
Intro Alg App Cls

Uncertainty Quantification with Missing
Data

Habib N. Najm

Sandia National Laboratories
Livermore, CA, USA
hnnajmesandia.gov

Seminar

Sapienza University of Rome
Rome, Italy
Oct 31, 2018

SAND2018-11882C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Intro Alg App Cls

Acknowledgeme

B.J. Debusschere, M. Reagan, R.D. Berry, K. Sargsyan, C. Safta,
K. Chowdhary, M. Khalil, X. Huan, M. Eldred, G. Geraci, T. Casey, J. Oefelein,
G. Lacaze, Z. Vane, L. Hakim

- Sandia National Laboratories, CA

R.G. Ghanem -
O.M. Knio
O.P. Le Maitre
Y.M. Marzouk -

U. South. California, Los Angeles, CA
- KAUST, Thuwal, Saudi Arabia & Duke Univ., Durham, NC
- CNRS, Paris, France
Mass. Inst. of Tech., Cambridge, MA

Ths work was supported by

o DOE Office of Basic Energy Sciences, Div. of Chem. Sci., Geosci., & Biosci.

o DOE Office of Advanced Scientific Computing Research (ASCR)

o DOE ASCR Scientific Discovery through Advanced Computing (SciDAC) program

• DOE ASCR Applied Mathematics program

• DARPA

o Sandia National Laboratories, LDRD

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia. LLC, a
wholly owned subsidiary of Honeywell Internatonal Inc , for the U S. Department of Energy's National Nuclear Security Administration under
contract DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the
United States Government.

SNL Najm DFI 2 / 35



Outline
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Uncertainty in Model Inputs

o Probabilistic UQ requires specification of uncertain inputs

o Require joint PDF on input space

o PDF can be found given data

o Typically such PDFs are not available from the literature

o Summary information, e.g. nominals and bounds, is usually
available

o Uncertainty in computational predictions can depend strongly on
detailed structure of the missing parametric PDF

o Need a procedure to reconstruct a PDF consistent with available
information in the absence of the raw data

o "Data Free" Inference (DFI) (Berry et al., JCP 2012)

SNL Najrn DFI 4 / 35



Intro Alg App Cls

The strong role of detailed input PDF st ucture
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o Simple nonlinear algebraic model (u, v) = (x2 — y2, 2xy)

o Two input PDFS, p(x, y)

o same nominals/bounds
o different correlation structure

o Drastically different output PDFs

o different nominals and bounds
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Correlations among uncertain Arrheniu
are important for accurate prediction wi

rate parameters
h uncertainty

• Uncertainty quantification in combustion requires estimation of the joint
uncertainty structure on model parameters

• most importantly - rate constants - k(T) = AT" exp(—EIRT)

o Published kinetics literature typically includes

• Error bars on ln A, sometimes on E - no information on correlations

o Ignoring the correlation among (A, n, E)
leads to over/under prediction of uncertainty
in combustion model outputs

• Strong dependence of standard deviation in
predicted ignition time for hydrogen on the
correlation between the uncertain (ln A, E)
of the rxn: H + 02 — OH + 0

- holding marginal orb A (TE constant
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Dealing with Miss ng Data - MaxEnt

Maximum Entropy Principle:
Maximize uncertainty while satisfying given constraints

Bayes rule

q(A z) = q(z1A)q(A) 
q(z)

When data z is unavailable,
but its distribution, conditioned on constraints S, w(z1S) is known, then,
given a prior q(z, À),
maximizing relative entropy e (p, q) leads to the joint MaxEnt posterior

p(z, AIS) = q(A z)w(z1S)

Marginalizing over z, arrives at the marginal parameter posterior p (À S)
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Data Free Inferen, (Berry et at, JCP 2012)

o Intuition: In the absence of data, the structure of the fit model,
combined with the nominals and bounds, implicitly inform the
correlation between the parameters

o Goal: Make this information explicit in the joint PDF

o DFI: discover a consensus joint PDF on the parameters consistent
with given information:

- Nominal parameter values
- Bounds
- The fit model
- The data range
- ... potentially other/different constraints
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DFI Algorit

Basic idea:

o Explore the space of hypothetical data sets

- MCMC chain on the data
- Each state defines a data set

o For each data set:

- MCMC chain on the parameters
- Evaluate statistics on resulting posterior
- Accept data set if posterior is consistent with given statistics

o Evaluate pooled posterior from all acceptable posteriors

o Logarithmic pooling: i/K

p(Alz) = [11p(A zi)
z=i

o Linear pooling 1 K
p(Alz) = 

N
— Ep(Alzi)
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DFI Uses t o nested MC

• An outer chain on the data, (2N + 1)-dimensional

- Generally high-dimensional
- Ndata points (x y,) + a
- Likelihood function captures constraints on parameter

nominals+bounds

• An inner chain on the model parameters

- Conventional MCMC for parameter estimation
- Likelihood based on fit-model
- parameter vector (ln A, ln E, ln a)

• Computationally challenging

- Single-site update on outer chain
- Adaptive MCMC on inner chain
- Run multiple outer chains in parallel, and

aggregate resulting acceptable data sets
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o Using Bayesian inference, one can estimate parameters given data

<ra,

4

—6

—4

6
yi = axi b + Ei

2.4

1.6

0.7 1 1.3

o Here, however, neither data nor the joint parameter posterior is reported
o Available published "data" is in the form of 1-D summary statistics

- e.g. mean, standard deviation
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DFI Illustration: Linear Regression - Algorithm

o Infer both data and parameters that satisfy given constraints p (A, z1S)

a Average/marginalize over data space p (A S)

o Sample over data space using MCMC zi, i = 1, 2, ...

o Estimate Bayesian posterior p(Aizi) on parameters given data set sample

o Accept/reject data sample based on how well the parameter posterior
matches the given summary statistics S

yi = axi b + Ei

2.4

2

1.6

REJECT

atoa

0.7 1 13
a

o Marginalize over 2 - pooling of consistent posteriors p(A1S)
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Linear Regr
Alg

ssion Example

• Inference of parameter a provided ita and ga

= axi + b + Ei Ei (0, a2)

• The posterior parameter moments relate to the data through

2 E xiyi 
ita = a

E
aa

0-2

E

• In the absence of data {xi, i = 1, , N, assume N = 3 data
points were used in the original calibration exercise. The standard
deviation constraint results in

x x 22 + = 0
-2
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pling with AB

c• We relax the moment constraint using an ABC data likelihood

pabc(xl, x,1F) cc exp [—o(F, F)2]

= exp [—(5 (1/ 0-2/ (4 + 4 + 4) — 0-a

= 1000
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MCMC chain step
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MCMC cham step
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)2]
6 = 10

ION 2000

MCMC chain sten
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Shock tube study - availa le statistics

o Masten et al. (1990) performed shock tube experiments to measure
reaction rate of reaction H + 02 — OH +

o Rate coefficient k determined by fitting the rapid OH growth region

T,
l<

P,
atm

H2
mol %

02

mol %
logk standard

deviation
1452 1.461 4.99 0.500 27.08 0.022
1589 0.606 4.97 0.496 27.47 0.022

2769 1.991 0.964 0.200 29.59 0.022

Published rate statistics
3  

29.

2

2

27

2

26 g 3
0.4 0.5 0.6 0.7

1000/T

Unpublished species profile

100 200 300

Particle Time (1 s)
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Algorithm applica
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ion to shock tube dat
070
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Particle time (ps)

Bayesian inference

• MCMC sample over the data space

• OH concentration profiles

• Given data, infer joint parameter posterior
30

• Evaluate associated statistics on k(T)

o Accept/reject based on match between
published/generated statistics

29

• Allow for uncertainty in pre-exponential of 28

OH H2 H20 H+
27

o Pool all consistent posteriors

0933 3 .9 0.0233 1.094

Propagate
uncertainty

REJECT

4 5 6

Io4rr (K)
7
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Numerous Tec nical Challenges

o High dimensional data space, many OH data points over a number
of operating conditions

• Optimization strategies to approach consistent data manifold

o Expensive forward model

• TChem thermochemistry library adapted for fast sampling
http://www.sandia.gov/tchem

• UaTk UQ library for efficient and flexible PC UO
www.sandia.gov/UoToolkit

• Padé-Polynomial Chaos model surrogates
• Quadrature evaluation of parameter posterior moments

• Pre-exponential nuisance parameter

• Formulation with consistent estimation of model evidence
& Najm, CTM, submitted

• Serial nature of MCMC methods

se Many independent data chains in parallel
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Computati n of Expectations

• For each data set zi, to compute the ABC likelihood, need the expectation

= f dAp Oki) f (A)

o Can be done via MC integration with MCMC samples of A from p

• However, in this case, despite the strong nonlinearity of the model, all
consistent data sets result in nearly Gaussian posterior parameter pdfs

• Use importance sampling with a Gaussian proposal q

F = f clA  f (A) q z,)

• Approximate the above integral using Gauss-Hermite quadrature

F, = EiNg, w,Pq((,A.,3 zz:j f (A,)

o Number of evaluations of the parameter posterior p, involving forward
model simulations, are reduced by 3-4 orders of magnitude
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Adaptive Gauss-
App Cls

ermite Quad rature

o Assuming that we have the posterior mean and covariance matrix of the
parameter vector for an initial data (via one initial MCMC simulation)

o Compute a quadrature rule which will be used for importance sampling

8

4

—6 3 6

yi = azi b ei

2.4

2

1.6

0 7

• For each proposed data set, iteratively compute the posterior mean and
covariance matrix using the available quadrature rule, and recompute the
quadrature rule with the updated mean and covariance

<ra

—4

yi = azi b ei

2.4

-= 2

1.6

1.3

0 7 1.3
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Use of hybrid Pad
Intro Alg App Cis

/Polynomial Chaos surrogates

Model [0 H](k, t) using Pol. Chaos in parameter space; Padé in time
- exhibiting strong nonlinearity

• Domain-decomposition in (k1, k2) space for minimal RMSE, given order

N EM m m (t)

[OH] (k1, k2, t) = E [OH] . (t)Ti (101, k2) = k2)z_,i=0 i=0 1=0 ,
t)
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Nuisance Parame
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ers with Prescribed PDF

• The experimentalists performed the calibration without infering nuisance
parameters (rate coefficient of OH + H2 H20 + H).

co They fixed the level of uncertainty in these parameters while performing
the calibration.

• Challenge: Infer the joint probability destribution of all parameters with
nuisance parameters having prescribed PDF 7 (0)

p (A, cb I = p I z, 01)(01 z)
= p(A I z,0) 7(0)

p(z I A, (b) P 010),,(0)
p(zI

o Discretize 0-space
• Evaluate p(A, 01 1 z), j= 1, J
• Interpolate for arbitrary 0
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DFI result: poo
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ed posterior parame er PDF

30

29
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27

—Mean Estimate
99% Confidence Interval

0 Masten et al.

4 5 6

10
4
/T (K)

Khalil et al. PCI 2017
Khalil & Najm CTM submitted
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20.85., 31 I -9 64 -9.533 -9.435

InA Ina

7

SNL Najrn DFI 22 / 35



Extensions nents
o Going beyond a single reaction/experiment

• Rxn r p(A, Sr, Il4r)
• Rxn s p(A81S8, M:)
• The experimental models may include reactions that are not present

in model M employed for prediction
• They may use different values of the same nuisance parameters

• The fundamental kernel for each DFI-inverted experiment is the set of
consistent data-sets (zr, zs)

o Employ model Alto pool consistent data sets from all experiments

- Presuming it is valid for the experimental conditions

• Can have experiments at different conditions for estimating a given
parameter

• Employ Bayesian inference with multiple data sets

- within the pooling framework
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Algorithm Stage I - ampling of Consistent Data Sets

Data: z
Parameters: A
Experiment measures data ze and fits it using model Me
Constraints: Reported statistics S* = S(p(Alze, Me))

Consistent data sets:
z ̂  p(z1S* , Me)

Sample this density using MCMC on the data space, using ABC with a
kernel-density pseudo-likelihood

PABC (Z

where

S, Me) OC exP(-811S(z; Me) — S*112)

S(z; Me) := f (p(Alz, Me))

accumulate consistent data sets (z1, , zN), being the samples in the
data MCMC chain
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Algorithm Stage I
Intro Alg App Cts

- Pooling of Consiste t Posteriors

Pooling operator T

where

Linear average pooling:

= T(131, PN)

pi = 1V1)

1
p= Epi

Logarithmic average pooling:

p [ N

i=1

Two distinct pooling/prediction scenarios

o Employ same model M = Me

o Employ some alternate model M, similarly valid for the experiment
physical system
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Dealing with Mult
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ple -independent- Experiments

Consider K independent experiments, under potentially different
conditions, informing A

P(NZel ••• zeK, e e ) = Hp(A1Z:,4)
k=i

The task of DFI then is to generate consistent N data sets (z„, , zN)
where each z, is an instance of consistent data sets across all K
experiments

z, = , zr}

employing K reported statistics, associated ABC likelihoods, & data chains

The pooling operation employs consistent posteriors (pi, ... , pN):

= p(Alz,k ,M)
k=1
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Application
Intro Alg App Cls

H2-02 explosion limits

1 0

non-explosive

explosive

explosive

650 700 750 800 850

Temperature [K]

Stoichiometric H2-02 explosion limit curve

co H202 decomposition
controls the 3rd explosion
limit in the H2-02 system

co forward model: homogenous
ignition delay

o binary classifier establishes
the limit curve within 0.1 K.
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H202 dec mposition - target experiment

a H202+ M — 2 0H+ M

a Shock tube study, laser absorption by
H202 [1]

a Rate constant determined by solving
ODE system with a chemical
mechanism [2]

a Data are concentration vs. time decay
profiles of H202

a Reported fit:
km=1016.290.12_ 21993±301/T)

o Also reported nominals & error bars on
k(T) for a number of temperatures

o Use these!

H
2
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2 
M
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l
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ct
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0.005

0.004

0.003

0.002

0.001

0.000

 Experirnent
— —best-001)

—

— —2 ki

•••

0 50 100 150 200 250

Tirne, ps

P [atm] T [K] H2O2initial [%]

1.15 1012.5 0.42
1.08 1186.8 0.45
2 33 997.54 0.47
2.35 1166.6 0.50

Table: Experimental conditions

[1] Sajid et al. Int. J. Chem. Kinet. (2014)
[2] Hong et al. Combustion and Flame 158 (2011)
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Push-Forward Po
Low ressure data

led Posterior on k(T)for HzOz + M Rxn

o Predictive distribution of
the uncertain in k(T)
overlaps reported
nominal experimental
measurements, and error
bars

22

20

18

— 16
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12

8 9 10

1/T [K-1]

- Shading indicates one/two-cy interpretation -

11

x lo-4
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Pooled Posterior density p(ln A, E) of

40

39

38

15,37
2

36

35

34

(T) error bars = la

40

39

38

IS 37

36

35

34

k(T) error bars =

1 8 1.9 2 2.1 2.2 2.3 2.4 1 8 1.9 2 2.1 2.2 2.3 2.4
Ea [K] x104 Ea [K] x104

o MAP estimate close to reported nominal parameter values

o Posterior uncertainty much larger than that reported in quoted
measurement of (ln A, E)

• Found out subsequently that those reported (ln A, E) uncertainties
were based on variability of the nominal k(T) values
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Pooled Posterior I
Low Pressure

App Cls

ensity of k(T) at T 933.3 K

o_

2.5

1.5

0.5

x106

1.5 2

rate constant [cm3/mol-s] x106

- Shading indicates one/two-a interpretation -

- Dashed lines are exptl error bars -
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Pooled Posterior
Low- ressure data

f Rate - Dependence on Pressure

a The rate of this reaction
in fact involves a
dependence on pressure

a Augment existing low-P
data with another o 

7
104

experiment at higher
pressure

0

o

io5

io3

10° 101 102
p [atm]

- Shading indicates one/two-o- interpretation -

o3 104
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Uncertainty in predicted explosion limit- Multiple data

02

0- 100

102

10

10 1 10
720 740 760 780 800 820 840 860 720 740 760 780 800 820 840 860

Temperature [K] Temperature [K]

Low and intermediate PLow P
- Shading indicates one/two-a interpretation -

• Minimal impact of additional data in this case
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Uncertainty in pr;
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dicted explosion limit

• Presuming iid Gaussian
inputs p(ln A), p(E)

• Ignoring correlations
among uncertain
parameters can have a
drastic impact on
uncertainty in
predictions
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Temperature [K]

- Shading indicates one/two-a interpretation -
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co Need for parameter estimation in chemical systems given summary
statistics

o DFI algorithm, based on MaxEnt and ABC methods

o Computationally challenging

o Extensions to multiple experiments and data sets

o On path towards full characterization of the parameters of H2
oxidation based on experiments in the literature
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