rl
ee ac —
100 ‘ i i ' | B DWS local measuremen&)
- 2 80 7 14x107°
10} o 2 3 &° —
: 1 P Straln: g 60 > macroscopic mechanical measurement
e ey = :
T 01§ r= l’*’f’l,P’ ‘,‘ g a § 40 12x107°
ootf - F=21d" nl,n = ] ol g
oo p 2 g =4 1 254 cm | 15 S 2%
: fl = 34d”’ : =]
00001 Lttt %0 500 1000 1500 2000 2500 3000 3500 4000
03 04 05 06 07 08 09 10
o F/F, — Time (s)

R = 30mm

[\

Strain, Ay(t)



7 0 0
aa:pH—[o 0 o}
00 0

N

% T2 4 6 8 10
7 time, ¢
ZAS ¢ t 4
X /ﬁv A ’Y(t) =7 (1 —e Y/ T°) + 71log (1 =+ 7_—1)
constant — long-time

pressure + uniaxial stress e s . e
Kelvin viscoelastic logarithmic creep




Constitutive Law: Creep and Fluidity

Complex Fluids Rheology
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Derec et. al., Phys. Rev. Lett. 103, (2009)
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Pressure-dependent Granular Flows

Poip = Ggp + Gy

7Y  granular fluidity at constant stress
g =— — inverse of viscosity

,LL units: time inverse

Ginzburg-Landau + Plasticity Theory:

_ 2
tog = A%d*V3g — Ap Lo L g—b\/pd,ug
2 — b P

1Kamrin and Koval, Phys. Rev. Lett., 108, 178301, 2012
2Henann and Kamrin, PNAS, 110, 17, 6730-6735, 2013
3 Aranson and Tsimring, Rev. Mod. Phys.,78, 641-692, 2006

what is fluidity in terms of microscopic mechanisms?



Microscopic Mechanisms during Granular Cree o &=...

time

ap {
D
AR B
REASK
S\ 78/ P

an

Amon et al., Phys. Rev. Lett. 108, (2012)
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Microscopic Definition of Granular Fluidity .

non-affine velocity
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Fluidity is a kinematic variable
governed by velocity fluctuations
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Conclusions

Key Phenomena ldentified:
* stressed granular matter exhibits a bifurcative behavior: (i) steady flow, and (ii) creep arrest

transitions between these states is highly stochastic and friction dependent with power-law divergence

full 3D stress-controlled simulations reveal rheological signatures beyond simple shear

» granular creep is often logarithmic, characterized by growing regions of high fluidity

fluidity acts a potential state variable characterizing local velocity fluctuations
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Second Moment of Distribution () .
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Granular Matter: Illlustrious History

THE
LONDON, EDINBURGH, axp DUBLIN
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[FIFTH SERIES.]

DECEMBER 1885.

LVIL On the Dilatancy of Media composed of Rigid Particles
in Contact, With Ezperimental 1llustrations. By Professor
OssorNE Rev~orps, LL.D., F.R.S.*

[Plate X.]
IDEAL rigid particles have been used in almost all attempts
to build fandamental dynamical hypotheses of matter :
these particles have generally been supposed smooth.
Actual media composed of approximately rigi S‘nrﬁclea
exist in the shape of sand, shingle, grain, and piles of shot; all
which media are influenced by friction between the particles.

Reynolds Dilatancy
(1881)
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Sphere Packing Problem
(1727)
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Mohr-Coulomb Yield Theory
(1772)

“Who could ever calculate the path

of a molecule? How do we know that

the creation of worlds are not determined
by falling grains of sand?

Victor Hugo, Les Misreables (1862)



