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Requirements of an Integrated Severe Accident
Code
• Fully Integrated, multi-physics engineering-

level code
• Thermal-hydraulic response in the reactor

coolant system, reactor cavity, containment,
and confinement buildings;

• Core heat-up, degradation, and relocation;

• Core-concrete attack;

• Hydrogen production, transport, and
combustion;

• Fission product release and transport
behavior

• Diverse Application
• Multiple 'CORE' designs

• User constructs models from basic constructs

• Adaptability to new or non-traditional reactor
designs

ATR, Naval Reactors, VVER

• Validated physical models
• ISPs, benchmarks, experiments, accidents

• Uncertainty Analysis & Dynamic PRA
• Relatively fast-running

• Reliable code

• Access to modeling parameters <
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• User Convenience ra.
• Windows/Linux versions 'a .2
•

•

Utilities for constructing input decks (GUI)

Capabilities for post-processing, visualization
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• Extensive documentation M CI

Operation of SRV
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Degradation Model Uncertainty

■ Where validation data
exists, codes give
reasonable agreement

■ During core
degradation, codes
diverge

■ Distinct core
degradation models

ASTEC — Melting only

MELCOR — minimum

porosity

MAAP — molten-pool

crust
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MELCOR Core Modeling
Core Nodalization

Core Geometry
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Conceptual Rings

Modeled 'rings'
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• Core and lower
plenum divided
axially and radially
into cells
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MELCOR Core Modeling

Visualization of Core Components
,

• BWR
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• PWR

Average Fuel
Rod (FU &CL)

Particulate in
Channel (PD)

Particulate in
Bypass (PB)

Control Blade (NS)

Canister-B (CB)

4-- Cell Boundary

Control Rods (NS)

Fuel Assemblies (FU + CL)

Core Baffle or Shroud (SH)

Core Formers (FIA)

Core Support Barrel (HS)

Vessel Cylinder (HS)

00/Particulate in Channel (PD)

Particulate in Bypass (PB)
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MELCOR Core Modeling

Supporting Structures

■ Supporting structure can support itself, other
components (including particulate debris)

■ There are five named options for basic model
■ `PLATE', ̀PLATEG, ̀PLATE13', 'COLUMN', and ̀ ENDCOL'
■ Each has different properties, ̀ PLATEG is default

■ Two classes of failure models
■ Parametric, as in versions before 1.8.5 (default)

Failure on maximum temperature (default, at 1273.15 K)

Failure defined by value of a LOGICAL control function

■ Stress-based structural models

Load and stress calculations depend on basic model

— Engineering handbook equations, based on simple parameters

Failure by creep rupture, yielding, or buckling (COLUMN)
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Particulate Debris Characteristics

N Porosity of particulate debris
• 0.4 (defined by elevation)

N Particulate debris equivalent diameter
• Core 0.01 m

• Lower Plenum 0.002 m

Tuned to get appropriate end-of-pour debris temperature.

2mm based on FARO fragmented debris size.

N Particulate debris excluded from spaces

.
0

/7 ///////7/77/7///// A

/

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

• Between fuel rods and the bladed bypass in BWR

Melt is allowed to relocate into interstitials and candle

• In unbladed portion of bypass (BWR) when canister present

• In bladed portion of bypass (BWR) when blade is present
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MELCOR Core Modeling

Core Components
Each core cell may contain one or more of a set of permitted core components (or none)

1 FU intact fuel component

2 CL intact cladding component

3 CN intact canister component (portion not adjacent to control blade

4 CB intact canister component (portion adjacent to control blade)

4 SH intact PWR core shroud (baffle)

5 FM intact PWR core formers

6 PD particulate debris component (portion in the channel for a BWR)

7 SS supporting structure component

8 NS Non-supporting structure component

9 PB particulate debris component in the bypass (for a BWR)

10 MP1 Oxide or mixed molten pool component (portion in channel for a BWR)

11 MB1 Oxide or mixed molten pool component in bypass (for a BWR)

12 MP2 Metallic molten pool component (portion in channel (for a BWR)

13 MB2 Metallic molten pool component in bypass (for a BWR)

- - The lower head is a unique structure associated with the COR package

Components in green are specific to BWRs
Components in red are specific to PWRs
Components in are created when intact components fail.
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Location of COR Components

Reactor
Type

PWR

BWR

SFP-PWR

SFP-BWR

PMR

PBR
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Volume: CH
Surface: CH
Single-sided

Volume: CH
Surface: CH/BY
2-sided

Volume BY
Surface BY
Single-sided

FU, CL, PD, SS,
NS, MP1, MP2

SH

FU, CL, PD, MP1, CN, CB
MP2

FU, CL, PD,SS,
NS, MP1, MP2

FU, CL, PD, MP1, CN, CB,
MP2

FU, CL, PD, SS,
NS, MP1, MP2

RF

FU, CL, PD, SS, RF
NS, MP1, MP2

FM, PB, MB1, MB2

SS, NS„ PB, MB1,
MB2

RK,

SS, RK, PB, MB1,
MB2

PB, MB1, MB2,

PB, MB1, MB2



Conglomerate On Components

■ Each component has an intact mass field
■ User typically defines intact masses only (before onset of core

degradation)
■ User also defines surface areas of intact components
■ Intact material has never melted (though it may have resulted from

failure of intact component, i.e., intact particulate debris)

■ Each component has a conglomerate mass field
■ Material has melted but may have refrozen on surfaces

Can be molten in molten pool component

■ Can fill interstitials in particulate debris
■ Different Composition

Can have materials that are not available in the intact field

■ Intact and conglomerate mass in thermal equilibrium (same
temperature)

■ Affects surface area exposed to fluid convection, oxidation, radiation,
and further refreezing

■ Affects thermal conductivity of particulate debris

Sandia
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Evolving Surface Areas During Core

Degradation

• Particulate debris surface areas
6 V.

A - 
D.

• Surface area changes from freezing
conglomerate
• Assumption of rivulets freezing in rod lattice

During the first stage, the surface area of the
conglomerate debris grows as the square root of
its volume up to some critical volume.

During the third stage, beyond some critical
volume, the surface area of the conglomerate
debris decreases as the square root of the empty
volume

During the second stage, the surface area of the
conglomerate debris is interpolated linearly with
volume between Acl and Ac2.

• Applied to particulate debris geometry
Alternate model developed but not validated or
implemented by default

(a)

(t)

(d)

(e)
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MELCOR Core Modeling

Core Flow Blockage Model Input
BLK OPTION ICORCR1 ICORCR2 ICORCA1 ICORCA2 FLMPTY

OPTION - Flow geometry for this path

Flow geometry to be modeled in this path.

'AXIAL', 'AXIAL-C', 'AXIAL-B', 'RADIAL', 'RADIAL-C',
'RADIAL-IT,  'CHANNEL-BOX', OR 'CORE-SHROUD' 

(type = character, default = none, units = dimensionless)

CHANNEL-BOX

Connection between channel and bypass of a BWR that
opens when the channel box fails.

Note: The FL BLK record table is analogous to
the FLnnBK record type.

CORE

CORE
PLATE

LOWER
PLENUM

Axial
Levels

UPPER PLENUM
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Oxidation Models - General

■ Objects that can oxidize
■ COR components

— Metals include Zr, SS, and B4C

■ Debris in CAV package

■ Oxidation behavior for COR components
■ Oxidation of Zircaloy and steel by water vapor and/or 02

■ Oxidation of boron carbide (B4C) in BWRs

■ Heat generation by oxidation

■ Release of hydrogen (and other gases) to CVH package

■ Available Oxidation Models
■ Cathcart-Pawel/Urbanic Heidrick

■ Leistikov-Schanz/Prater-Courtright

■ Leistikov

■ Urbanic-Heidrick

■ Sokolov

Sandia
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MELCOR Effective Melt Temperature
UO2-INT/ZR02-lNT
• Melt temperature for UO2 & Zr02 is

the same for intact materials as it is
for conglomerate.

• Does not depend on composition
• With this model it was impossible to

enforce lower effective melting
temperature through default in
source code
• User was required to modify UO2-INT

and ZR02-INT melt temperatures
through input

Eutectic Model
• Melt temperature of intact material

uses elemental melting points while
conglomerate uses eutectic
temperature
• Liquefaction of solids in contact from

calculated rates

• Melt temperature dependent on
composition
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U/Zr/O Ternary Phase Diagrams

3100 K

UO2-Zr02
liquefaction at

2800K

molten Zr
Breakout
2400K

UO2/ZrO2 Quasi Binary Equilibrium Diagram

liquid
  2800 K

2 phase

solid

100 K

2900 K

o

Zr/Zr02 Quasi Binary Equilibrium Phase Diagram

2900 K

Zr(0)/UO2 Equilibrium Phase Diagram
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Zr02

Z r02
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solid
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solid
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Eutectic Mixtures
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■ Eutectic mixture composition
■ Conglomerate debris materials associated with any component are treated

as part of a coherent mixture.
Some materials are treated as mutually miscible
Others are considered mutually immiscible

— treated as they are when the model is inactive (i.e. they melt and relocate
independently of one another).

■ As currently implemented, when the model is active all the materials are part
of the miscible mixture.

■ Formation of eutectic mixtures
■ Normal liquid formed when an intact solid reaches its melting point
■ Eutectic reaction product formed when two intact solids in mechanical

contact within a core component reach their eutectic temperature
■ Dissolution of an intact solid by an existing liquid mixture in the same core

cell
Example: the dissolution of UO2 fuel by the liquid mixture associated with the
cladding in the same core cell as the fuel.
At most two distinct solids

— Hierarchy for dissolution



Dissolution of solids by molten mixtur
• Dissolution will proceed

until the addition of
solid lowers the
updated gross mixture
enthalpy to the liquidus
enthalpy associated
with the updated
mixture composition

• Or until the parabolic
rate limitation
associated with the
dissolution reaction has
been exceeded for the
given timestep.

• The solution is iterative

Sandia
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Component Solids Dissolved by Mixture

Cladding UO2 from intact fuel

Zr02 from intact cladding

Canister Zr02 from intact canister

Zr02 from intact cladding

UO2 from intact fuel

Other structure SS or

NS (steel only)

steel oxide from the same other structure

Other structure NS

(BWR control rod)

steel oxide from the same other structure

Zr02 from intact canister

Zr from intact canister

Other structure NS

(PWR control rod)

steel oxide from the same other structure

Zr from the same other structure

Zr02 from intact cladding

UO2 from intact fuel

Particulate debris UO2 from particulate debris

Zr02 from particulate debris

Zr02 from intact cladding

Uo2 from, iptct fuel .

where

K;=A exp / T

x; = final mass fraction of material j,

xf = initial mass fraction of material j,

A t = timestep (s), and

AZ,02 = 1.47 x 1014

13:1,02 = 8.01 x 104

AU02 = 1.02 x

Bu02 = 8 14 x 104



Secondary Candling Model

• Eutectics model off

Simple model to allow transport of unmolten secondary materials

— Zr02, UO2, steel oxide, control poison

— Dissolution of UO2 by molten Zr or breaking off of pieces of thin oxide shells

Fraction of secondary material carried with candling molten material

— Input fraction F1 of the molten mass

Fi

— Fractional proportion to existing fraction within a

Adaileggi AM
- -

component

• Eutectic model on

Secondary candling is inactive

Material interactions predicted by eutectics model

Sandia
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Calculation of the Solidus/Liquidus
Temperatures of a Mixture
• Determined by considering every binary combination of material

pairs in the mixture (molar weighted combination of solidus
temperatures

• Eutectic pairs

Lever Rule
— The solidus temperature is given by the mole-weighted average of the eutectic

temperature and solidus temperature of the component present in excess of the
eutectic molar composition.

Material Pairs Molar Ratio Eutectic Temperature

Zr Inconel 0.76 / 0.24 1210
Zr steel 0.76 / 0.24 1210
ZrO: UO2 0.50 / 0.50 2800
Zr B4C 0.43 / 0 57 1900
Steel B4C 0.69 / 0.31 1420
Zr Ag-ln-Cd 0 67 / 0.33 1470

• Non-Eutectic Pairs

TSif. is given by the mole-weighted average of the two solidus temperatures.

The liquidus temperature is set equal to the solidus temperature plus 0.01 K

Sandia
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Enthalpy of Eutectic Mixture
For temperatures less than the
calculated solidus, the mass-
weighted individual enthalpies
are summed with the exception
that extrapolated solid
enthalpies are used for any
material that would ordinarily be
liquid.
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For temperatures greater than
the calculated liquidus, the
mass-weighted individual
enthalpies are summed with
the exception that
extrapolated liquid enthalpies
are used for any material t:)
would ordinarily be solid. 
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TMI Melt Progression

Results
■ Compare two TMI-2 test

cases
• Eutectics point = 2550 K

• Interactive UO2-
INT/ZR02-INT 2550 K

■ Similarities but notable
differences
• Core damage

Greater for eutectics

• Size of Molten pool
Early: Greater for
interactive

Later: Greater for
eutectics

• Material relocating to
lower plenum

Greater for interactive

■ Results are preliminary

Preliminary
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Holdup Behind Zr02 layer
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• Molten material is held up within a component
• if the oxide thickness is greater than a critical value Arhold

• if the component temperature is less than a critical value Tbreach

• if no candling from the component in that cell has yet taken place.

• Eutectic model protects materials from dissolution when they
are behind an oxide layer

Component Solids Dissolved Effected by Oxide
Layer

Canister Zr02 from intact cladding (A)

Other structure NS
(BWR control rod)

Zr02 from intact canister (A)
Zr from intact canister (A)

Other structure NS
(PWR control rod)

Steel oxide from the same other structure (B)
Zr02 from intact cladding (A)
UO2 from intact fuel (A)

A. solid is attacked only if
there is no holdup of the
mixture in the
component.

B. solid is attacked only if
the mixture is being
held up by the
component

24



Downward Relocation of Molten
Material

Sandia
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• Candling  - Downward flow of molten core materials and subsequent
l'reezing (creation of 'conglomerate')
• Semi-mechanistic

Based on fundamental heat transfer principles with user-specified refreezing heat transfer
coefficients for each material

• Assumptions
Steady generation and flow of molten material

— Does not solve a momentum equation for velocity
— All material generated in a time step reaches its final destination in that step

» There is no separate field for conglomerate and must equilibrate with a component
— relatively independent of time step history

Molten material is held up behind oxide shell or retained behind blockage.
— For breakaway me , assumption of steady generation no longer valid

Freezes on originating component or alternate component  if non-existent at lower elevation

1
STEP 1 STEP 2 STEP 3 STEP 4

1
MOLTEN

REFROZEN



MELCOR Crust

■ There is no separate component to model
crust

■ Crust is represented as PD component
■ No distinct temperature for crust
■ Crust thickness is inferred from sub-grid model

■ Blockage associated with 'crust' obstructs
downward relocation of molten pool

■ Radial Crust
■ Crust calculated for cells adjacent to lower head

intact PD is always available to spreading routine
Fraction of conglomerate associated with crust is
frozen to lower head

■ No radial crust modeled for molten pool in
upper core

Time constant for radial spreading of molten pool
component into fuel rod region is 10 times longer
than elsewhere

Sandia
National
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Sub-Grid Model Prediction of
Blockages
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MELCOR Core Phenomenon

Stratified Molten Pool Model

N Treat molten pools, both in core and lower
head
• Can contain oxidic and metallic materials

• May be immiscible, and separate by density

• Same approach in core and lower head

Requires distinguishing pool in channel from
that in bypass

N Stratified melt pool - Additional material

relocation models
• Downward and radial flow of molten pools
• Sinking of particulate debris in molten pool

Particulate displaces pool
• Stratification of molten pools by density

Denser pool displace less dense
— Currently oxide pool is assumed denser

• Partitioning of fission products between metallic
and oxidic phases

Can affect heat generation and natural
convection in core molten debris.

Molten pools in
lower plenum

Molten po I in
upper core

Sandia
National
Laboratories


