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Motivation

* The TMIST-2 irradiation experiment at the Advanced Test Reactor at
Idaho National Laboratory measured a tritium permeation enhancement
in 316 stainless steel by a factor of ~2 to 5 relative to ex-reactor results.

* The Fe-Ni-Cr-H potential we recently developed enables molecular
dynamics (MD) studies of hydrogen 1sotope diffusion in stainless steels
(no other potentials enable this).

Important Notion:

Statistics of diffusion cannot be captured by DFT calculations.
(MD) calculations of Arrhenius are required to understand this.



Fe-Ni-Cr-H potential enables MD simulations
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Bonny et al’s Fe-Ni-Cr potential (MSMSE 2013, 21, 085004) gives:




Fe-Ni1-Cr-H potential gives the correct
trends on H-M and H-H energies

Fe Ni Cr in Fe matrix

pot DFT pot DFT pot DFT

QH.0 211 216 227 2.23 1.98 | 1.95

Eam-Enre | 0.00] 0.00] -0.12 ] -0.14] -0.29| -0.29
IH-H 242 243 226 2.55 2.48
AEn-n | -0.015]-0.011 | -0.074 | -0.042 | -0.208

Q 061 062 040] 040 0.67 | 0.67




relative energy (eV)

Fe-Ni-Cr-H potential gives the correct
H properties

Diffusion barrier Q,,; under local M environment.
Local Cr assumes fcc Fe matrix, otherwise local
and matrix atoms are the same
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Configuration for calculation Q,: Small blue: Fe;
big blue: Cr; red: H3




Planned work

* Perform MD simulations of hydrogen 1sotope diffusion
in 316L stainless steels without defects and with
manually created radiation defects (vacancies,
interstitials, Frenkel pairs)

* Perform MD simulations of high energy impacts of 316
stainless steels to explore natural defects formed during
irradiation

* Perform MD simulations of hydrogen 1sotope diffusion
in 316L stainless steel samples that have gone through
high energy impact simulations to explore effects of
natural 1irradiated defects
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Diffusion analysis

The coordinates o(t) of N hydrogen atoms (1=1, 2, ..., N), are recorded on a time
interval of At, 1.e., at times of t =JAt, j =1, 2, ..., m (m = typ/At), where At can be any
multiple of the time step size dt used in the MD simulations.

m+1-k measurements can be made for the displacement of a hydrogen atom 1 over a
kAt period: Aoy j(kAt) = oy(JAt-At+kAY) - ay(jAt-At) where j =1, 2, ..., m+1-k.

This allows us to calculate mean square displacement (MSD):
MSD convergence figure
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Diffusion simulation conditions

*316L composition (Fe0.71N10.12Cr0.17)

* Hydrogen concentration of Cy = 2%, defect concentration
=0.05%

«22x25%x21 A3 system size
* 380 ns simulation time (after the first 1 ns equilibration)
* 15 temperatures (600 K, 650 K, 700 K, ..., 1300 K)
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Arrhenius plots obtained previously for Ni
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*L. Katz, M. Guinan, and R. J. Borg, Phys. Rev. B, 4, 330 (1971) t=440 ns
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High energy impac
simulations

* Initial problem of not
forming cascade has
been fixed

* Simulations of impacts
at different energies are
underway

* Results of these
simulations will be used
to further perform H
diffusion simulations

316L (Fe0.71N10.12Cr0.17, 2%H,
230%x230%230 A3 size), 10 ps after
impact at 0.3 MeV



Current status and future work

1. Simulations with pure N1 (literature
potential) and 316L (our potential) revealed
opposite effects of defects on H diffusion

2. To eliminate alloy effects, diffusion
simulations with pure fcc Fe and pure fcc
N1 using our potential are underway

3. Diffusion simulations with naturally
irradiated samples will be conducted



