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Objectives

1. Develop an upland model that can simulate

streamflow under climate change and link it to a

valley model focused on acequia dynamics

2. Assess the response of acequias to water scarcity

from physical and social drivers

Study Area

Valdez acequia is the most upstream community

on the Rio Hondo (Fig 1)

* This region is allowed to divert up to 22% of

headwater streamflow

* Primary crops grown in the area are alfalfa, hay,

orchards, and vegetables
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Fig 1. Location of upland subwatershed and Valdez acequia in northern NM

downstream pressures simulated by changes in
headgate closures
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Fig 2. Influence diagram summarizing models’ structure and
linkages. The shapes indicate whether a variable is an exogenous
input (parallelogram and diamond) or process within a model
(oval). The colors of the shapes indicate the variables modified for
the different scenarios: upland pressures (filled in yellow) and the
additional downstream pressures (filled in gray)

Fig 3. Simulated monthly streamflow under climate change using the upland model. Relative to
the historical period, peak flow occurs earlier in the year due to higher spring runoff and lower
summer runoff under the two representative concentration pathways (RCPs)
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Fig 4. Comparison of (a) agricultural
profitability per parciante parcel, (b)
parciante parcel size, and (c) community
size under the different climate pathways
and head gate closure scenarios. Points
indicate the normalized difference in
mean from the historical, calibrated
values and the bars represent +/- 1
standard deviation, normalized relative
e coeuree 1O the standard deviation of the historical
25% values. Relative to the 50% and 75%
o gate closure scenarios, agricultural
profitability and mean parcel size are
larger while community size is smaller in
the 25% gate closure scenario:
vegetable production drove increased
profitability and increased time in
agriculture, which reduced pressures to
leave the acequia, causing land parcels
to increase and reduced opportunities for
newcomers, causing reductions in

community size

Fig 5. Summary of socioeconomic dynamics
surrounding acequia mutualism in the valley
model. The “+” symbol on each causal link
iIndicates that changes (either an increase or
decrease) in the tail variable creates a change
In the same direction for the variable on the
arrow. Generally, feedbacks associated with
members’ participation in acequia activities
enabled the community to continue to stay
together because their livelihoods are driven
more by mutualism than by profit, which has
important implications for community
resilience, (i.e., that members could stay
together long enough to develop new
adaptation strategies)

Additional details about the data, models, and results are available in the associated 2018 WRR
publication: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017WR021223
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