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Outli

O Model Error

O Introduction

• Proposed Approach

O Model-to-model Calibration - no data noise

O Chemistry model calibration

O Model calibration with noisy data

O LES with model error

O Closure
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otivation

o All models are wrong in principle

o Models of physical systems rely on

o Presumed theoretical framework
o Mathematical formulation

o Practical models of complex physical systems rely on

o Simplifying assumptions
o Numerical discretization of governing equations
o Computational software & hardware

o model error is frequently non-negligible

o Estimating model error is useful for

o model comparison & validation
o model improvement & scientific discovery
o reliable computational predictions

SNL Najm ModErr 4 / 37



Model Error Introduction Proposed no-noise Chem noise LES Closure

Challenges wit Model Calibration due to Model Error

• • Data, N = 5
- -- Truth
— Model prediction

x 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 8

al

o Conventional parameter estimation context: Ydata = f (x, A) + 6d
o Additional data results in reduced parameteric posterior uncertainty

o One gets more confident about predictions with the wrong model

o Predictive uncertainty in calibrated model has no utility for prediction
o Ignoring model error leads to irrelevant predictive errors
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o Ignoring model error leads to irrelevant predictive errors

SNL Najm ModErr 5/ 37



Model Error Introduction Proposed no-noise Chem noise LES Closure

Challenges wit Model Calibration dL e cloode Error

• • Data, N = 100

- Truth

— Model prediction
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o Conventional parameter estimation context: Ydata = f (x, À) + Ed
o Additional data results in reduced parameteric posterior uncertainty

o One gets more confident about predictions with the wrong model

o Predictive uncertainty in calibrated model has no utility for prediction
co Ignoring model error leads to irrelevant predictive errors
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Statistical modeling of model error

Error framework:

Measurements:

Model predictions:

Thus:

Ydata Ytruth + 6d

Ytruth Ymodel + 6m

Ydata = Ymodel + 6m + 6d

Error modeling - example

Model:

Data Error:

Model Error:

Ymodel = f(x,A)
Ed — N(13, o-2)

Em — GP(µ(x), C(x, x'))

Model calibration:

Estimate model parameters along with those of Em , Ed

Kennedy & O'Hagan 2001; Bayarri et al. 2002
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a enge hysical Models

o Arbitrary choice of statistical model (e.g. GP) spatial structure does
not take the physical model into acct

- Potential violation of implicit constraints in physical models

- e.g. incompressible flow: V • v = 0

o Difficulty in disambiguation of model & data error

o Calibration of model error on measured observable does not impact
quality of other model predictions
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ey ea - argeted model error embedding

o Embed model error in specific submodel phenomenology

o a modified transport or constitutive law 
(Berliner 2003)

o a modified formulation for a material property

co Pros:

o Allows placement of model error term in locations where key
modeling assumptions and approximations are made

• as a correction or high-order term
* as a possible alternate phenomenology

o explore if it can explain discrepancy on observable
o naturally preserves model structure and associated constraints

o Cons:
o complex likelihood p(y1A) for general nonlinear f (x, À, E„,)
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Consider a simple no-data-noise settin

• Calibration of a (simple) model against a complex model

• Let the complex model be presumed to represent the truth

• In this context, the data has no noise

o Discrepancy between model and data is all due to model error

Ydata Ytruth Ycomplex_model Ymodel Em

• Ern Ydata Ymodet is a deterministic quantity

o The only information as to the quality of the calibrated uncertain
model, e.g. via a posterior predictive check, is in a unique E„, for any x

SNL Najm ModErr 9 / 37



model-to-
Chern rhoise LES Closure

odel calibration

Model: y = f(x, 0(€70)

- Random variable q5 in augmented model components carries
model error

Data: D ={(xi, Ydata,i), i = 1, , N}

o Goal:

o Establish A, p(0) such that the likelihood of the data is high,
based on the posterior predictive p(ylD)

o This puts us in a density estimation framework for (1):

• The utility of additional data is to improve the specification of A,
and p(0)
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Present Context

Embed Ern in

o In other words: Em

o Model: y = f (x, À) with :

• Density estimation problem for p(A)

o : a random field A(x, w), or a random variable A(w)

- focus on the latter

• Let the random variable be parameterized by a

o For example, define as a polynomial chaos expansion

= akTk(e)
k=0

• Parameter estimation problem for a = (ao, ••• , ap)

o Bayesian setting

o Prior 7(a)
o Likelihood L(a) = p(D1a)
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11 Likelihoo

L(ce) = p(D1 (x) = lrf (Ydata, 1 • • • Ydata,N1 a)

where:
7rf(• N-variate density of the random variable (A, ..• fN)
with L = f (xi, A(; ce))

Problem: /1-f(•) is degenerate in general when N > M

• Consider a case with M = 1, N (µ, a2), and f =

o Let N = 2, hence (f1, f2) = (À, À) for any a sample

o With A = f2 = À, (f1, f2) are dependent and 7f(•lp,, 0-) is non-zero
only along the line f2 = fl

• (Ydata,1 Ydata,2 a) is non-zero only along the line 7/,data,2 Ydata, 1

potentially can ameliorate singularity with a smoothing nugget

SNL Najm ModErr 12 / 37



Model Error Introduction Proposed no-noisc Chem noise LES Closure

Marginalized Likelihood

L(a) = (D la) = fir f i(ydata,ila)

where
71-fi (., a) is the univariate density of the RV A = f (xi, A(a))

Problem: the likelihood has multiple singularities corresponding to a
values leading to vanishing marginal variances at each x,

• Gaussian example: Let L N(p,i (a), ai(a)2), then

1 1
 exp 

(Pi* Ydata,i)2 
L(a) =  (27)N /2 cji(a) 2a-i(a)2

o Multiple singularities, cri(a) = 0, i = 1, , N

co Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest

can potentially be controlled via priors on a

SNL Najm ModEn 13 / 37
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- •• • • imate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(q1D) is centered on the data

• With (a) = E[f(xi, )k(; a))]:

minimize 11 (a) — 11,clata,i

The width of the distribution p(ylD) is consistent with the spread of the
data around the nominal model prediction

o With g2 (a) = \/[ f (xi, a))]:

minimize M ai (a) — "YlPi (a) Ydata,i1 11

• 7 is a factor that specifies the desired match between cri and the
discrepancy 1tti (a) — ,data,i, 1, on average
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as an
ABC likelihood:

1 S)
LABc = K

I p()

c c )

where E controls the severity of the consistency control

Propose the Gaussian kernel density:

N
(//,,(a) Yd,2, )2 + (cri(a) 'Ylitt,(a) )2 

I, 0(a) =   exp
2E2
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pro• e - Cubic data fit by a lin - ABC

N = 11
• • Complex model, g(x)

— MAP predictive mean, Z,'„Z„(.)

MAP predictive stdev, I ZZ(x)

I5
4

2

—1.0 —0.5 0i0 0 5 1.0

N = 51
• • Complex model, g(x)

— MAP predictive mean, 4fm(x)

MAP predictive stdev, r/Z,r(x)

• • • ......

—1.0 —0.5 O*0 0.5

o MAP predictive (MP) mean centered on data

o MP standard deviation captures range of discrepancy

o Increasing number of data points has a small effect on both MP
mean and stdev

1.0
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Tesirgrem - C bic data fit by a quad

N = 11

7

6

• • Complex model, g(x)

— MAP predictive mean, Z,V,'„(x)

MAP predictive stdev, Z„trn(x)

5

4.71,' 4

7 3

2

—1.0 —0.5 0.0
x

0.5 1.0

o

N = 51
8

7

• • Complex model, g(x)

— MAP predictive mean, ZN:,,(x)

MAP predictive stdev,

4

2

—1.0 —0.5 0).,0 0.5 1.0

• Quadratic has better fit to the data

• Smaller MP stdev consistent with smaller discrepancy

SNL Noir, ModErr 17 37



Model Error Introduction Proposed no-noise Chem noise LES Closure

Test problem - Cubic data fit by a cubic - ABC

N = 11 N = 51
8 • • Complex model, g(x) 8 • • Complex model, g(x)

7 — MAP predictive mean, ZM(x) 7 — MAP predictive mean, Za,(x)

6
II= MAP predictive stdev, Z„trT'(x)

6
MAP predictive stdev, )

'5' 5

-`75' 4 'T.' 4

z

2 2

—1. 0 —0.5 0.0 0.5 1.0 —1.0 —0.5 
0X0 

0.5 1.0

e Cubic has perfect fit to the data

• Negligible MP stdev consistent with negligible discrepancy
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emistry problem - ABC

o Homogeneous ignition, methane-air
mixture

o Single-step global reaction model
calibrated against a detailed chemical
kinetic model - ODE system

o Data: ignition time; range of initial T&
equivalence ratio

o Single-step model:

CH4 + 202 CO2 + 2H20

= [CH4][02]k

k = A exp(—E / R°T)

= [in Al
[ E akT k()

k=0

•
•

0

- E

—2 o

—3 C2F,

-4 0

• 1,16 tsz

• •

1Moo 1050 • 1.0
1100

1150 1200 12,0 .00 06 <c.,o.86,

terrip.,
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Constant Pressur Igni ion Problem S ructure

e N species, M reactions, rate parameter vector

o State vector u = (X1, X N,T) - mole fractions, temperature

• ODE system

dui (t; À) 

dt
u (0)

wi(u; À), i = 1, ... N

u0

e Observable: ignition time Tign (uo, À) = t IT(t;u0,A)-T

• Challenge, for any proposed À, computing Tign (up, À) is expensive

- Large stiff ODE system for complex fuels

co Polynomial chaos formulation allows construction of a surrogate

Tign(u0, A(*, oz)) = f(u0, ; =
k=0

fk(uo; oz)W k(0

• Surrogate replaces the forward model in the Likelihood function
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Posterior Predictive on (ln A, E)

0064
.0

0 00

°;°-.oi

0.000

POr 041
20

1500

1000

500

PDF of IDO
1800

1 00

1400

1200

1 00

B 0

600

4 0

2 0

PDF of 131

4s000

— MAP pred120,4n
— Posterior prediction

5000

4000

3000

2000

1000

-0.01350.01 0.0125 .10300.10350.10400.1045 -0.0645-0.0640-0.0635 0.0005 0.0010 0.0015 0.010 0.015 0.02

aO al bO bl b2

SNL Nairn Mod Err 21 / 37



Model Error Introduction Proposed no-norse Chem noise LES Closure

Qualit of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T°, (13):

o MAP predictive mean
ignition-time is centered
on the data

o MAP predictive stdv
is consistent with the
scatter of the data

= _5

- • 1.8
1050 1.6

//wow 110 01 -5; •

ten7pe, 1200 •

'74/re, 2.

.50 

1300 0.6 
0.8

• k

1.2
82
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Consider a noisy- ata setting

• Calibration of a model yrn = f (x, À) against noisy data

• Synthetic noisy data is generated from a "truth" model + Gaussian
noise

o Discrepancy between fit model prediction and data is due to both
model error & data noise

Y — Ydata Ytruth 6 — f (x, À) + E

o Modeling strategy:

- Model as a random vector, represented with PC
- Represent the noise similarly using PC
- Estimate all PC coefficients using Bayesian inference

SNL Najm ModErr 23 / 37
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Mode rro ormulation - noi y data

y = f (x, À) +

Let c N(0, cr2). With N LW. data points we have

yi = f(xj, À) + ci. i = 1.... , N

For Hermite-Gaussian PC:

= ,d), a (00, •••
k=0

gx, À) = k=0
E 0)11fIc(11*** ±

k=0

Augmented PC germ = , Sd Sd+11 • • • , c1-EN)

E, Ed

SNL Najr, Mod Err 24 / 37
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Model Error Estimation - noisy data

Inverse problem:

• Given:

• data:
D = {(d" ,\L

• data model:

yi = fk(xi,

Yrnodel ( Em fd

i = 1, , N

o Estimate parameters (a, a)

Bayesian context:

o posterior: p(a, alD)

• options: Full Bayesian likelihood; Marginalized; ABC

• All are viable here in principle, as the data noise introduces regularity

• We illustrate the case with a Marginalized Gaussian approximation
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a ra e ncertain Model Posterior Predictive

o Calibrated data model : yi = f (xi; A(e; a)) + crd+,

o Full posterior on a, : a, a p(a, crID)

o Marginal posteriors: a — p(ap), p(o-1D)

o Posterior Predictive (PP):

D) = f p(pla, cr)p(a, aiD)dada = [Ea ,,[p(yla , o-)]

o PP Mean :

[Epp[y]= [Ea[[E[f]]
o PP Variance:

Vpp[y] = Ect[ f ]+ 1E0-[(12]+ Va[ [E[ f
model error data noise

SNL Najrn Mod Err 26 / 37
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a ra e ncertain Model Predictions

o Calibrated model : y = f (x; A(; a))

o Marginal posterior on a : a p(alD)

o Pushed forward posterior (PFP):

p(fID)= f p(fla)p(aID)da = Ec,[13(fla)1

o PFP Mean :

o PFP Variance:

EPFP [f] = [Ect [f]]

VPFP[f] = EcE[ Ve[ f] + da [ Ee[f]

model error data noise

SNL Idajrn Mod Err 27 / 37



Model Error Introduction Proposed no-noise Chem noise LES Closure

Qua• r ic- it - lassical Bayesian likelihood
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Qua• r ic- it - odErr - MargGauss
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o• e rror - Fit wit Different Models
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LES subgrid static-v -dynamic - Jet-in-crossflow

• Large Eddy Simulation (LES) subgrid model fidelity

• Dynamic: subgrid parameters variable in space/time, g,

o Static : subgrid parameters constant in space/time, fZ (À)
o Target: Calibrate a static model against a dynamic model

o Fit parameters = (CR, Prt-1, Sct-1) of static model f(A) to data
from dynamic model simulations, accounting for model error

co Static model surrogate construction using 43 = 64 simulations of f (À)

• Legendre polynomial expansion surrogate of 3-rd order

- Account for surrogate error: zero-bias Gaussian noise

o Global sensitivity analysis: impact of CR » impact of Pril and

- Selected only CR for model error embedding

VPFP[f] = Ect [ f ] + Voj [E] f ] + Ecr, [ us

model error a posterior surrogate error
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Calibrate with TKE data; Predict both TI
Pushed forward posterior

E and Pressure

0.008

0.007

0.006

0.005

0.004

H 0.003

0.002

0.001

0.000

—0.001
5

TKE - No model error

*

* * *

* * Data from high-fid model

- a due to posterior

- a due to surrogate for low-fid

—4 —3 —2
y Location

—1 0

SNL Najm Mod Err 32 [37



Aet Error Introduction Proposed no-noise Chem noise LES

Calibrate with TKE data; Predict both TK
Pushed forward posterior
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Calibrate with TKE data; Predict both TI
Pushed forward posterior

E and Pressure
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Calibrate with TKE data; Predict both TI
Pushed forward posterior

E and Pressure
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LES subgrid 2D-vs- D - Jet-in-crossflo

o Target: Calibrate a 2D LES model against a 3D model

• Fit parameters A = (CR, Pr 1,Sct i, Iz, Ir L,) of 2D model to
data from 3D model simulations, accounting for model error

• Parameters:
• CR : Smagorinsky constant
• Pr, : Turbulent Prandtl number
• Sct : Turbulent Schmidt number
• Li : Turb. intensity (inflow air) horizontal component
• : Turb. intensity (inflow air) ratio: vertical/horizontal
• L,: Length scale of most energetic eddies

• 2D model surrogate construction
• Account for surrogate error: i.i.d. zero-bias Gaussian noise

• Global sensitivity analysis
- Selected one parameter (1-0 for model error embedding

• Calibrate 2D model with observable: Mach no. M(y) at a given
x-location

• Predict both M (y) and pressure P(y), and compare to 3D model
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Global Sensitiv ty Analysis Results
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o•e • - ase study: 2D-vs-3D

o Problem Focus: P1 Jet in Crossflow problem
- static SGS constants, d/8 grid resolution

• Calibrate a 2D model using 3D benchmark simulations as data
o Quantify the model error associated with 2D treatment
co Red curves show ensemble of 2D runs over A-range
• 3D Qol selection for 2D comparison: (a) centerline, (b) spanwise average

2.6
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ti
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2.0

1.8
—4 —3 —2

y/d
0
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o•e Error - Case study: 2D-vs-3D

o Problem Focus: P1 Jet in Crossflow problem
- static SGS constants, d/8 grid resolution

• Calibrate a 2D model using 3D benchmark simulations as data
o Quantify the model error associated with 2D treatment
co Red curves show ensemble of 2D runs over A-range
• 3D Qol selection for 2D comparison: (a) centerline, (b) spanwise average
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Modcl Error Introduction Proposed no-noise Chem noise LES Closure

Model or- Mach Number spanwise-average
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• • Data from Itigh-fid model

- due to posterior

- do due to surrogate for low-fid
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• • Data from Mgh-fid model

- 2o due to low-fid model error

2, due to posterior

- 2o due to surrogate for low-fid
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Mode Error Introduction Proposed no-noise Chem noise LES Closure

o• e rro - Select Qols

o Model error contribution captures the discrepancy for averaged
quantities across a wide range of observables
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Modcl Error Introduction Proposed no-noise Chem noise LES Closure

Model or- Mach Number centerline
o Model error contribution extends as much as prior allows
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• • Data from high-fld model

- due to posterior
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• • Dote from high-fid model

- 2r, due to low-fid model error

2, due to posterior

- m due to surrogate for low-fid
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Model Error Introduction Proposed no-noise Chem noise LES Closure

• Presented a strategy for dealing with model error

fa targeted at physical models

• Density estimation framework - y = f (x; A(; a))

• Uncertain predictions with the calibrated model include uncertainty
due to both model-error and data-noise

• Results suggest disambiguation of the two components

• Demonstrations in chemical ignition and LES of jet-in-crossflow
o Including accounting for PC surrogate error

• Limitation of model-error embedding: when no variation of the
chosen parameter in the simple model could reproduce results of
the detailed model

- Expand parameter prior range(s)
- Consider other parameters
- Propose a modification in the model
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