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Kokkos Timeline
2015 2019 2020 2021 2022

Kokkos 2.0 Kokkos 3.0
"Usable" "Production"

AMD Support
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2018 What's New?

• Reorganization of the Kokkos Team
— Carter Edwards left for NVIDIA => Christian Trott took over as PI

— Team expanded: Jeff Miles, Vinh Dang, David Hollman

• Production support for Summit/Sierra
— Tons of subtle issues around Volta's new threading semantics

• Deprecation of Features in preparation for Kokkos 3.0
— https://github.com/kokkos/kokkos/wiki/DeprecationPage 

— Expect Kokkos 3.0 in H1 2019
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LayoutTi led KOKK OS

• LayoutTiled : a requested feature from the SPARC development team

• SPARC
— ATDM code approximates Navier-Stokes equations for atmospheric re-entry

— is built on Kokkos and includes two independent algorithms

• structured finite volume method (SFVM) uses a 4-dimensional array

• unstructured finite volume method (UFVM) uses a 2-dimensional array

• The observed performance of the structured algorithm is less than unstructured*

• It is believed the culprit is the stride of the access pattern with the 4-d array

• Could tiling increase the locality?
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Using LayoutTiled ..411111..

• Designed so that minimal changes from other layouts are required to use it. Eg, if you have

View4DType = View<aouoi, ****, layout4D >;

— Change the layout4D from e.g. LayoutRight to

Experimental: LayoutTiled<Iterate::Right, Iterate: :Right, Tz_size, Ty_size, Tx size>;

— Change the MDRangePolicy from non-tiled

Experimental: :MDRangePolicy <Kokkos::Rank<3>>({( „ }, {Nx,Ny,Nz}) ;

to Tiled

MDRangePolicy <Rank<q>>({0,010}„ {Nx,Ny,Nz}, {Tx_size, Ty_size, Tz_size})

• The same functor code works with both layouts
KOKKOS_INLINE_FUNCTION

void operator() ( i, int j, int k) const {

dfdx(k,j,i) = (fields(k+1,j,i, fieldIndex) - fields(k,j,i, fieldIndex) )*invhx;

}
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Improving Kokkos Task Support

• Generalization of TaskScheduler abstraction to allow
user to be generic with respect to scheduling strategy
and queue

• Implementation of new queues and scheduling
strategies:
— Single shared LIFO Queue (this was the old implementation)

— Multiple shared LIFO Queues with LIFO work stealing

— Chase-Lev minimal contention LIFO with tail (FIFO) stealing

— Potentially more

• Reorganization of Task, Future, TaskQueue data
structures to accommodate flexible requirements from
the TaskScheduler
— For instance, some scheduling strategies require additional
storage in the Task

6 Exascale Computing Project

kokkos

Fibonacci 30 (V100)
7

6

-o
c 5o
a)

L- 4a)
o_

2 3

2

1

0

• Old Single Queue • New Single Queue

• Multi Queue • Chase-Leve MQ

E,c1f= EXRSCRLE
COMPUTING
PROJECT



Kokkos Tasking Proposed Interface Changes :kokkos

• Very minor interface changes so far:
— Now requires the user to get the scheduler instance from the team member parameter

(rather than storing it in a data member of the user's task functor)
— Kokkos::task_spawn() and Kokkos::respawn() become sheduler.task_spawn() and

scheduler.respawn()
— Future type is now scheduler-specific; users should now use

Kokkos::BasicFuture<ValueType, SchedulerType> instead of Kokkos::Future
• (An alias is provided for backwards compatibility)

• Future directions:
— More backend scheduling strategies, focusing on less allocation.
— Correct use of memory orders in atomics on Volta and later
— Aggregation of Kokkos::TaskSingle tasks into team tasks, when possible, and

aggregation of team tasks for better use of cooperative groups
— Long term:.  integration with macro-tasking (streams, CudaGraphs) for a uniform

expression of coarse-grained tasking and fine-grained tasking in one programming
model.
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Tasking and C++ Standard
• C++ standard is moving towards more asynchronicity with Executors

— Dispatch of parallel work consumes and returns new kind of future

• Aligning Kokkos with this development means:

— Introduction of Execution space instances
DefaultExecutionSpace spaces[2];
partition( DefaultExecutionSpace()„ spaces);
// f1 and f2 are executed simultaneously
parallel_for( RangePolicy<>(spaces[0], 0, N), f1);
parallel_for( RangePolicy<>(spaces[1], 0, N), f2);
// wait for all work to finish
fence();

— Patterns return futures and Execution Policies consume them
auto fut_1 = parallel_for( RangePolicy<>("Functl", 0, N), f1 );
auto fut_2a = parallel_for( RangePolicy<>("Funct2a", fut_1, N), f2a);
auto fut_2b = parallel_for( RangePolicy<>("Funct2b", fut_1, N), f2b);
auto fut_3 = parallel_for( RangePolicy<>("Funct3", all(fut_2a,fut2_b), N), f3);
fence(fut_3);
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The Kokkos EcoSystem: Remote Spaces
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Kokkos Remote Spaces: PGAS Support
• PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of "super-node" architectures

• Example DGX2 V100 V100 V11
• First "super-node"

• 300GB/s per GPU link
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• Idea: Add new memory spaces which return data handles with shmem semantics

to Kokkos View

• Viewdouble**[3], LayoutLeft, NVShmemSpace> a("A"I NI M);

• Operator a ( j,k) returns: template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

} ;
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PGAS Performance Evaluation: miniFE

• Test Problem: CG-Solve
• Using the miniFE problem 1\1^3
• Compare to optimized CUDA
• MPI version is using overlapping
• DGX2 4 GPU workstation

• 3 Variants
• Full use of SHMEM
• lnline functions by ptr mapping
• Explicit by-rank indexing
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Kokkos Remote Spaces: Resilience/I0 :Kokk

• View abstraction flexible enough to help with more complex tasks
— As with PGAS we can define custom storage and return types

— Special hooks to do actions during launch of kernels

• Explore utilization of Views for 10 and Resilience
— HDF5 memory space

— In memory cross MPI rank snapshotting

— Automatic idempotentization of kernels

// Concept
Viewint", CheckPointSpace> a("A"I NI M);

CheckPointSpace::

create_check_point("CP1");

CheckPointSpace::

- Interface to existing data warehouse libraries? restore_from_check_point(a,"A","CP1")

• Early stage exploration development
- Many collaboration opportunities
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The Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Kokkos Remote Spaces

PGAS io

13 Exascale Computing Project

Erience and Engineering Applications II

Kokkos EcoSystem

Kokkos Kernels

I Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution

Multi-Core Many-Core

Parallel Data
Structures

APU

:kokkos

(
Kokkos
Support

Documentation

Tutorials

Bootcamps

App support

CPU + GPU

Base C++ Capabilities

Std Backl.111 Std Portabiltiy

EPP EXRSCRLE
COMPUTING
PROJECT



Base C++ Capabilities

• Collaboration with LLNL RAJA team

• Avoid replication of providing basic portable C++ capabilities
— complex<...>, pair<...>, etc. for GPUs

• Backporting of future C++ capabilities
— mdspan for multi dimensional arrays as underlying technology for Kokkos::View

— atomic ref for portable atomic support

• Expect first usable release end of 2019
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Platform Support

• NVIDIA production support in place

• IBM/Intel/AMD/ARM CPU production support is in place

• AMD: Initial Support but complete restart happening based on AMD
feedback
— AMD's preferred (most mature) frontend changed: ROCm native to HIP

— Expect usable HIP backend early 2020

— Production support early 2021

• A21 Support: Tracking known information
— Expect usable backend end of 2020

— Production support end of 2021

15 Exascale Computing Project EknP


