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Nanocrystalline Alloys: Fatigue and Fracture

• Improved fatigue endurance limit
compared to coarse grain counterparts

• Progressive microstructural changes with
cyclic loading, often below yield stress

• Fatigue in nanocrystalline metals

• Grain boundary migration and grain
growth

• Crack initiation

• What are the underlying mechanisms
associated with these phenomena?

• In situ TEM deformation techniques
provide the spatial resolution needed to.
investigate these questions

• Ideally coupled with bulk scale testing
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In situ Quantitative Mechanical Testing

Hysitron PI95 In Situ Nanoindentation TEM Holder

• Sub nanometer displacement resolution

• Quantitative force information with FIN resolution

Nanoindentation

Nanopillars

MM.

Micro Tension Bars
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• Concurrent real-time imaging

• A variety of sample geometries

• Load functions examined at I3TEM:

1) Indentation

2) Tension

3) Fatigue

4) Creep (irradiation and thermal)

5) Compression

6) Future: Nanowear



Precession Electron Diffraction (PED) Microscopy
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Precessed

Advantages 

• < 8 nm spatial resolution (LaB6)
• < 2 nm spatial resolution (FEG)
• Near kinematical electron diffraction
• Symmetry ambiguities are resolved
• Fast and automated acquisition
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Tension Specimen Fabrication
• Hysitron "Push-to-Pull" devices
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o Microfabricated Si test frame

o Pt film (40nm) floated onto device, then FIB milled. Final FIB cut: minimize I-beam
imaging minimize Ga

o Notched test improved "chance" of observing crack initiation and propagation

• Nearly pure tension, uniform cross sectional area, stable load frame
• Sensitive to shape of edges, issues with magnetic materials
• Fapplied=Fmeasured- F spring

Images from D. Bufford, SNL



Notched NC Pt: In-situ Cyclic Loading/Fatigue

• Notch length = 950 nm, Gauge width = 3.3 um
• Notch created by FIB "line"
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Methodology: Cyclic Loading in TEM Protocol
1 6 0

Mean load (Pmean) = 135 uN

Amplitude load (Pamp) = 35 uN
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• Motion blur 4 loading frequency exceeded the frame rate (15 frames/s 413 cycles
per frame)
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Advantages of PED coupled In-situ Experiments

1
ko

• Ability to couple grain orientation and grain boundary misorientation with crack
propagation
• Feasible to track relative grain rotation or variation in GB misorientation

under loading
PED orientation maps pre-, intermediate, and post- in-situ mechanical test
can assist in deconvoluting possible NC stress assisted grain growth
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Crack Initiation at Notch

NA—Crack 1

Crack 2
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Crack 2
grows

• Crack initiation and initial propagation at notch tip
• Second crack initiates at - 90° to first crack, both 45° to notch tip

normal
• lntra-granular crack (crack #2) propagates until reaching initial grain

boundary and is subsequently arrested
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Crack Propagation, Closure, and Re-Direction
564,000 cycles (A)

724,000 cycles (C)
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Fatigue crack closure: Is this crack healing?

(a)604K cycles

Loading direction

Crack tip

red circile is reference point -> GB-twin]

(b) 644K cycles 1600.

Crack tip deflection and
arrest at GB

(0684K cycles :0141°,./

u 
50 nmnctr--

Intermediate PED

1. Fatigue crack propagates into Grain G2 Crack at GB between G1 and G2

2. In G2, significant crack deflection away from Mode I
(normal to load)
• Kinked or doubly-kinked crack deflection

3. Crack appears to be temporarily arrested at GB
between G2 and G3

4. Next test (between 644K and 684K, crack appears to
close (heal?)

Crack
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Fatigue Crack Healing: 40K Cycle Video

Loading direction
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• 6X speed, 200 Hz loading 200
sec real time 4 40K cycles

• Between 644K and 684K total
cycles
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Fatigue Crack Healing: Image Sequence
(a) before (644K cycles)

Loading direction

Crack impil

(d) + 1 3,400 cycles

(."

(g) + 39,900 cycles

e GI3

(b) monotonic load

(e) + 20,100 cycles

Crack ( les

(h) monotonic unload

(c) +13 cycles

(f) + 26,800 cycles

(i) after (684K cycles)
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• Side-to-side contact
on monotonic loading

• Contrast changes
after closure effect

• Unloading — no
indications of
previous deflected
crack
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Crack Healing: Discussion Sandia
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• Significant deflected crack in Grain G2 4 transition to mix-mode
local loading. Deflected crack propagates until reaching GB obstacle
(GB2_3). Following cyclic test (644K total cycles to 684K total cycles),
crack closes, we consider this a partial crack healing event.

• The localized "crack closure" mechanism appears to similar to "cold
welding"

• Evidence for "cold welding" in context of previous literature:
• Noble Pt, in vacuum, same grain (very important for orientation

attachment mechanism — low localized diffusion barrier for single atoms),
loading condition shows that the local crack faces come in contact (sliding
and compressive?)

• Crack sides come in contact during the monotonic loading during the 644K
cycle test



Cyclic Loading: GB Misorientation Changes

Z3 of interest ("GB-1")

PED map at 124,000 total cycles
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• Deformation and stress intensity of
cyclic loaded crack tip induced
modification (change in macroscopic
misorientation) of the coherent X3

• Decrease in X3 coherency from
nearly ideal twin misorientation to

greater than 4° deviation likely
associated:
• Grain rotation and dislocation-

GB impingement

GB-1 (Twin
Boundary E3)

Misorientation Deviation
from ideal E3

Prior to Cyclic
Loading

59.9° [1 1 1] 0.8 °

Crack Impinges
GB at Grains 1-2

56.9 [776] 4.9 °
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Cyclic loading: transgranular crack propagation

8x playback speed
N = 40,000 in 200s
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• Mean load: 135 uN; Amplitude load: 35 uN • da/dN = 1.7 x 1012 m/cycle

• 200 Hz, 200s test (15 fps lk x lk camera) • Non-linear crack extension rate
• Crack propagation path changes

"direction" 16



Fatigue crack propagation and arrest
(a) 800,000 prev. cycles

100 nm

(d) 840,000 cycles

(c) 820,000 cycles

(f) 880,000 cycles
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Multiple
directions of
crack front

• Rapid propagation — transgranular between N = 800K to — 854K

• After 854K cycles, cyclic loading crack impinges grain boundary — no further

propagation
• Transgranular crack propagation non-linear 17



Fatigue crack propagation and arrest
time (s)
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Transgranular
propagation

• Rapid propagation — intragranular between N = 800K to — 854K
• After 854K cycles, cyclic loading crack impinges grain boundary — no further

propagation for addition —106K cycles
• Transgranular crack propagation non-linear: "serpentine fashion" 18



Transgranular crack propagation: non-linear

/
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Ohr, Mat Sci & Eng72
(1985) 1-35

• Classic in-situ tensile straining work by Ohr and colleagues observe zig-zag crack
propagation 4 associated with emission of dislocations on alternating slip planes
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• Non-uniform "fatigue" crack propagation observed here transgranular has similar alternating
crack propagation fronts — possible mechanisms still under review

• PED data provides opportunity to associate with crystal orientation (and subsequent slip plane
normals) 19



Unstable propagation and failure

960,000 cycles (+1 frame)
Rapid propagation - failure

Sawtooth type region "pops" out duri
catastrophic crack propagation

100 nm
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New sawtooth region

Confirmed
location of
previous cyclic

1-crack
propagation

• Unstable propagation of crack occurred just under 1M total cycles
• Sample failed on initial ramp (-100 uN) to monotonic mean load (135 uN)

at 960,000 cycles
• Facture surface consistent with location of previous fatigue crack

propagation
• Indications of "sawtooth" intra-grain plasticity during this rapid failure

mechanism
20



Discussion and Conclusions:

• PI-95 in tension-tension "fatigue" mode (nanoDMA)

provide wealth of new in-situ TEM mechanical

testing potential

• Ideally coupled with ACOM TEM or other

methods to enhance analysis

• Dual crack tip initiation observed at notch

• Cyclic load induced crack propagation is effectively

arrested at GBs — indications of effectiveness of NC

materials under fatigue

• — 2 pm/cycle crack growth rate (dA/dN)!

• Non-uniform, non-straight crack propagation —

"zig-zag" motion

• Localized deformation: Coupled ACOM-TEM

indicates grain rotation, dislocation based plasticity

active 4 clear change in 13 coherency in front of
crack tip

• Failure associated with classical in-situ TEM

mechanical "saw-tooth" plasticity

Saw-tooth classically explained by
local plastic flow — (e.g. Wilsdorf
and Kumar et al. Acta 2003)
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Future In-Situ Mechanical Testing Directions

at I3TEM Facility
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High cycle fatigue — more detailed
quantification of grain growth

Other model alloys, multi-layers, alloying

effects (e.g. Pt-10Au vs. Pt)

Creep, radiation-induced creep

TEM notched three point bend

Under development capabilities:

DTEM and/or movie mode with
crack propagation for improved
temporal resolution under high Hz
cyclic loading

Combining the precision of Hysitron's Pico-indenter
with harsh environments capable in Sandia's In-situ
Ion Irradiation TEM a wealth of previously impossible

l experiments are now feasible.
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On-going efforts to combining PED/ACOM with quantitative mechanical testing
provides new correlations between structure-property relationships with
unprecedented orientation and mechanical property information.

100 nm
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Local Twin "Growth" and Elongation Sandia
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Local Twin "Growth" and Elongation
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