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r Introduction
Motivation

@ All models are wrong in principle

@ Models of physical systems rely on

@ Presumed theoretical framework
@ Mathematical formulation

@ Practical models of complex physical systems rely on
@ Simplifying assumptions
@ Numerical discretization of governing equations
@ Computational software & hardware

@ model error is frequently non-negligible

@ Estimating model error is useful for

@ model comparison & validation
@ modelimprovement & scientific discovery
@ reliable computational predictions
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Introduction

Challenges with Model Calibration due to Model Error

® o Data,N=5 2.0
== Truth
= Model prediction
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@ Conventional parameter estimation context:  yg.., = f(z, A) + €4
@ Additional data results in reduced parameteric posterior uncertainty
@ One gets more confident about predictions with the wrong model

@ Predictive uncertainty in calibrated model has no utility for prediction
@ Ignoring model error leads to irrelevant predictive errors
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Introduction

Challenges with Model Calibration due to Model Error
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@ Conventional parameter estimation context:  yg.., = f(z, A) + €4
@ Additional data results in reduced parameteric posterior uncertainty
@ One gets more confident about predictions with the wrong model

@ Predictive uncertainty in calibrated model has no utility for prediction
@ Ignoring model error leads to irrelevant predictive errors
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Introduction

Challenges with Model Calibration due to Model Error

® e Data, N =100 2.0
== Truth

= Model prediction
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@ Conventional parameter estimation context:  yg.., = f(z, A) + €4
@ Additional data results in reduced parameteric posterior uncertainty
@ One gets more confident about predictions with the wrong model

@ Predictive uncertainty in calibrated model has no utility for prediction
@ Ignoring model error leads to irrelevant predictive errors
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r Introduction

Statistical modeling of model error

Error framework:

Measurements: Ydata = Ytruth T €4

Model predictions: Ytruth = Ymodel T €m

Thus: Ydata = Ymodel T €m T €q
Error modeling - example

Model: Ymodel = f(Z; )

Data Error: €g ~ N(0,0?)

Model Error: € ~ GP(u(z),C(x,2"))
Model calibration:

Estimate model parameters A along with those of €,,,, ¢,

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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Challenges - Physical Models

@ Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

- Potential violation of implicit constraints in physical models

- e.g incompressible flow: V- v =0
@ Difficulty in disambiguation of model & data error

@ Calibration of model error on measured observable does not impact
quality of other model predictions
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Key idea - Targeted model error embedding

@ Embed model error in specific submodel phenomenology

_— . " (Berliner 2003)
@ a modified transport or constitutive law
@ a modified formulation for a material property

@ Pros:

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

@ explore if it can explain discrepancy on observable
@ naturally preserves model structure and associated constraints

e Cons:
@ complex likelihood p(y|\) for general nonlinear f(x, A, €,,)
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T Introduction
Consider a simple no-data-noise setting

@ Calibration of a (simple) model against a complex model
@ Let the complex model be presumed to represent the truth
@ In this context, the data has no noise

@ Discrepancy between model and data is all due to model error

Ydata = Ytruth = Ycomplex_model = Ymodel +en
@ €,, = Ydata — Ymodel IS @ deterministic quantity

@ The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique ¢,,, for any «
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model-to-model calibration 7

Model: y=f(z, X\ d(€,,))

- Random variable ¢ in augmented model components carries
model error

Data: D = {(z;, Ygatas)st = 1,---, N}
@ Goal:

@ Establish A, p(¢) such that the likelihood of the data is high,
based on the posterior predictive p(y| D)

@ This puts us in a density estimation framework for ¢:
@ The utility of additional data is to improve the specification of ),
and p(¢)
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Proposed
Present Context

Embede,, in A

@ In other words: A Ate,

@ Model: y= f(z,\) withA: Q — RM

@ Density estimation problem for p())

@ )\:arandom field \(z,w), or a random variable A(w)
- focus on the latter

Let the random variable )\ be parameterized by «
@ For example, define )\ as a polynomial chaos expansion

P
A= Z o, ¥ (§)
k=0

Parameter estimation problem for o = (g, -+, ap)

Bayesian setting
@ Prior 7(«)
o Likelihood L(«) = p(D|«)

SNL Najm ModErr 1/37



Full Likelihood

L(a) = p(D|a) = 7Tf(ydata,l’ 7ydata,N\O‘>

where:
7 4(+|av): N-variate density of the random variable (fy, ..., fx)

with f; = f(z;, A\(§ @)

Problem: 7 () is degenerate in general when N > M

@ Consider a case with M = 1, A\ ~ N(p,0?),and f = A

@ Let N =2, hence (f,, f5) = (A, A) for any A sample

e With f; = f, = A\, (f1, f2) are dependent and 7 (- |1, o) is non-zero
only along the line f, = f;

@ 7Tf(ydata,lv Ydata,2 |:u7 U) is non-zero only along the line Ydata,2 = Ydata,1

= potentially can ameliorate singularity with a smoothing nugget
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Marginalized Likelihood B )

L(a) = p(D|a) = [ [ 7, (Yata,ile)

i=1

4

where
7. (-, @) is the univariate density of the RV f; = f(x;, Aa))

Problem: the likelihood has multiple singularities corresponding to «
values leading to vanishing marginal variances at each z;

@ Gaussian example: Let f; ~ N(y; (), 0;(a)?), then

1 N 1 (:ui(a) - yda’(a,i)2
L) = Gy L 5y = ( 20,(a)? )

@ Multiple singularities, 0;(a) = 0,7 =1, ..., N
@ Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

= can potentially be controlled via priors on «
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Proposed

Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data
e With y,(a) = Eg[f(xi»)\(f§a))]:

minimize || 1; (@) — Ygatai |

The width of the distribution p(y| D) is consistent with the spread of the

data around the nominal model prediction

e With o?(a) = Vg[f(l'iv A€, a))l:
minimize | o; (o) — |15 (@) = Ydata,i! |

@ ~is a factor that specifies the desired match between o, and the
discrepancy |1; (@) — Ygata |, ON average
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BEEelhood

With p(8) being a metric of the statistic &, use the kernel function as an
ABC likelihood:
p(S)

Lppc(a) = %K <—>

€

where € controls the severity of the consistency control

Propose the Gaussian kernel density:

o \Q) — TP o,(a) — () — )2
L (o) = Vlz_Hexp (_w )10+ 0 Apa(e) = g1 )
€ 7ri=1 €
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no-noise

Test problem - Cubic data fit by a line - ABC

[ e « Complex model, g(z) L: e o Complex model, g(z)

4 — MAP predictive mean, ZM () 70 — MAP predictive mean, Z)7% (z)
4 [ MAP predictive stdev, v/ ZMF (z) .4 ° I MAP predictive stdev,  Z)F (x)
> 35
[S] o
24 34
o o
=3 =3

2 2

1 1

1.0 -0.5 0).(0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ MAP predictive (MP) mean centered on data
@ MP standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on both MP
mean and stdev
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no-noise

Test problem - Cubic data fit by a quadratic - ABC

N =11 N =51

8 e « Complex model, g(x) d 4 e o Complex model, g(z)
4 — MAP predictive mean, ZM" (x) 7 — MAP predictive mean, ZM" (z)
d B MAP predictive stdev, \ 227 (z) d EEE MAP predictive stdev, \ 2} (x)
o o
> S5
o o
4 L4
o o
=3 =3
2 2
1 1

-1.0 -0.5 0*0 0.5 1.0

@ Quadratic has better fit to the data
@ Smaller MP stdev consistent with smaller discrepancy
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no-noise

Test problem - Cubic data fit by a cubic - ABC

N =11 N =51

8 e o Complex model, g(x) 8 e o Complex model, g(z)
4 — MAP predictive mean, ZM" (x) 7 — MAP predictive mean, ZM" (z)
d B MAP predictive stdev, \ z27 (x) d EEE MAP predictive stdev, \ 2} (x)
o o |
> S5
o o
84 84
o o
=3 =3
2 2
1 1
-1.0 -0.5 0).(0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ Cubic has perfect fit to the data
@ Negligible MP stdev consistent with negligible discrepancy
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Chemlstry problem - ABC

@ Homogeneous ignition, methane-air
mixture 5

@ Single-step global reaction model i E
calibrated against a detailed chemical . Tg
kinetic model - ODE system B

@ Data: ignition time; range of initial 7'& zé
equivalence ratio O

@ Single-step model: 8

CH, + 20, — CO, + 2H,0 B dors o

R = [C}-LJL][OZNf 1090 2050 4345 i
k = Aexp(—E/R°T) Temp,, 70

{ln A} Z .

.
0.8
1250 135006 ¢
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Chem

Constant Pressure Ignition - Problem Structure

@ N species, M reactions, rate parameter vector A
@ State vector u = (X4, ..., X, T) - mole fractions, temperature
o ODE system

du,;(t; \) ) .
4 = w;(w;A), i=1,..,N

®

Observable: ignition time 7, (ug, A) =t |1 (110 \)=Trgn
Challenge, for any proposed A, computing 7ig, (1, A) is expensive

- Large stiff ODE system for complex fuels

Polynomial chaos formulation allows construction of a surrogate

Tign<u07>‘(€;a>) U07§, ka Up; &

@ Surrogate replaces the forward model in the Likelihood function

Najm ModErr
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Posterior on « Posterior Predictive on (In A, E
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T, ®):

@ MAP predictive mean
ignition-time is centered
on the data

@ MAP predictive stdv
is consistent with the
scatter of the data
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Consider a noisy-data setting

@ Calibration of a model y,,, = f(z, \) against noisy data

@ Synthetic noisy data is generated from a “truth” model + Gaussian
noise

@ Discrepancy between fit model prediction and data is due to both
model error & data noise

Y = Ydata = Yruth + €= f(va) +e

@ Modeling strategy:

- Model )\ as a random vector, represented with PC
- Represent the noise similarly using PC
- Estimate all PC coefficients using Bayesian inference
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Model Error formulatlon noisy data

y=f(z,A) +e
Lete ~ N(0,0?). With Niid. data points we have

= f(z;,\) +¢, i=1,...,N

For Hermite-Gaussian PC:
A= fjak@k<§1,~-7§d>, a = (ag, -, ap)
fl@ ) = kam w(€1re5€0)
% = ka w(&rs g) + 044

Augmented PC germ & = (&, -, fd, as1:» Eaen)

Em €4

SNL Najm ModErr 24/37



Model Error Estimation - noisy data 7

Inverse problem:
e Given:
o data:
D = {(z;,y;) 14

@ data model:

ka 517 7£d>+o’£d+i7 7’:177N

e
Yrmodel (€m) €d

@ Estimate parameters («, o)

Bayesian context:
@ posterior: p(«a, o|D)
@ options: Full Bayesian likelihood; Marginalized; ABC
@ All are viable here in principle, as the data noise introduces regularity
@ We illustrate the case with a Marginalized Gaussian approximation
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Calibrated Uncertain Model Posterior Predictive

o Calibrated data model : y; = f(z;; A\(&; @) + o€,

@ Full posterioron a,c:  «a,0 ~ p(a,d|D)

Marginal posteriors:  a ~ p(«a|D), o ~ p(o|D)

Posterior Predictive (PP):

p(y|D) = /p(y\a,a)p(avcflmdado = Eoolp(yla, 0)]

PP Mean :

Epply] = [Ea[[g[fﬂ

PP Variance:

Veplyl = Eo[ Vel f] 1+ E [0 [+ Vo[ B[ f] ]

model error data noise
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Calibrated Uncertain Model Predictions

o Calibrated model: y = f(z; A(§; @)
@ Marginal posterioron a:  « ~ p(a|D)

@ Pushed forward posterior (PFP):

p(fID) = / p(fle)p(alD)da = E[p(fla)]

@ PFP Mean:
Eprplf] = [Ea[[EE[fH

@ PFP Variance:

Verplfl = Eol Vel f] ] + Vol B[ f] ]

model error data noise
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noise

OLladratic—fit - Classical Bayesian likelihood

N W R O N @

) with noise
ward posterior Eeel ]
w1 pushed-forward posterior Ve

e With additional data, predictive
uncertainty around the wrong
model is indefinitely reducible

@ Predictive uncertainty not
indicative of discrepancy from
truth

Najm
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noise

Quadratic-fit - ModErr - MargGauss

N oW A O N

— Truth function g(+)
@ @ Observations {y) with noise
—  Mean pushed-forward posterior Epe /|
= 1o pushed-forward posterior

— Truth function (r)
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= 1o pushed-forward posteri
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. 6
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Model Error - Fit with Different Models

1 [
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LES

LES subgrid static-vs-dynamic - Jet-in-crossflow

@ Large Eddy Simulation (LES) subgrid model fidelity
@ Dynamic: subgrid parameters variable in space/time, g,
@ Static : subgrid parameters constant in space/time, f;(\)
@ Target: Calibrate a static model against a dynamic model

o Fit parameters \ = (Cp, Pr;t, Sc; 1) of static model f(\) to data
from dynamic model simulations, accounting for model error
@ Static model surrogate construction using 4% = 64 simulations of f())
@ Legendre polynomial expansion surrogate of 3-rd order
- Account for surrogate error: i.i.d. zero-bias Gaussian noise

@ Global sensitivity analysis: impact of C, > impact of Pr; ! and
St

- Selected only C; for model error embedding

Vorp[f] = Eo[ Vel f1] + Vol E[f] ] + [EUS[U%]

N einaibe!
model error « posterior surrogate error
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LES

Calibrate with TKE data; Predict both TKE and Pressure

Pushed forward posterior

TKE - No model error

0.008

1 * * Data from high-fid model
0.007 H I o due to posterior
o due to surrogate for low-fid

0.006| | &
0.005|

0.004

TKE

0.003| *
0.002
0.001f ! X

' *
i ***i****k****t******t***

0.000

~0.00L% ) =3 =) =T 0

y Location
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LES

Calibrate with TKE data; Predict both TKE and Pressure

Pushed forward posterior

TKE - With model error

0.008
* * Data from high-fid model
0.007 o due to low-fid model error
: B o due to posterior
0.006 : o due to surrogate for low-fid
0.005 7/
Wl *
m 0.004 :
B H
= 0.003}
0.002 \
0.001f ! N
0000 ; **********************t**
—0.001 % ;) = =7 =T 0

y Location
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LES

Calibrate with TKE data; Predict both TKE and Pressure

Pushed forward posterior

Pressure - No model error

—0.020—
: * * High-fid model prediction
H I o due to posterior
o due to surrogate for low-fid
—0.025
: x *Ox ox
* *
* * X
*
*
\ilr * * » *
R, —0.030 ' i *
*
' *
H *
H *
-0.035| i iy
E * k%
-0.040L—
0.040¢ ) =3 =7 =T 0
y Location
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LES

Calibrate with TKE data; Predict both TKE and Pressure

Pushed forward posterior

Pressure - With model error

—0.020
* * High-fid model prediction
o due to low-fid model error
B o due to posterior
—0.025 : o due to surrogate for low-fid
R, —0.030 :
-0.035| |
~0.040—
0.040¢ ) =3 =7 =T 0

y Location
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LES

LES subgrid 2D-vs-3D - Jet-in-crossflow

o Target: Calibrate a 2D LES model against a 3D model
o Fit parameters A\ = (Cy, Pr; 1, Sc; b, I, 1., L;) of 2D model to

rory

data from 3D model simulations, accounting for model error

@ Parameters:
@ C : Smagorinsky constant
Pr, : Turbulent Prandtl number
Se, : Turbulent Schmidt number
I, : Turb. intensity (inflow air) horizontal component
I..: Turb. intensity (inflow air) ratio: vertical/horizontal
@ L, : Length scale of most energetic eddies

@ 2D model surrogate construction

@ Account for surrogate error: i.i.d. zero-bias Gaussian noise

@ Global sensitivity analysis
- Selected one parameter (I;) for model error embedding

@ Calibrate 2D model with observable: Mach no. M (y) at a given
z-location

@ Predict both M (y) and pressure P(y), and compare to 3D model
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LES

Glbbal Sensitivity Analysis Results

-
N

-
(=)

Sensitivity
e
©

o
)

o
'

o
)

o
o

y Location

[-cn P B S, O L m L l:IL,]

Dominant paramter is I;: employ it to embed model error
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LES

Model Error - Case study: 2D-vs-3D

@ Problem Focus: P1 Jet in Crossflow problem
- static SGS constants, d/8 grid resolution
@ Calibrate a 2D model using 3D benchmark simulations as data
@ Quantify the model error associated with 2D treatment
@ Red curves show ensemble of 2D runs over \-range
@ 3D Qol selection for 2D comparison: (a) centerline, (b) spanwise average

261
241
=
221
2.0} — 3D centerline []
3D span-avg
18 L L L 1
-4 -3 -2 -1 0

y/d
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LES

Model Error - Case study: 2D-vs-3D

@ Problem Focus: P1 Jet in Crossflow problem
- static SGS constants, d/8 grid resolution
@ Calibrate a 2D model using 3D benchmark simulations as data
@ Quantify the model error associated with 2D treatment
@ Red curves show ensemble of 2D runs over \-range
@ 3D Qol selection for 2D comparison: (a) centerline, (b) spanwise average

15 le-2

— 3D centerline
3D span-avg ||

-2.0f

=251
A
_3.0}

—-3.5}

-4.0

y/d
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LES

Model Error - Case study: 2D-vs-3D

@ Problem Focus: P1 Jet in Crossflow problem
- static SGS constants, d/8 grid resolution
@ Calibrate a 2D model using 3D benchmark simulations as data
@ Quantify the model error associated with 2D treatment
@ Red curves show ensemble of 2D runs over \-range
@ 3D Qol selection for 2D comparison: (a) centerline, (b) spanwise average

1.05

— 3D centerline
1.00 3D span-avg |

y/d
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LES

Model Error - Mach Number spanwise-average

@ Model error contribution captures the discrepancy

No model error

Embedded model error

2.8 vE
2.7 T SRR 751 e——
» ST PU *
TR AL et
2.6 o 26 .
. i
2.5 v 2.5 o
2.4 2.4
23 23 Data from high-fid model
* * Data from high-fid model
* * Data from high-fid model 20 due to low-fid model error
22 BN 2- due to posterior 2.2 N 20 due to posterior
¥ P

24 due to surrogate for low-fid 20 due to surrogate for low-fid

2.1 51
=5 -1 =3 215 -1 =3 =2 =T

y/d

o2

Model error

Najm

ModErr

Posterior uncertainty
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LES

Model Error - Select Qols

@ Model error contribution captures the discrepancy for averaged
quantities across a wide range of observables

2D model prediction

No model error

0.5

0.0

—-0.5

| | 20 due to posterior
20 due to surrogate for low-fid

-0.5 0.0 0.5 1.0 L5
3D model value
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g
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3 0.5
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3 3
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B
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~ »
=0.5
20 due to low-fid model error
| | 20 due to posterior
20 due to surrogate for low-fid
—1.0k
-1.0 -0.5 0.0 0.5 1.0 1.5

3D model value

o =5 [o?(N)] + V5 [mV)] + (0F09)2

Model error
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LES

Model Error - Mach Number centerline

@ Model error contribution extends as much as prior allows

No model error

Embedded model error
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T Closure
Closure

Presented a strategy for dealing with model error
@ targeted at physical models

Density estimation framework - y = f(x; A(§; @)

Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

Results suggest disambiguation of the two components

Demonstrations in chemical ignition and LES of jet-in-crossflow
@ Including accounting for PC surrogate error

Limitation of model-error embedding: when no variation of the
chosen parameter in the simple model could reproduce results of
the detailed model

- Expand parameter prior range(s)
- Consider other parameters
- Propose a modification in the model
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