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Sierra Mechanics

Covers the breadth of physics and numerics required to support

Sandia Engineering mission needs
Systems and component functions in normal, abnormal, and hostile environments

Aero Solid DOE O 414.1D
Mechanics
SAND 2008-5517
Fluid

Structural

Thermal Dyliamics
Meshing V&YV Tools,
Methodologies

Sierra

Toolkit




Sierra : Thermal/Fluid, Fire

Particles in crossflow

Time = 0.004000

Manufacturing
(thermal, fluids)

low-mach flows
(thermal, fluids,
participating media)

Fire modeling for subsequent
weapon thermal response

Aero

th

Fluid
Thermal
Abnormal Fire env Meshing
(thermal, fluids,
participating media)
Sierra

Toolkit

Thermal — Heat Transfer, Enclosure Radiation and
Chemistry

* Conduction, Radiation, Convection
* Dynamic thermal radiation enclosures

* Element birth death, Contact

Multiphase — Non-Newtonian, Multi-physics, and
Free Surface Flows

* Complex material response, Flexible coupling
schemes

* Level sets, VOF for surface tracking

3 Fire/Combustion — Low Speed, Variable Density,

Chemically Reacting Flows

* Eddy dissipation and mixture fraction reaction
models,

* Variable density

* RANS and LES based turbulence models,
Unstructured Mesh, Pressurization models

* coupling to Radiation transport code




Historic Validation

This was from the SIERRA/Fuego validation plan conducted 10-15 years ago
Urban plume not represented in this matrix, so we are conducting validation exercises
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DOE Handbook 3010 ) e

= What does 3010 mean to us with regard to haz cats?
= Provides a consistent and uniform basis for bounding hazards

= Used primarily as a look-up reference

= Basis?

=N

NOT MEASUREMENT
SENSITIVE

DOE-HDBK-3010-94
December 1994
Reaffirmed 2013

DOE HANDBOOK

AIRBORNE RELEASE FRACTIONS/RATES
AND RESPIRABLE FRACTIONS FOR
NONREACTOR NUCLEAR FACILITIES

Volume | - Analysis of Experimental Data




Beaker Fire (BNWL-B274)

GLASS FIBER FILTER
CHARCOAL (IF REQUIR:D)
SUPPORT SCREEN
GLASS FIBER FILTER” |

GLASS FIBER MAT

3" oDT
STAINLESS STEEL:
TUBE

MANUAL CONTROL
VALVE

CAUSTIC
SCRUBBER

10R 2 CFM AIR

&

50 ML PYREX BEAKER

~<——SOLVENT

L

j BUILDING
=D VACUUM
A
N
_\2 CFM
Ll FLOWMETER
ENEN _GLASS WOOL

VAPOR TRAP

= Apparatus — 50 ml beaker
= Liquid — kerosene with 30% TBP (25 ml)
= Pre-heated liquid to boiling point then

ignited

= Beaker assumed to be 56 mm x 42 mm

diameter
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FUEGO Simulation:

Boiling assumed uniformly
Receded level is not modeled

Use Kataoka and Ishii boiling
model to predict mass flux

Use Borkowski et al. (1986) for
initial drop size distribution

Simulation Results

=  Much of mass released at the
beginning of the fire

=  Wall deposition is significant
= Turbulence may be important

=  ARF computed arein
agreement with the
experiment




Entrainment Mechanisms ) 2=

= Four natural mechanisms were identified
= Evaporation Induced Entrainment [E]
= Particles ejected from pool by evaporating fluid

= Surface Agitation by Wind
= Strong winds create waves which suspend particles upon breaking

= Surface Agitation by Boiling [B] —

" Droplets become suspended as the gases rupture the liquid surface

During Fire

= After liquid has been consumed, remaining solid particles can erode by

{- Residue Entrainment (Resuspension)
persisting flow conditions

After Fire

An external mechanism also exists

= |mpact Entrainment

= Droplets (i.e. rain, water from suppression devices) can impact and
disturb the fuel surface
10/22/2018 9




An lllustration of Two Mechanisms @&

Yvywy

Surface Agitation by Boiling Surface Agitation by Wind
Involves pinch and rupture of bubbles Involves waves created by flow

10




Evaluated Particle Fate
= Below image illustrates typical behavior

Radius m
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Initial Finding (mass)

= Mass was almost all released during ignition
= Subsequent was minimal, small particles
= Pool height was varied to capture the effect of the change
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Time (s)

20 mm initial height s



7| Netora

Initial fuel height significant

= Simulation work allows exploration of larger parameter space

= Differences observed — experimental result not the most
conservative

= Different mechanisms dependent on initial condition

= Sensitivity to other parameters also explored
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Selected findings (summary) 1

= Major findings:

= The release was mostly during start-up in the simulation

= |nitial liquid level was a significant parameter, non-conservative

= Historical experiments were incomplete

No temporal resolution

Variation of initial fluid height

No turbulence data

Description of ignition methods

No data on distillation

Minimal observations on liquid behavior

= 2018 NSRD project filling experimental data gaps
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Gasoline Pool Fire (BNWL-1732)

= 1] gallon gasoline onto pan surface

= UO, powder, 50 g poured before gasoline

= Pan size 15-inch diameter tray used

= HDBK 3010 scenario

s,

20-1/8" DI1A DUCT

1/4" COPPER TUBING TO

¥
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X
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RELEASE TANK
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FUEGO Simulation

Reproducing the
test environment as
closely as possible

Simulation Results

Base case -20 s run

Sensitivity Study —
particle generation

Gasoline
vaporization

Boiling surface
rupture

Residue re-
suspension
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Why Can We Trust the Models?

Verification and Validation

= Representative datasets

for the physics
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Downwind Concentration ) &=,

Stream-wise Concentration — LES
. 0.5¢ B0 H -.-lé)-qe)
= LES models experimental \ A TFNS
concentration well throughout o4
domain £oaf
%
S}

= k-g approaches observed results
further downstream
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Video of Instantaneous Results

= LES baseline case

Water Channel Validation Simulations
2018

90 Degree Scenario

LES Simulations with SIERRA/Fuego

In collaboration with

US Military Academy
Stanford University

3D data taken with MRC/MRYV technique
0.8 mm resolution
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Denitrator Explosion Scenario ) .,

= ARF/RFs are obtained through look-up tables in Handbook 3010

= Release data may be of marginal relevance to specific scenarios

=  Spent nuclear fuel refining accident

=  Replicated the accident to assess release potential
= Varied explosive intensity because it was not well known
= Used the TAB model for particle break-up and sizing




Schematic of Denitrator
(J. M. McKibben, 1976)

Vessel | .

Concrete — >
Air
inlet

I




Preliminary Estimate of Aerosol Distribution ) =
10~% Respirable (¥<20 Micrometer Diameter)

1
0.1

Aerosol Mass Fraction

0.0 /00 MJ
0.001
0.0001
0.00001
0.000001
0.0000001
1E-08
1E-00 M
16 31 57 11 20 37 >50

Bin Diameter (um)




Demonstration Calculation

= Final ARF/RF significantly below handbook estimates

th

= Technique requires validation, but huge gap exists between model and

expectation

EXPLOSIVE




Comparison to DOE Handbook 3010

= DOE Handbook: “Airborne Release Fractions/Rates and
Respirable Fractions for Nonreactor Nuclear Facilities:

Volume |”
= ARFXRF=0.2:0.1:0.07 (upper bound : median : lower bound)

= 50 MJ explosion: 10 respirable fraction (preliminary)
= 700 MJ explosion: 107 respirable fraction (preliminary)




Summary

= SIERRA/Fuego is Sandia/DOE’s low-Mach tool for reacting
flows

= Can add value to safety assessment activities
= Meets high QA standards, compliant to DOE orders
= Designed primarily for abnormal thermal analysis of DOE systems

= Safety assessments suffer from inaccurate ARF
approximations

= Recommended ARF is not necessarily conservative

= QOperational ARFs may be severely conservative and drive substantial
costs
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Why Want to Substantiate Handbook? (@&

= Safety analysts at DOE complex rely heavily on the data
provided in this Handbook to determine the source term (ST)
= Fijve Factor Formula
= ST =MAR:-DR-ARF - RF - LPF

= MAR - material at risk, DR — damage ratio, ARF — airborne release
fraction, RF —respirable fraction & LPF — leak path factor

= More often, analysts simply take the bounding values to
perform ST calculations to avoid regulatory critique

= Derived data (i.e., ARF & RF) from Handbook:
= Very limited table-top and bench/laboratory experiments
= Engineering judgement which may not have adequate bases
= Actual situation may not be represented

2




HPC Platforms ==

= As of April 2018, 237,978 processors are available within
Sandia network across 10 machine platforms

Provides more than 2B CPU hours per year
High-end computing capacity: 2.1-2.7GHz with 3.5-4GB per processor

Ample storage: more than 50PB with high-speed access from
computational processors

Only 2.5 years old in average; 5 of them are launched in 2017 or later

Not included are jointly funded machines that are located outside
Sandia (ex> Trinity)




Sierra : Thermal/Fluid ) S,

= DOEO414.1D

= Code is maintained to order standards

= Regularly audited
= SAND 2008-5517, Software Quality Plan for ASC codes

= S|ERRA tools are used for safety case relating to stockpile
performance

= Abnormal environment (fires)

= Normal environment (day-to-day operations)




SIERRA Enables Coupling (example)

Temperature

Aria
Conduction
Heat Transfer,

Enclosure Radiation
1 dof/node
+ chemistry

SURFACE
-—

Irradiation

SIERRA
Transfer
of nodal variables
(interpolation)
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HPC at Sandia

= Sandiais a leader in HPC technology

= Advanced hardware configurations and performance

System

* | status

Notes

= Large lab, large resource s

@LANL

DST 4/18 completed 15:34 MDT

* CEE SCN

= Thousands of teraFLOPS

SCN TeamForge returned to service 2:08 pm, 4/17

* CEE SRN Apps

SRN cee-apps.sandia.gov accepting logins, but the apps are
still down. No ETA 9:00 4/9

= Resources on red networks as well

Resources

4/6/18 9am CEE Resources that are still unavailable are after
power outage;
ceerws2907a,b,c,d,e,f

No ETR

*CEE SCN Apps

Citrix XenApps https: /fceescn-apps is out of service. Currently
no ETA 2/12 2:30pm

*SMSS - SCN

RTS 4/18 4:40PM

ACES Mutrino
@SNL

ACES Trinity
@LANL

Cayenne SCN

Skybridge has 1,848

Chama

Eclipse

compute nodes, 29,568

Ghost

gitlab

cores

THPC

Jemez SCN

Lynx

Lynx-s SCN

Pecos SCN

Skybridge

SMSS-ECN/SRN

Solo ECN

Uno




SIERRA/Fuego/Syrinx/Aria Tl
Methodology and Framework

. ® Common application framework

= Shared data structure, parser, file I/0, parallel
communication, solvers, etc.

# = Data exchange for application coupling

« SIERRA/Fuego: Low-Mach turbulent fire
— Hybrid control volume finite element method (CVFEM)

« SIERRA/Syrinx: Participating media radiation
(PMR)
— Streamwise-upwind Petrov-Galerkin FEM
 SIERRA/Aria: Heat conduction, enclosure
radiation, viscous multi-phase flow
— Galerkin FEM




Numerics and Math Models ==

= Segregated, backward Euler or Crank-Nicholson time solution

= Equal-order interpolation CVFEM technique for low-Mach or acousticall
compressible mechanics

= Approximate pressure projection method for continuity/momentum |
= Convection operators: Central, pure upwind, skew upwind, MUSCL w/flux
limiters (Van Leer, Superbee, etc.)

= Basic Favre-filtered equation set (integral form):

Continuity: j P dV+jpu n.dS=0 Turbulence glosure
models required
Momentum: ag;l’ dV + j puun,+pno, dS = j(z_'ij Ty, )nde+j(ﬁ—po)gidV
. (oph s oq; oP . OP
Enthalpy:  [<%dv + [ o n,ds = -, +rhuj)nde—j8de+j( 7 &CJW j v
Species: | a,; L gy + [pTiin ds = [ (Yo, ~ 7, Jn,ds+ [ @7

= Additional equations for turbulence closures, soot transport
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Large Eddy Simulations

= LES is a turbulent flow model that solves larger scales directly

and models smaller scales Turbulence closure
models required

Momentum: J-a'g;?"dV+J.(ﬁﬁﬁjnj +1_9nj5l.j)dS = I(fij — B, )ndeJrJ.(ﬁ—po)gidV

Lot

Tuiuj - _T'ij

= KSGS one-eq. model: p_tis modeled using sub-grid kinetic energy

pe = C,, Ak
A real turbulent flow cell LES field
il | - . : I
BEnasasaan i‘fﬁ/ P\
, - . LES solves cell-averaged v

turbulence. Any physics
smaller than the cell size
is modeled using p_t

e
L]
|
o]
|
e

3 8l
- =1
L +_
Y
El = 7




Entrainment Theory

= Kataoka and Ishii (1983) suggest entrainment can be

described:
—Ld - : po\023
Er, = 4.84 x 1073 (IA)—‘Z) Valid for: 0 < h* <1038 x 10%;N35D;042 (Af))
Efg — pf ]].fe Jg = (agAp/p) (GD/gAp)l/z 19 [pga(a/gAp)l/z]l/z
glg o ;

b= /g7

= Borkowski et al. (1986) measured the partlcle dlstrlbutlon
from a boiling scenario: ’

o
N

= Primary entrainment
includes all drops
formed by surface
boiling, but most drops
fall back to the surface
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Initial Finding (mass) T

= Mass was almost all released during ignition
= Subsequent was minimal, small particles
= Pool height was varied to capture the effect of the change

1e-1 4 1e-1 4
1e-2 E Poo| Surface 3 Te-2 3 Pool Surface
I Escaped r 1 [eemmee Escaped
1e-3 5 — — = Beaker Side Walls P 1e-3 1 e Baadker Side Walls e
] g ] "
D 1e4 Steay T
§ ] § i I e i
s 1e-5 E s 1e-5 E ¥
] ] B G A T R
1e-6 - 16-6 - ra '
1e-7 1e-7 ]
1e-8 ¥ S S B S * I R 2 * T EJ EEIn : T EJ EETE : T o3 ERrT 1e-8 L X %N FJJFF T ¥ L R R L2 L E %ok o) LS J T3 T EEE
0.01 0.1 1 10 100 1000 0.1 1 10 100 1000
Time (s) Time (s)
20 mm initial height 0 mm initial height
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Effect of turbulence (20 mm height) @&

" |ncluding turbulence effects results in minor ARF increase

Runs k epsilon Corresponding length Corresponding

[m?/s2?] [m?/s3] scale turbulence intensity
[m] [%]
Baseline 5.95e-7 4.56e-7 1.7 x 104 100
A variation 5.95e-5 1.53e4 5x 104 1000
B variation 5.95e-5 1.92e-6 4 x 102 1000
C variation 5.95e-3 1.53e-1 5x 104 10000
D variation 5.95e-3 1.92e-3 4 x 102 10000
0.08
0.06 - I
= Varied particle input B
file distribution L o m
i B .
. 2
= Red is after pulse ° m
contribution 0.02 1
OOO T m T T ,T| T T H T H T T T T
£ P PP LD AT TR PO PO P
@'b @’b <b’b' @’b @(b @’b Q Q @O @O @0 @O @O @O @O @O 11

-— S ,\o* «o S ,Q»‘ ,\o «o &o —




Entrainment Mechanisms ) 2=

= Four natural mechanisms were identified

= Evaporation Induced Entrainment [E] —
= Particles ejected from pool by evaporating fluid
= Surface Agitation by Wind
& = Strong winds create waves which suspend particles upon breaking
i-';. = Surface Agitation by Boiling [B] R
£ " Droplets become suspended as the gases rupture the liquid surface
A @ * Residue Entrainment (Resuspension)
L;:,{ = After liquid has been consumed, remaining solid particles can erode by
‘E persisting flow conditions

An external mechanism also exists

= |mpact Entrainment

= Droplets (i.e. rain, water from suppression devices) can impact and
disturb the fuel surface
10/22/2018 42




Simulation Scenarios e,

Injection
Sim. Time | Durationt Injected Mass Particle Size I-(I::g:;t
(kals) [wt% UO,] (um) Turbulence
1E* 20 540 3.3E-2 1.64E-13 [100%] 0.2 Normal 10
m 20 540 3.3E-2 1.64E-13 [100%] 0.7 Normal 1
m 20 540 3.3E-2 1.64E-13 [100%] 2 Normal i
m 20 98 6.0E-3 1.64E-13 [100%] 0.2 Normal 10
m 60 540 3.3E-2 1.64E-13 [100%] 0.2 Normal 10
m 20 540 3.3E-2 1.64E-13 [100%] 0.2 High 10
20 540 3.3E-2 1.64E-13 [100%] 0.2 Normal .
1B** 20 20 0.002 8.3E-3 [25%)] Distribution Normal 10

m 30 30 0.002 8.3E-3 [25%)] Distribution Normal 10
m 20 20 0.002 8.3E-3 [25%] Distribution High 10
m 20 20 0.001 4.15E-3 [25%)] Distribution Normal 18
m 20 20 0.003 1.25E-2 [25%)] Distribution Normal 1y
m 20 20 0.002 8.3E-3 [25%)] Distribution Normal B

* = Solid Contaminant

** = Combined Fuel & Contaminant

1= Note: Duration for Evaporation [E] denotes the entire burn, while duration for Boiling [B] denotes the portion of the burn when

the fuel was assumed to be boiling.
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Simulation Visualization: Boiling (1B)  @i=.

Radius {(m)
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Baseline Case Final Mass

« Evaporation (1E) 7%
11.1%

/
/i 12.2%  ®Outflow
u Pool
«Lip
m Suspended

« Boiling (1B)

i Outflow
6% wPool

wLip

= Walls

m Suspended

10/22/2018

77 Ntora

“Suspended” mass
would be omitted in
longer simulation runs

Evaporation: Most
entrained particles
reach the outflow

Boiling: Most entrained
particles fall back into
the pool
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Boiling Final Deposition ) e

100.0%
90.0%

88.6%
88-0%
60.0%

90.0%
40.0%

36:8%
60:0%

10.0%
86.0%

m Walls

m Lip

m Outflow

m Suspended
m Pool

Percent Injected Mass: Final Outcome
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ARF - Significant Parameters UL

= Turbulence

= Varying the turbulence changed the deposition location and ARF for
both entrainment mechanisms.

= Boiling Duration

= The predicted ARF is most dependent on the boiling mechanism, yet
the precise duration is unknown

= QOriginal Empirical Datasets in 3010 just use ARF
= No credit for importance of either of these parameters

= Value could be overly conservative or non-conservative
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Selected findings (summary) 1

= Code development needs to better simulate this problem:

= Resuspension, multi-component particle evaporation, volumetric flow
BC, film deposit flow and evaporation, improved reaction model,
regressing liquid surface, multi-component pool model

= [ssues with experiments:

= No temporal resolution, no indication of ignition methods, no
variation of initial fluid height and liquid level below lip, no turbulence
data, no data on distillation, no observations on liquid behavior

= Major findings:
= The release was mostly during start-up in the simulation

= Sensitivity to turbulence parameters was slight

= |nitial liquid level was a significant parameter, non-conservative

= We have a current project to collect new data
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Future Work )=,

= Suspension distribution of particles in gasoline pool will affect
the ARF
= Presumed to be homogeneous; lacking a more accurate model.

= Large difference in particle and fuel density, 10970 and 679.5 kg/m?3
= Suggests settling would occur
= Alters the ARF.

= Resuspension mechanism is important for understanding
what happens after the fire

= Multi-component particles will enhance the predictive
capability of the simulations

= Surface agitation by wind
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Rubble Fire Test Arrangement

Composite Rubble Fire Test

Assembly Time Lapse

9/4/14




Rubble Fire Test Video

Composite Rubble Fire Test
9/5/14




Validation Scenario (VOF)

= Dam burst scenario was
created experimentally

= Provides a good test of the
advection and surface
models

=  References:

= K. Kleefsman, G. Fekken, A. Veldman, B.
Iwanowski, and B. Buchner. A volume-of-
fluid based simulation method for wave
impact problems. Journal of Computational
Physics, 206(1):363-393, JUN 2005.

= C. Crespo, J. M. Dominguez, A. Barreiro, M.
Gomez-Gesteira, and B. D. Rogers. GPUs, a
new tool of acceleration in CFD: Efficiency

3 25 2 15 1 05 0

057 (m)

H1

3 25 2 15 1 05 0
X (m)

Dam burst scenario (initial configuration above)
Blocking obstacle
Three measurement points where data were extracted

o ¢ ; Nominal Mesh Time Step

and reliability on smoothed particle Mesh Nodes Spacing S

hydrodynamics methods. PLOS ONE, 6(6), 1 — 28,600 0.05000 m 0.00250

IR 0L 2 med 216,400 0.02500 m 0.00125
3 fine 716,500 0.01667 m 0.00100
4 xfine 1,682,000 0.01250 m 0.00100
5 xxfine 3,266,300 0.01000 m 0.00050
6 xxxfine 5,622,400 0.00833 m 0.00050
7 xxxxfine 8,903,500 0.00714 m 0.00050

Study consisted of mostly mesh refinement variations



Highest Resolution Video

= The highest resolution case results in a very complex surface
flow

SIERRA/Fuego VOF Prediction

Water Dam Burst

8.9 million node mesh




Fluid Height at H1 o

= |ncreased resolution generally matches the data
peak heights better
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Fluid Height at H2 -

= Coarse calculation is appreciably worse than the fine
and xxfine

04 |||||||||||||||||||||||||||||
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o
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Fluid Height at H3 -

= Very good temporal predictions for higher resolution
models, moderate difference in peak magnitudes
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Show latest model results

= Here we show the first multiphase burn modeling results
Timme: 0.000000

— 1750.

— 1500.

1000.

Temperature

500.0
350.0




Numerical Configuration

= 196 x 110 x 239mm computational domain

Localized mesh refinement utilized
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Downwind Velocity ) .

Stream-wise Velocity Magnitude = LES
s 5/6 H '_':;E
= Velocity magnitude | & TFNS
comparisons extended beyond T
target street canyon -
< 015
= LES overestimates velocity s
near target building .
= 5/6H - Displays behavior matching il X |
experiment further upstream ¢t z & 3 5 & 7 8
= 1/2H - larger stagnation zones !
near small buildings cause 83 /28
decrease in velocity .
AAAA W
ET"J 0.2 2 AAAAAA‘AAAAAM_AA_AmxA_AKA
£ 0.15 =
5/6 H S
""""""""""""""""""" > 0 14;,-5,. - o
1/2 H L
NI et e et e el 0.05
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Center Plane Concentration

Concentration

Experimental Baseline LES

= Concentration contour plots and iso-surface comparisons
exhibit good qualitative match




Legacy SIERRA/Fuego predictions @i
= Generic NH; facility plume in cross-wind

= 5.4 m/s stack velocity, 2 m/s cross-wind

=  Plume volume grows spatially in turbulent flow

ass Fraction
Q.OOO]
K

1e-06

1e-08

1e-10

Time: 102.533323




Discretized Model of Denitrator 7 &=

Created with CUBIT Software




Taylor Analogy Break-up (TAB) Modep -

= QOriginally by O’'Rourke and Amsden (1987)

= Approximates the drop as a damped oscillator, formulated as a second-order
differential equation, with y as a deformation parameter:

, ‘ ‘z Simplified Schematic
d C. P, Ug U . Colty, o
md—2y=md—F—g = —m, Sy -m, dzl—y
dt C, p r or pr- dt ’
T el A A A
Aerodynamic  Surface Energy Viscous Harmonic
ForCIng Damplng Damplng Deformations Forced Critical Deformation New DI’Op(S)
= Discretized solution fory is: by Velocity Differential ~ (Y=1)
_ _8Cu 1 ilation E
e+ A =" vy~ 8 costnn + 1| 50y + 2O C Gingann) L exp(-at/z,) =52 Gsallation Frequeny
G C 10} Ty pd, T,
2
@_y(t) z, _1 pidy Viscous Damping Time
it +a=C +{l[y(t)—MJCOS(wAt)—(y(t)—We/C)sin(a)At)}a)exp(—At/rb) 2Caty
7 10} T
N2
We=pld"(u” uy) Weber Number
(o3

= New drop diameters can be calculated:

C.K pd,(t) 6K -5 .
dt+AD)=d@)/|1+L—4+ 2 1)?
(E+AD (){ 20 30 120 JW

=  We modified the algorithm to limit break-up for new particles




Next Steps-Denitrator UL

" |ncorporate appropriate chemical explosive energy and
density for reprocessing vessels.

" |ncorporate actual solution physical properties: density,
viscosity, and surface tension.

= Refine vessel geometry and materials model based on
vessel design and room floor plan.

= Refine liguid model: increase number of particles from
100,000 to about 500,000.

= Compare calculation results with limited observations
from reported accidents.

= Perform large-scale experimental tests to validate model.




