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Uncertainty in Model Inputs

@ Probabilistic UQ requires specification of uncertain inputs
@ Require joint PDF on input space

@ PDF can be found given data

@ Typically such PDFs are not available from the literature

@ Summary information, e.g. nominals and bounds, is usually
available

@ Uncertainty in computational predictions can depend strongly on
detailed structure of the missing parametric PDF

@ Need a procedure to reconstruct a PDF consistent with available
information in the absence of the raw data

@ “Data Free’ Inference (DFI) (Berry et al., JCP 2012)
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The strong role of detailed input PDF structure

@ Simple nonlinear algebraic model (u, v) = (22 — y?, 2xy)

@ Two input PDFs, p(x, y)

@ same nominals/bounds
o different correlation structure

@ Drastically different output PDFs
o different nominals and bounds
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Intro

Correlations among uncertain Arrhenius rate parameters

are important for accurate prediction with uncertainty

@ Uncertainty quantification in combustion requires estimation of the joint
uncertainty structure on model parameters

@ most importantly - rate constants - k(1) = AT" exp(—E/RT)

@ Published kinetics literature typically includes
@ Error bars on In A4, sometimes on E — no information on correlations

@ Ignoring the correlation among (A, n, E) 5¢-05 ,
leads to over/under prediction of uncertainty \ o; :
in combustion model outputs e-05 1=\

@ Strong dependence of standard deviation in e

predicted ignition time for hydrogen on the
correlation between the uncertain (In 4, E)
of therxn:H+ 0, — OH+ O

- holding marginal oy, 4, 0 constant . . ‘ ;
‘1 05 0 0.3 1
Correlation between InA anid E

2e-05

1e-05

16 uncertainty in ignition time (sec)
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Dealing with Missing Data - MaxEnt

Maximum Entropy Principle:
Maximize uncertainty while satisfying given constraints

Bayes rule
L a0
q(Alz) £7

When data z is unavailable,

but its distribution, conditioned on constraints S, w(z|.S) is known, then,
given a prior ¢(z, \),

maximizing relative entropy &(p, ¢) leads to the joint MaxEnt posterior

p(z,Al8) = q(Al2)w(2]5)

Marginalizing over z, arrives at the marginal parameter posterior p(\|.S)
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Alg

Data Free Inference (DFI) (Berry et al,, JCP 2012)

@ Intuition: In the absence of data, the structure of the fit model,
combined with the nominals and bounds, implicitly inform the
correlation between the parameters

@ Goal: Make this information explicit in the joint PDF

@ DFI: discover a consensus joint PDF on the parameters consistent
with given information:

- Nominal parameter values

Bounds

The fit model

The data range

... potentially other/different constraints
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Alg

DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets

- MCMC chain on the data
- Each state defines a data set

@ For each data set:

- MCMC chain on the parameters
- Evaluate statistics on resulting posterior
- Accept data set if posterior is consistent with given statistics

@ Evaluate pooled posterior from all acceptable posteriors
@ Logarithmic pooling: 1K
p(A|z) = {H p(Alz; }

@ Linear pooling .
]_\7; p(Alz)
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Alg

DFI Uses two nested MCMC chains

@ An outer chain on the data, (2N + 1)-dimensional
- Generally high-dimensional
- Ndata points (z;,y;) + o
- Likelihood function captures constraints on parameter
nominals+bounds
@ An inner chain on the model parameters
- Conventional MCMC for parameter estimation
- Likelihood based on fit-model
- parameter vector (In A, In £, lno)
@ Computationally challenging
- Single-site update on outer chain
- Adaptive MCMC on inner chain
- Run multiple outer chains in parallel, and
aggregate resulting acceptable data sets
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Alg

DFI Illustration: Linear Regression - Problem setup

@ Using Bayesian inference, one can estimate parameters given data

s 2.4
\ 47, . . — 3 @
3 Y = ar; +b + ¢
-6 -3 rl 3 6 16
-4T 0.7 1 13

@ Here, however, neither data nor the joint parameter posterior is reported
@ Available published “data” is in the form of 1-D summary statistics
- e.g. mean, standard deviation
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Alg

DFI Illustration: Linear Regression - Algorithm

Basic idea:

@ Infer both data and parameters that satisfy given constraints = p(}, z|.5)
@ Average/marginalize over data space = p(}|.S)

@ Sample over data space using MCMC = 2%, i = 1,2, ...
e Estimate Bayesian posterior p(\|2z?) on parameters given data set sample

@ Accept/reject data sample based on how well the parameter posterior
matches the given summary statistics S

8

@ Marginalize over z - pooling of consistent posteriors = p(\|.S)
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Alg

Linear Regression Example

@ Inference of parameter a provided i, and o,

iid

Yyi = ar; +b+¢ e; ~ N (0,0°%)

@ The posterior parameter moments relate to the data through

" :Uzz%yi o = o?
‘ S CV X

@ In the absence of data {«,,y,},¢ =1, ..., N, assume N = 3 data
points were used in the original calibration exercise. The standard
deviation constraint results in

2

o
x2+x2—i—$2:—
1 2 3 2
Ua
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Alg

MCMC Sampling with ABC Likelihood

@ We relax the moment constraint using an ABC data likelihood
P, (%1, Ty, T5|F) ox exp [_5 (T — F)Q]
2
= exp {—5 <\/02/ (22 + 22+ z2%) — aa> }

1 e 1 e
® i
0.5 x‘% . SO0
- S o0
0.5 0.5
; =T i =2
1 1
1 0 1 0
0 : i 0 : i
% Y
0 09 09
851 0.5 0852
£t
50— 04 € n.“ﬁ'
075 07 07sfe
O 000 2000 300 4000 O 000 2000 3000 4000 % W00 2000 3000 4000
MOMC chain step MOMC chain step MOMC chain step
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App

Shock tube study - available statistics

@ Masten et al. (1990) performed shock tube experiments to measure
reaction rate of reactionH + O, — OH + O
@ Rate coefficient k determined by fitting the rapid OH growth region

T, P, H, o, logk  standard

K atm  mol% mol% deviation
1452 1.461 499 0500 2708 0.022
1589 0.606 497 0496 2747 0.022

2769 1991 0964 0200 2959 0022

Published rate statistics Unpublished species profile

295 !

&
2

—
29 1

£ 285 1

@
=

2
2

28} 1

27.5] I

‘OH mole fraction (ppm)
w
2

27 X

264 .3 0.4 0.5 0.6 0.7 0 100 200 300
1000/T Particle Time (1 s)
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App

Algorithm application to shock tube data

] 1
2 150 i : Rk
g 1 od
= | o1
= ! ! Bayesian inference
| | =N
;: 50 i I A8
) 1 1 2. (il
1 I
% R S N
Particle time (us) ) !
h ’ o
@ MCMC sample over the data space Bropauate

@ OH concentration profiles

@ Given data, infer joint parameter posterior

@ Evaluate associated statistics on k(T")

@ Accept/reject based on match between
published/generated statistics

@ Allow for uncertainty in pre-exponential of

@ Pool all consistent posteriors

SNL Najm
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App

Numerous Technical Challenges

@ High dimensional data space, many OH data points over a number
of operating conditions

@ Optimization strategies to approach consistent data manifold
@ Expensive forward model

@ TChem thermochemistry library adapted for fast sampling
http://www.sandia.gov/tchem

e UQTk UQ library for efficient and flexible PC UQ

www.sandia.gov/UQToolkit

@ Padé-Polynomial Chaos model surrogates
@ Quadrature evaluation of parameter posterior moments

@ Pre-exponential nuisance parameter

@ Formulation with consistent estimation of model evidence
Khalil & Najm, CTM, submitted

@ Serial nature of MCMC methods
@ Many independent data chains in parallel

Najm DFI
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App

Computation of Expectations

@ For each data set z;, to compute the ABC likelihood, need the expectation
Fi= [ axp(z) £

@ Can be done via MC integration with MCMC samples of A from p (\|z;)

@ However, in this case, despite the strong nonlinearity of the model, all
consistent data sets result in nearly Gaussian posterior parameter pdfs

@ Use importance sampling with a Gaussian proposal ¢
. Alz;
F, =[dx %—L;;f(/\)q(/\lzi)
@ Approximate the above integral using Gauss-Hermite quadrature

Ajilz;
F, =30 ijEA;Ljf(Aj)

j=1

@ Number of evaluations of the parameter posterior p, involving forward
model simulations, are reduced by 3-4 orders of magnitude

SNL Najm DFI
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App

Adaptive Gauss-Hermite Quadrature

@ Assuming that we have the posterior mean and covariance matrix of the
parameter vector for an initial data (via one initial MCMC simulation)
@ Compute a quadrature rule which will be used for importance sampling

8

4

=

-6 3 - 1 3 6
> 4
@ For each proposed data set, iteratively compute the posterior mean and
covariance matrix using the available quadrature rule, and recompute the
quadrature rule with the updated mean and covariance
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App

Use of hybrid Padé/Polynomial Chaos surrogates

@ Model [OH](k,t) using Pol. Chaos in parameter space; Padé in time
- exhibiting strong nonlinearity
@ Domain-decomposition in (&, k) space for minimal RMSE, given order

=L NS i@ ()
—_om,i*m
[OH](kthat) [OH] ( ) (klka) = Z mLO . - \Iji(k17k2)
=0 e D DN L ()
300 L=4M=3 300, N=2
?:; 150} \:g/; 150/
H 5
0 o
50 75 100 50 e 100
Particle Time (us) Particle Time (us)
0.1 L=4M=2 0.1 N=2
\%0.05 \’%0.05 A

50 75 100 50 75 100
Particle Tin us) Particle Time (pus)

Pade PCE
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App

Nuisance Parameters with Prescribed PDF

@ The experimentalists performed the calibration without infering nuisance
parameters (rate coefficient of OH + H2 — H20 + H).

o They fixed the level of uncertainty in these parameters while performing
the calibration.

@ Challenge: Infer the joint probability destribution of all parameters with
nuisance parameters having prescribed PDF 7 (¢)

p (3,85 = plh | m lim ([
—p(A|28)7(9)
p(z| ) ¢)p(A|¢)
pzl) P

@ Discretize ¢-space
@ Evaluatep(X, ¢;[2),j=1,...J
@ Interpolate for arbitrary ¢
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App

DFI result: pooled posterior parameter PDF

30 T :

—Mean Estimate
99% Confidence Interval
° Masten et al.
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Khalil et al. PCI 2017
Khalil & Najm CTM submitted
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App

Extensions to Multiple Models & Experiments

@ Going beyond a single reaction/experiment
@ Rxnr = p(A,|S,, M{)
@ Rxns = p(\,|S,, M)
@ The experimental models may include reactions that are not present
in model M employed for prediction
@ They may use different values of the same nuisance parameters

@ The fundamental kernel for each DFI-inverted experiment is the set of
consistent data-sets (2", z°)

@ Employ model M to pool consistent data sets from all experiments
- Presuming it is valid for the experimental conditions

@ Can have experiments at different conditions for estimating a given
parameter

@ Employ Bayesian inference with multiple data sets
- within the pooling framework
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App

Algorithm Stage | - Sampling of Consistent Data Sets

Data: z

Parameters: A

Experiment measures data z, and fits it using model M,
Constraints: Reported statistics S* = S(p(\|ze, M)

Consistent data sets:
z p(zlS*, Me)

Sample this density using MCMC on the data space, using ABC with a
kernel-density pseudo-likelihood

Pasc (]S, M) oc exp(—d||S(z; M) — 5*[3)

where
S('z; Me) = f(p()‘|za Me))

= accumulate consistent data sets (zq, ..., 25 ), being the samples in the
data MCMC chain
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App

Algorithm Stage Il - Pooling of Consistent Posteriors

Pooling operator T
p= T(ph 7pN)
where

Linear average pooling:

Logarithmic average pooling:
N 1/N
p= [lr[lpL]
Two distinct pooling/prediction scenarios
@ Employ same model M = M,

@ Employ some alternate model M, similarly valid for the experiment
physical system

Najm DFI
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App

Dealing with Multiple -independent- Experiments

Consider K independent experiments, under potentially different
conditions, informing A
K
POAl2ds e, 28 ME, o, ME) = [ p(AI2E, ME)

k=1
The task of DFI then is to generate consistent N data sets (z;, ..., zy)
where each z; is an instance of consistent data sets across all K’
experiments

n={d,. .., 25}

A

employing K reported statistics, associated ABC likelihoods, & data chains

The pooling operation employs consistent posteriors (py, ..., py):

K
b = Hp(A|Zf>M>
k=1
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App

Application: H,-O, explosion limits

102 @ H,0, decomposition
controls the 3rd explosion
limit in the H,-0O, system

e forward model: homogenous
ignition delay

explosive

non-explosive

—
o
=]

@ binary classifier establishes
the limit curve within 0.1 K.

Pressure [atm]

explosive

—_
o
N

650 700 750 800 850
Temperature [K]

Stoichiometric H,-O, explosion limit curve
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App

H,0O, decomposition - target experiment

SR h“\ Experiment
o H202+ M — 20H+M siouil \"‘W\ ~. — —best-fit(kq)
@ Shock tube study, laser absorption by £ ‘W TR T
8 0.003 \ P
H,0, (1] % Moy =
@ Rate constant determined by solving ) - oo ey i T
ODE system with a chemical £ 0001 S "”“‘““«k..ww
mechanism [2] 0000} et
@ Data are concentration vs. time decay - B =S
. ime, ps
profiles of H,0, .
@ Reported fit: Platml TIKI  HyOpiniat [%]
k(T)=1016‘29i0‘12€Xp(—21993i301/T) 115 10125 042

1.08 1186.8 0.45
2.33 99754 047
2.35 1166.6 0.50

@ Also reported nominals & error bars on
k(T) for a number of temperatures

@ Use these!

Table: Experimental conditions

[1] Sajid et al. Int. J. Chem. Kinet. (2014)
[2] Hong et al. Combustion and Flame 158 (2011)
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App

Push-Forward Pooled Posterior on k(7") for H,O, + M Rxn

Low pressure data

22
@ Predictive distribution of
the uncertain In £(T') -
overlaps reported
nominal experimental
measurements, and error 181
bars i
D
o
16 -
14+
12+
8 9 10 11
1T K" x10™

- Shading indicates one/two-o interpretation -
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App

Pooled Posterior densnty p(ln A, E) of H,O, + M Rxn

Low pressure data

k(T) error bars = 1o k(T) error bars = 20

@ MAP estimate close to reported nominal parameter values

@ Posterior uncertainty much larger than that reported in quoted
measurement of (In A, E)

@ Found out subsequently that those reported (In A, E) uncertainties
were based on variability of the nominal k(T') values
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App

Pooled Posterior Density of k£(7") at T = 933.3 K

Low Pressure

x107®
25]

1.5}

pdf

0.5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 5 2
rate constant [cm®/mol-s] x10°
- Shading indicates one/two-¢ interpretation -
- Dashed lines are exptl error bars -
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App

Pooled Posterior of Rate - Dependence on Pressure

Low-pressure data

@ The rate of this reaction 10°
in fact involves a
dependenceonpressure [T T T T T T T — ]
@ Augment existing low-P
data with another % 104
experiment at higher E
pressure e
5
8
o
10°
10° 10° 102 10° 10*

p [atm]
- Shading indicates one/two-¢ interpretation -
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App

Uncertainty in predicted explosion limit - Multiple data

10%— 10?
1 1
E 10 £ 10
5 s
e ®
5 5
2
o 10 * 100
107 107! -
720 740 760 780 800 820 840 860 720 740 760 780 800 820 840 860
Temperature [K] Temperature [K]
Low P Low and intermediate P

- Shading indicates one/two-¢ interpretation -

@ Minimal impact of additional data in this case
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App

Uncertainty in predicted explosion limit

@ Presuming iid Gaussian 10?
inputs p(In A), p(E)
@ Ignoring correlations
among uncertain
parameters can have a E 10"}
drastic impact on 2
uncertainty in o
P 3
predictions 2
[0]
o 100 L
10—1 L I L L I

720 740 760 780 800 820 840 860
Temperature [K]

- Shading indicates one/two-¢ interpretation -
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Closure

@ Need for parameter estimation in chemical systems given summary
statistics

@ DFI algorithm, based on MaxEnt and ABC methods
@ Computationally challenging
@ Extensions to multiple experiments and data sets

@ On path towards full characterization of the parameters of H,
oxidation based on experiments in the literature
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