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Sierra Mechanics
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Covers the breadth of physics and numerics required to support
Sandia Engineering mission needs
Systems and component functions in normal, abnormal, and hostile environments
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Sierra : Thermal/Fluid, Fire

Particles in crossflow

low-mach flows
(thermal, fluids,
participating media)

Fire modeling for subsequent
weapon thermal response

Abnormal Fire env
(thermal, fluids,
participating media)

Laser welding

Time = 0.004000

Manufacturing
(thermal, fluids)

Aero

Fluid i

Thermal

I Meshing
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Thermal — Heat Transfer, Enclosure Radiation and
Chemistry

• Conduction, Radiation, Convection

• Dynamic thermal radiation enclosures

• Element birth death, Contact

Multiphase- Non-Newtonian, Multi-physics, and
Free Surface Flows

• Complex material response, Flexible coupling
schemes

• Level sets, VOF for surface tracking

Fire/Combustion — Low Speed, Variable Density,
Chemically Reacting Flows

• Eddy dissipation and mixture fraction reaction
models,

• Variable density

• RANS and LES based turbulence models,
Unstructured Mesh, Pressurization models

• coupling to Radiation transport code
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Historic Validation

Mixed Convection Data Sets (2,10)

FLAME -
Reacting
Methane
Data
Sets (3)

L:
 , Model Suite

Integral
Validation

FLAME -
Combined
Fire/Object
Response (11)

FLAME - FLAME -
Soot & Radiation
Species Convection
Data Sets Partition (7)
(4)

Open Pool Fires
wo/obj. & wind (6)
w/objects &
crosswinds (8)

Enclosure Fires (9)
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This was from the SIERRA/Fuego validation plan conducted 10-15 years ago
Urban plume not represented in this matrix, so we are conducting validation exercises
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DOE Handbook 3010

■ What does 3010 mean to us with regard to haz cats?

■ Provides a consistent and uniform basis for bounding hazards

■ Used primarily as a look-up reference

■ Basis?
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NOT MEASUREMENT
SENSITIVE

DOE-HDBK-3010-94
December 1994
Reaffirmed 2013

DOE HANDBOOK

AIRBORNE RELEASE FRACTIONS/RATES
AND RESPIRABLE FRACTIONS FOR
NONREACTOR NUCLEAR FACILITIES

Volume l - Analysis of Experimental Data
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Beaker Fire (13NWL-B274)

SUPPORT SCREEN

GLASS FIBER FILTER

CHARCOAL (IF REQUI RED)

SUPPORT SCREEN

GLASS FIBER FILTER

GLASS FIBER MAT

r ODT
STAINLESS STEEL

TU BE

1 OR 2 CFM AIR

GLASS WOOL

CAUSTI C
SCRUBBER

50 ML PYRD( BEAKER

SOLVENT

VAPOR TRAP

MANUAL CONTROL
VALVE

BUI LDI NG
 -(>1--' VACUUM

N2 CFM
FLOWMETER

GLASS Wool_

• Apparatus — 50 ml beaker

• Liquid — kerosene with 30% TBP (25 ml)

■ Pre-heated liquid to boiling point then

ignited

• Beaker assumed to be 56 mm x 42 mm

diameter
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FUEGO Simulation:

• Boiling assumed uniformly

• Receded level is not modeled

• Use Kataoka and Ishii boiling

model to predict mass flux

• Use Borkowski et al. (1986) for

initial drop size distribution 

• Simulation Results

• Much of mass released at the

beginning of the fire

• Wall deposition is significant

• Turbulence may be important

■ ARF computer' are in
agreement with the
experiment
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Entrainment Mechanisms

N Four natural mechanisms were identified

• Evaporation Induced Entrainment [E]
Particles ejected from pool by evaporating fluid

• Surface Agitation by Wind

Strong winds create waves which suspend particles upon breaking

• Surface Agitation by Boiling [B] c  1

Droplets become suspended as the gases rupture the liquid surface

• Residue Entrainment (Resuspension)

After liquid has been consumed, remaining solid particles can erode by
persisting flow conditions

An external mechanism also exists

• Impact Entrainment

Sandia
National
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Droplets (i.e. rain, water from suppression devices) can impact and
disturb the fuel surface

10/22/2018 9



An Illustration of Two Mechanisms

 1.

0
(---N N%

Surface Agitation by Boiling Surface Agitation by Wind 
Involves pinch and rupture of bubbles Involves waves created by flow
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Evaluated Particle Fate

• Below image illustrates typical behavior
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Initial Finding (mass)

• Mass was almost all released during ignition

• Subsequent was minimal, small particles

• Pool height was varied to capture the effect of the change
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Initial fuel height significant
• Simulation work allows exploration of larger parameter space

• Differences observed — experimental result not the most
conservative
• Different mechanisms dependent on initial condition

• Sensitivity to other parameters also explored
0.14  '

0.12 -

0.10 -

0.08 -
u_
Ct
<

0.06 -

.:)
0

0.04 -

0.02 -

0.00

o

o

o

8

o Baseline Pulse
Data-MS1973
Including Beyond Pulse Estimate

o
o

o
o
o

B
B

•

0 10 20 30 40

Sandia
National
Laboratories

Initial Liquid Height Above Beaker Bottom (mm) 13



Selected findings (summary)

■ Major findings:

■ The release was mostly during start-up in the simulation

■ Initial liquid level was a significant parameter, non-conservative

■ Historical experiments were incomplete

■ No temporal resolution

■ Variation of initial fluid height

■ No turbulence data

Description of ignition methods

No data on distillation

Minimal observations on liquid behavior

■ 2018 NSRD project filling experimental data gaps

Sandia
National
Laboratories
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Gasoline Pool Fire (BNWL-1732)

• 1 gallon gasoline onto pan surface

• UO2 powder, 50 g poured before gasoline

• Pan size 15-inch diameter tray used

• HDBK 3010 scenario

2O-1/8.' DIA DUCT
2? GA GAL
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ci INLET AIR FILTERS
o/ DEFLECTOR DUCT

F)RNACE UNIT

0 2'x2' WIND TUNNEL 0 0,

FLANGED BURNER
TRAY

_

V THK CONCRETE PAD DUCT SUPPORT

1/4" COPPER TUBING TO
INSTRUMENT PANEL

RADIOACTIVE AEROSOL
RELEASE TANK

FILTER SAMPLER, VARIABLE DEPTH
INSERTION INTO WIND TUNNEL

FILTER SAMPLER, CENTER WIND
TUNNEL
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• FUEGO Simulation

• Reproducing the
test environment as
closely as possible

• Simulation Results

• Base case  -20 s run

• Sensitivity Study —

particle generation

• Gasoline
vaporization

• Boiling surface
rupture

• Residue re-
suspension

r 
8 STG ANDERSEN IMPACTOR
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Why Can We Trust the Models?

■ Verification and Validation

■ Representative datasets
for the physics

■ 3D print and tomography
used to create high-fidelity
scenario for MRI

Sandia
National
Laboratories
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Downwind Concentration

• LES models experimental

concentration well throughout

domain

• k-E approaches observed results

further downstream
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Video of Instantaneous Results
• LES baseline case
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Water Channel Validation Simulations
2018

90 Degree Scenario

LES Simulations with SIERRA/Fuego
In collaboration with

US Military Academy
Stanford University

3D data taken with IVIRC/MRV technique
0 8 mm resolution
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Denitrator Explosion Scenario
■ ARF/RFs are obtained through look-up tables in Handbook 3010

■ Release data may be of marginal relevance to specific scenarios

■ Spent nuclear fuel refining accident

■ Replicated the accident to assess release potential
■ Varied explosive intensity because it was not well known

■ Used the TAB model for particle break-up and sizing

Sandia
National
Laboratories
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Vessel

Concrete --->

Air
inlet

Schematic of Denitrator
(J. M. McKibben, 1976)
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Preliminary Estimate of Aerosol Distribution

10-5% Respirable ("<20 Micrometer Diameter)
M
a
s
s
 F
ra

ct
io

n 

1

0.1

0.01

0.001

0.0001

0.00001

0.000001

go 0.0000001
2 1E-08a)
< 1E-09

700 MJ

r
I
1

1.6 3.1 5.7 11 20 37 >50
Bin Diameter (µm)

Sandia
National
Laboratories



Demonstration Calculation
• Final ARF/RF significantly  below handbook estimates

• Technique requires validation, but huge gap exists between model and

expectation
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EXPLOSIVE
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Comparison to DOE Handbook 3010
Sandia
National
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■ DOE Handbook: "Airborne Release Fractions/Rates and
Respirable Fractions for Nonreactor Nuclear Facilities:
Volume I"

■ ARF x RF = 0.2 : 0.1 : 0.07 (upper bound : median : lower bound)

■ 50 MJ explosion: 10-9 respirable fraction (preliminary)

■ 700 MJ explosion: 10-7 respirable fraction (preliminary)



Summary
■ SIERRA/Fuego is Sandia/DOE's low-Mach tool for reacting

flows

■ Can add value to safety assessment activities

■ Meets high QA standards, compliant to DOE orders

■ Designed primarily for abnormal thermal analysis of DOE systems

■ Safety assessments suffer from inaccurate ARF

approximations

■ Recommended ARF is not necessarily conservative

■ Operational ARFs may be severely conservative and drive substantial
costs

Sandia
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Questions?
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Why Want to Substantiate Handbook?
• Safety analysts at DOE complex rely heavily on the data

provided in this Handbook to determine the source term (ST)

• Five Factor Formula

• ST = MAR • DR • ARF • RF • LPF

MAR - material at risk, DR — damage ratio, ARF — airborne release

fraction, RF — respirable fraction & LPF — leak path factor

• More often, analysts simply take the bounding values to

perform ST calculations to avoid regulatory critique

• Derived data (i.e., ARF & RF) from Handbook:

• Very limited table-top and bench/laboratory experiments

• Engineering judgement which may not have adequate bases

• Actual situation may not be represented
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HPC Platforms
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• As of April 2018, 237,978 processors are available within

Sandia network across 10 machine platforms

• Provides more than 2B CPU hours per year

• High-end computing capacity: 2.1-2.7GHz with 3.5-4GB per processor

• Ample storage: more than 50PB with high-speed access from

computational processors

• Only 2.5 years old in average; 5 of them are launched in 2017 or later

• Not included are jointly funded machines that are located outside

Sandia (ex> Trinity)

e
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Sierra : Thermal/Fluid

■ DOE 0 414.1D

■ Code is maintained to order standards

■ Regularly audited

■ SAND 2008-5517, Software Quality Plan for ASC codes

■ SIERRA tools are used for safety case relating to stockpile

performance

■ Abnormal environment (fires)

■ Normal environment (day-to-day operations)
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SIERRA Enables Coupling (example)

Aria
Conduction
Heat Transfer,

Enclosure Radiation
1 dof/node
+ chemistry
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HPC at Sandia

• Sandia is a leader in HPC technology

• Advanced hardware configurations and performance

• Large lab, large resource

• Thousands of teraFLOPS

• Resources on red networks as well

Skybridge has 1,848
compute nodes, 29,568

cores
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System * Status Notes

* ACES Trinitte

GLANL
• DST 4/18 completed 15:34NOT

* CEE SCN

TearnForge
• SCN TearnForge returned to serWce 2:08 pm, 4/12

* CEE SRN Apps • SRN cee-apps.sandia.gov accepting logins, but the apps are
slil down. No ETA 9:00 4/9

* CEE SRN

Resources

4/6/18 9arn ca Resources that are still unavailable are after
power outage;
ceerws2907a,b,c,d,e,f

No ElR

*ŒE SCN Apps I 
0 Olrix XernApps https://ceescn-apps is out of service. Currently

no ETA 2/12 2:30pm

*SMSS - SCN • RTS 4/18 4,10PM

AcEs Mutrino

@SNL
•

ACES Trinity

@LANL
•

Cayenne SCN •

Charna •

Eclipse •

Ghost J •

gitlab •

IHPC •

Jemex SCN •

Lynx •

Lynx-s SCN •

Pecos SCN •

Sequoia @ LLNL •

Serrano •

Skybridge •

SMSS-ECN/SRN •

Solo ECN •

Uno •



SIERRA/Fuego/Syrinx/Aria
Methodology and Framework
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• Common application framework

• Shared data structure, parser, file I/0, parallel
communication, solvers, etc.

• Data exchange for application coupling

• SIERRA/Fuego: Low-Mach turbulent fire
— Hybrid control volume finite element method (CVFEM)

• SIERRA/Syrinx: Participating media radiation
(PMR)
— Streamwise-upwind Petrov-Galerkin FEM

• SIERRA/Aria: Heat conduction, enclosure
radiation, viscous multi-phase flow
— Galerkin FEM

Each code has completed a detailed verification suite!

Node 7

Node 4

Node 2



Numerics and Math Models
• Segregated, backward Euler or Crank-Nicholson time solution

• Equal-order interpolation CVFEM technique for low-Mach or acoustically
compressible mechanics 0•401.• ..1w.0

• Approximate pressure projection method for continuity/momentum Mirk
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• Convection operators: Central, pure upwind, skew upwind, MUSCL w/flux
limiters (Van Leer, Superbee, etc.)

• Basic Favre-filtered equation set (integral form):

Continuity: dv+pii
J
n
J 
ds=

at 
r

Momentum: j dV + + pnib,i)dS = $(1-,,—T1111 )n dS + j (p — po)gidV
ot

E 
au, 

dV
at ax, at ay, ax,

Species: aPfk dV + p—fku—inidS = f(pYkfij,k — ryi„,)n idS + thkdr/
at

Turbulence closure
models required

• Additional equations for turbulence closures, soot transport



Large Eddy Simulations
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• LES is a turbulent flow model that solves larger scales directly
and models smaller scales Turbulence closure

models required

Momentum: 
r
 d
at 

+ f(p +pnjcOdS= — r„„)n idS + .1(p — p„),giciV

= —Tij
itt

• KSGS one-eq. model: is modeled using sub-grid kinetic energy

= legs

A real turbulent flow

•4

cell

LES solves cell-averaged
turbulence. Any physics
smaller than the cell size
is modeled using p_t

LES field



Entrainment Theory

• Kataoka and Ishii (1983) suggest entrainment can be
described:

ipg \ -1.0

Efg = 4.84 x 10-3 (—
Ap
)

= P f e
Efg PgJg

Valid for:

•* jg

0.23

0 1.038 x 103j9*N1.1:251)11,0.42 
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(6gAp1
2
4)114

h
h* = (0 g Ap)1/2

DH

DH 
= 
(
6
/gAp)1/2

Ng - 

[pg 0-0 g Apy /211/2

• Borkowski et al. (1986) measured the particle distribution
from a boiling scenario:

• Primary entrainment
includes all drops
formed by surface
boiling, but most drops
fall back to the surface
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le-1

Initial Finding (mass)

• Mass was almost all released during ignition

• Subsequent was minimal, small particles

• Pool height was varied to capture the effect of the change
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Effect of turbulence (20 mm height)

• Including turbulence effects results in minor ARF increase
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Runs k epsilon
[m21s2] [m2/s3]

Corresponding length
scale

[m]

Corresponding
turbulence intensity

[ 
Ol]

Baseline 5.95e-7 4.56e-7 1.7 x 10-4 100
A variation 5.95e-5 1.53e-4 5 x 10-4 1000
B variation 5.95e-5 1.92e-6 4 x 10-2 1000
C variation 5.95e-3 1.53e-1 5 x 10-4 10000
D variation 5.95e-3 1.92e-3 4 x 10-2 10000

• Varied particle input

file distribution

• Red is after pulse

contribution
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Entrainment Mechanisms

• Four natural mechanisms were identified

• Evaporation Induced Entrainment [E]

Particles ejected from pool by evaporating fluid

• Surface Agitation by Wind

2 Strong winds create waves which suspend particles upon breaking

1 
• Surface Agitation by Boiling [B] < 1

01
c
'E Droplets become suspended as the gases rupture the liquid surface
D

0 02 • Residue Entrainment (Resuspension)
IJ:
'6 

After liquid has been consumed, remaining solid particles can erode by

‘.‹ persisting flow conditions

• An external mechanism also exists

• Impact Entrainment

Droplets (i.e. rain, water from suppression devices) can impact and
disturb the fuel surface
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Simulation Scenarios

Sim. Time
Run (s)

1E*

r-
5E*

2B

3B**

4B*

5B**

6B**

20

20

20

20

60

20

20

20

30

20

20

20

I 20

Sandia

tt National
• Laboratories

Injection
Fuel Height

Durationt Height Injected Mass Particle Size (mm)
(s) (m) (kg/s) [wt% UO2] (um) Tylliplence

10
540 3.3E-2 1.64E-13 [100%] 0.2 Normal

10
540 3.3E-2 1.64E-13 [100%] 0.7 Normal

10
540 3.3E-2 1.64E-13 [100%] 2 Normal

10
98 6.0E-3 1.64E-13 [100%] 0.2 Normal

10
540 3.3E-2 1.64E-13 [100%] 0.2 Normal

10
540 3.3E-2 1.64E-13 [100%] 0.2 High

5
540 3.3E-2 1.64E-13 [100%1 0.2 Normal

10
20 0.002 8.3E-3 [25%] Distribution Normal

10
30 0.002 8.3E-3 [25%] Distribution Normal

10
20 0.002 8.3E-3 [25%] Distribution High

10
20 0.001 4.15E-3 [25%] Distribution Normal

10
20 0.003 1.25E-2 [25%] Distribution Normal

20 0.002 8.3E-3 [25%] Distribution
5

Normal
* = Solid Contaminant
** = Combined Fuel & Contaminant
t= Note: Duration for Evaporation [E] denotes the entire burn, while duration for Boiling [B] denotes the portion of the burn when
the fuel was assumed to be boiling.
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Simulation Visualization: Boiling (113)

"NI ir Radius (m)

10.00015

 p.--

11
0.00010

1
 5.0e-05

1 Temp (K)

-1500
Deposition Moss Density kg/mA2

1.CODe-05 3e-5 am] 0.032 1 2.CCOe.111 1200
1 IIIII IIIIII 1 I 1111 IH

900

IY 600

Time: 0.000 sec.
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Baseline Case Final Mass
• Evaporation (1E)

74.9%

• Boiling (1B)

11.7%

/ /11.1%

.4140r 12.2% Outflow

Pool

Lip

• Suspended

3.4%
-\ 0.7%

[ 1.5%
• Outflow

0.6% • Pool

-Lip

-Walls

• Suspended
93.9%

Sandia
National
Laboratories

• "Suspended" mass
would be omitted in
longer simulation runs

• Evaporation: Most
entrained particles
reach the outflow

• Boiling: Most entrained
particles fall back into
the pool
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Boiling Final Deposition

O 100.0%

i 90.0%

g R6.027/8. .
1 68:Pg
I 60.0%

i 00.0%
2.0 40.0%

fi, M:827/8
.7! 68:Pg
g 10.0%
O 88. 0%ci. 

10/22/2018

L

assee
Ne4*.' 0

13 
$
. 

Sandia
National
Laboratories

Walls

Lip

• Outflow

• Suspended

Pool
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ARF - Significant Parameters

■ Turbulence

■ Varying the turbulence changed the deposition location and ARF for
both entrainment mechanisms.

■ Boiling Duration

■ The predicted ARF is most dependent on the boiling mechanism, yet

the precise duration is unknown

■ Original Empirical Datasets in 3010 just use ARF

■ No credit for importance of either of these parameters

■ Value could be overly conservative or non-conservative

Sandia
National
Laboratories
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Selected findings (summary)
Sandia
National
Laboratories

■ Code development needs to better simulate this problem:

■ Resuspension, multi-component particle evaporation, volumetric flow
BC, film deposit flow and evaporation, improved reaction model,
regressing liquid surface, multi-component pool model

■ Issues with experiments:

■ No temporal resolution, no indication of ignition methods, no
variation of initial fluid height and liquid level below lip, no turbulence
data, no data on distillation, no observations on liquid behavior

■ Major findings:

■ The release was mostly during start-up in the simulation

■ Sensitivity to turbulence parameters was slight

■ Initial liquid level was a significant parameter, non-conservative

■ We have a current project to collect new data
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Future Work
Sandia
National
Laboratories

■ Suspension distribution of particles in gasoline pool will affect
the ARF

■ Presumed to be homogeneous; lacking a more accurate model.

■ Large difference in particle and fuel density, 10970 and 679.5 kg/m3

Suggests settling would occur

Alters the ARF.

■ Resuspension mechanism is important for understanding
what happens after the fire

■ Multi-component particles will enhance the predictive
capability of the simulations

■ Surface agitation by wind
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Rubble Fire Test Arrangement
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National
Laboratories

Composite Rubble Fire Test

Assembly Time Lapse
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Rubble Fire Test Video
Sandia
National
Laboratories

Composite Rubble Fire Test
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Validation Scenario (VOF)
• Dam burst scenario was

created experimentally

• Provides a good test of the

advection and surface

models

• References:
• K. Kleefsman, G. Fekken, A. Veldman, B.

lwanowski, and B. Buchner. A volume-of-

fluid based simulation method for wave

impact problems. Journal of Computational

Physics, 206(1):363-393, JUN 2005.

• C. Crespo, J. M. Dominguez, A. Barreiro, M.

Gomez-Gesteira, and B. D. Rogers. GPUs, a

new tool of acceleration in CFD: Efficiency

and reliability on smoothed particle

hydrodynamics methods. PLOS ONE, 6(6),

JUN 2011.

(r,-00 5

3

1 H1 H2

J 1
0 5
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25

0 5 I, (rn)

0

Dam burst scenario (initial configuration above)
Blocking obstacle
Three measurement points where data were extracted

Mesh Nodes
Nominal Mesh Time Step
S•acin

1 coarse 28,600
•

0.05000 m 0.00250
2 med 216,400 0.02500 m 0.00125

3 fine 716,500 0.01667 m 0.00100
4 xfine 1,682,000 0.01250 m 0.00100

5 xxfine 3,266,300 0.01000 m 0.00050
6 xxxfine 5,622,400 0.00833 m 0.00050

7 xxxxfine 8,903,500 0.00714 m 0.00050

Study consisted of mostly mesh refinement variations



Highest Resolution Video
■ The highest resolution case results in a very complex surface

flow

Sandia
National
Laboratories

SIERRA/Fuego VOF Prediction

Water Dam Burst

8.9 million node mesh



Fluid Height at H1
■ Increased resolution generally matches the data

peak heights better

o 1 2 3

Time (s)

4 5 6
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Fluid Height at H2
• Coarse calculation is appreciably worse than the fine

and xxfine

0.4

0.3 -

0.1 -

0.0 1 .11•••11,•••••

Data
Coarse
Fine
Xxfine

0 1 2 3 4 5 6

Time (s)

Sandia
National
Laboratories



Fluid Height at H3
■ Very good temporal predictions for higher resolution

models, moderate difference in peak magnitudes

0 1 2 3

Time (s)

4 5 6
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Show latest model results
• Here we show the first multiphase burn modeling results

Time: 0.000000

Sandia
National
Laboratories
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Numerical Configuration
Sandia
National
Laboratories

• 196 x 110 x 239mm computational domain

• Localized mesh refinement utilized

• Highest resolution (0.5mm) closest to target building

• N 3.55 million elements, 350 processors requiring 16 hrs

runtime

111 ■ II 111 11111111111 I I

111111111111111111111111M
6112011111111111111111111 I
01111111111111111111.11111 I, , ,
11111111111111111M111,1111,
NM MMMMM
111101111111111122111111111111...

Inlet

Domain

Outlet

VO,
-15-11.0;'12 44110

"Medium" Mesh & Boundaries
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Downwind Velocity

■ Velocity magnitude
comparisons extended beyond
target street canyon

■ LES overestimates velocity

near target building
• 5/6H - Displays behavior matching

experiment further upstream

• 1/2H — larger stagnation zones
near small buildings cause
decrease in velocity

H

Wind

5/6 H

1/2 H

 >

0.3

0.25

0.2

0.05

0.3

0.25

0.2

0.15

0 1

0.05

Sandia
iri National
VZ Laboratories

Stream-wise Velocity Magnitude

5/6 H

2 3 4 5 6 7 8
z

L

1/2 H

A0000000
ALLy.L.Q,A..A..1,7A-AE,L

1 2 3 4 5 6 7 8
z

L

— LES
— -k-e

• Exp

• TFNS
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Center Plane Concentration

Experimental Baseline LES

■ Concentration contour plots and iso-surface comparisons
exhibit good qualitative match
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Legacy SIERRA/Fuego predictions
• Generic NH3 facility plume in cross-wind

• 5.4 m/s stack velocity, 2 m/s cross-wind

• Plume volume grows spatially in turbulent flow

ass Fraction
0.0001

Time: 102.533323

Sandia
National
Laboratories
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Discretized Model of Denitrator
Created with CUBIT Software
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Taylor Analogy Break-up (TAB) Mod
Sandia
National
Laboratories

• Originally by O'Rourke and Amsden (1987)

• Approximates the drop as a damped oscillator, formulated as a second-order
differential equation, with y as a deformation parameter:

2 Simplified Schematic 
ud —Ug Ck6 Cd,u1 dy

Ind 3 Y ind 2

d2 y CF Pg
Ind — Ind

dt2 CI, pi r 2 dt

Aerodynamic Surface Energy Viscous
Forcing Damping Damping

• Discretized solution for y is:

1101->00
Harmonic
Deformations Forced
by Velocity Differential

Critical Deformation
(y=1)

New Drop(s)

At)
1
y(t)

We 1 r y(t — We I
sin( oAt) Co =exp(—At /} 

8Ck,u 1 Oscillation Frequency
pid (3, z -62=

We
 +y(t + cos(coAt) +

C co
y(t) + 

T

)

b

We (
t) Th=

1 pldp2 Viscous Damping Time
2 C d,ulAt) C cos(coAt) — (AO — We l C)sin(oAt)}o exp(—At Th)y(t + = +{1 y(t)— Y(t)—WeIC

zn CO Tb

We=
(tt —tt )2

P P g Weber Number
0-

• New drop diameters can be calculated:

1+ ckK pidp(o3  6K —5  52(02
20 86 120

d(t + At) = d(t)I

• We modified the algorithm to limit break-up for new particles



Next Steps-Denitrator
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National
Laboratories

■ Incorporate appropriate chemical explosive energy and
density for reprocessing vessels.

■ Incorporate actual solution physical properties: density,
viscosity, and surface tension.

■ Refine vessel geometry and materials model based on
vessel design and room floor plan.

■ Refine liquid model: increase number of particles from
100,000 to about 500,000.

■ Compare calculation results with limited observations
from reported accidents.

■ Perform large-scale experimental tests to validate model.
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