Sandia o4
@ National - ksAgo’zo!g- oIE%SPE S

Laboratories

Kokkos Roadmap 3.0

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova, J. Miles, D.
Hollman, D. Lanbreche, V. Dang

Sandia National Laboratories
www.github.com/kokkos

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National o s
Nuclear Security Administration under contract DE-NA-0003525. EXASCALE COMPUTING PROJECT

LS. DEPARTMENT OF

ENERGY | Office of SAND2018-13126 C

| Science

"kokkos

Kokkos Timeline
2015 2019 2020 2021 2022

\ 4

Kokkos 2.0 Kokkos 3.0 Kokkos 4.0
“Usable” “Production”

11

sable” “Production”

1]

ine Grained” “Coarse Grained”

“IO/Resilience”

2 Exascale Computing Project

=(CVP s

2018 — What’s New? » kokkos

« Reorganization of the Kokkos Team
— Carter Edwards left for NVIDIA => Christian Trott took over as Pl
— Team expanded: Jeff Miles, Vinh Dang, David Hollman

* Production support for Summit/Sierra
— Tons of subtle issues around Volta's new threading semantics

» Deprecation of Features in preparation for Kokkos 3.0

— https://github.com/kokkos/kokkos/wiki/DeprecationPage
— Expect Kokkos 3.0 in H1 2019

Ty

—(C P ==

3 Exascale Computing Project PROJECT

LayoutTiled w kokkos

« LayoutTiled : a requested feature from the SPARC development team
« SPARC

— ATDM code approximates Navier-Stokes equations for atmospheric re-entry

— is built on Kokkos and includes two independent algorithms
» structured finite volume method (SFVM) uses a 4-dimensional array
 unstructured finite volume method (UFVM) uses a 2-dimensional array

* The observed performance of the structured algorithm is less than unstructured®
* |t is believed the culprit is the stride of the access pattern with the 4-d array

» Could tiling increase the locality?

EXASCALE
COMPUTING
PROJECT

4 Exascale Computing Project

Using LayoutTiled = kokkos

» Designed so that minimal changes from other layouts are required to use it. Eg, if you have

using View4DType = View<double*** layout4D >;

— Change the layout4D from e.g. LayoutRight to
Experimental::LayoutTiled<Iterate::Right, Iterate::Right, Tz size, Ty size, Tx_size>;
— Change the MDRangePolicy from non-tiled
Experimental: :MDRangePolicy <Kokkos: :Rank<3>>({0,0,0}, {Nx,Ny,Nz}) ;
to Tiled
MDRangePolicy <Rank<3>>({9,0,0}, {Nx,Ny,Nz}, {Tx_size, Ty size, Tz_size})

« The same functor code works with both layouts
KOKKOS_INLINE_ FUNCTION

void operator() (int i, int j, int k) const {

dfdx(k,j,i) = (fields(k+1,j,i, fieldIndex) - fields(k,j,i, fieldIndex))*invhx;

}

COMPUTING
PROJECT

\ EXASCALE
=y

5 Exascale Computing Project

=(C

Lkokkos

Fibonacci 30 (V100)

£

Improving Kokkos Task Support

* Generalization of TaskScheduler abstraction to allow
user to be generic with respect to scheduling strategy
and queue 6

* Implementation of new queues and scheduling
strategies:
— Single shared LIFO Queue (this was the old implementation)
— Multiple shared LIFO Queues with LIFO work stealing
— Chase-Lev minimal contention LIFO with tail (FIFO) stealing
— Potentially more

* Reorganization of Task, Future, TaskQueue data :
structures to accommodate flexible requirements from
the TaskScheduler 0
m Old Single Queue ® New Single Queue

— For instance, some scheduling strategies require additional Muli Queve mChase-Leve MQ

storage in the Task .
J— —_—
=P =2

w = (&)}

Million Tasks per Second

N

6 Exascale Computing Project

Kokkos Tasking Proposed Interface Changes = <©kkos

* Very minor interface changes so far:

— Now requires the user to get the scheduler instance from the team member parameter
(rather than storing it in a data member of the user’s task functor)

— Kokkos::task _spawn() and Kokkos::respawn() become sheduler.task spawn() and
scheduler.respawn()

— Future type is now scheduler-specific; users should now use
Kokkos::BasicFuture<ValueType, SchedulerType> instead of Kokkos::Future

* (An alias is provided for backwards compatibility)

 Future directions:
— More backend scheduling strategies, focusing on less allocation.
— Correct use of memory orders in atomics on Volta and later

— Aggregation of Kokkos::TaskSingle tasks into team tasks, when possible, and
aggregation of team tasks for better use of cooperative groups

— Long term: integration with macro-taskin #_stream_s, CudaGraphs) for a uniform
expéelssmn of coarse-grained tasking and fine-grained tasking in one programming
model.

§) EXASCALE
§ COMPUTING
i PROJECT

7 Exascale Computing Project

Lkokkos

Tasking and C++ Standard

e C++ standard is moving towards more asynchronicity with Executors
— Dispatch of parallel work consumes and returns new kind of future

* Aligning Kokkos with this development means:
— Introduction of Execution space instances

DefaultExecutionSpace spaces[2];

partition(DefaultExecutionSpace(), 2, spaces);

// fl and f2 are executed simultaneously

parallel for(RangePolicy<>(spaces[0], 0, N), f1);
parallel for(RangePolicy<>(spaces[1], ©, N), f2);
// wait for all work to finish

fence();

— Patterns return futures and Execution Policies consume them
auto fut 1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);
auto fut _2a = parallel for(RangePolicy<>(“Funct2a”, fut 1,0, N), f2a);
auto fut 2b = parallel for(RangePolicy<>(“Funct2b”, fut 1,0, N), f2b);
auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2 b),0, N), f3);
fence(fut_3);

8 Exascale Computing Project PROJECT

/_."\\
— (L\) P 55
N\ ams

The Kokkos EcoSystem: Remote Spaces L kokkos

T

Science and Engineering Applications
Kokkos E chilil

Tools

Trilinos

Kokkos EcoSystem
Kokkos Kernels

Kokkos Core

[Kokkos Remote Spaces

Muilti-Core Many-Coré CPU + GPU

=(CYP =

9 Exascale Computing Project

~
Kokkos Remote Spaces: PGAS Support wkokkos

» PGAS Models may become more viable for HPC with both changes in network
architectures and the emergence of “super-node” architectures

= Example DGX2 - - - - - - - -

= First “super-node”
= 300GB/s per GPU link

* |dea: Add new memory spaces which return data handles with shmem semantics
to Kokkos View

= View<double**[3], LayoutLeft, NVShmemSpace> a(“A”,N,M);

= QOperator a(i, j,k) returns: Rl

struct NVShmemElement<double> {
NVShmemElement(int pe , double* ptr_):pe(pe_),ptr(ptr_) {}
int pe; double* ptr;
void operator = (double val) { shmem_double p(ptr,val,pe); }

}s s \
EXASCALE
— \Q—:\’ [P EcEme

10 Exascale Computing Project

pv
PGAS Performance Evaluation: miniFE = kokkos

= Test Problem: CG-Solve CGSolve Performance
= Using the miniFE problem N*3 6000

= Compare to optimized CUDA 5000
= MPI version is using overlapping
= DGX2 4 GPU workstation 24000
= 3 Variants 1000 \
= Full use of SHMEM 5
= Inline functions by ptr mapping = 2000 g
= Explicit by-rank indexing = I § I
1000 \

\

10073 20073 40073
s MPI 2SHMEM &SSHMEM-Inline = SHMEM-Index

’

prm— Q—\\ EXASCALE
_\(g [S

11 Exascale Computing Project

Kokkos Remote Spaces: Resilience/lO = kokkos

* View abstraction flexible enough to help with more complex tasks
— As with PGAS we can define custom storage and return types
— Special hooks to do actions during launch of kernels

« Explore utilization of Views for |O and Resilience

B // Concept
HDF5 memaory space View<int**, CheckPointSpace> a(“A”,N,M);

— In memory cross MPI rank snapshotting CheckPointSpace: :
C : : create_check point(“CP1”);
— Automatic idempotentization of kernels CheckPointSpace: :

— Interface to existing data warehouse libraries? restore_from_check_point(a,“A”,“CP1")

 Early stage exploration development
— Many collaboration opportunities

Sy

= (=

12 Exascale Computing Project PROJECT

The Kokkos EcoSystem

Lkokkos

(r

Kokkos
Tools

N

Science and Engineering Applications

Trilinos

Kokkos EcoSystem
Kokkos Kernels

Kokkos Core

[Kokkos Remote Spaces

13 Exascale Computing Project

Muilti-Core Many-Core CPU + GPU

Base C++ Capabilities
Std Backport Std Portabiltiy

jrm— ’Q—\\ EXASCALE
Z\{E)| covnome

Base C++ Capabilities = kokkos

e Collaboration with LLNL RAJA team

 Avoid replication of providing basic portable C++ capabilities
— complex<...>, pair<...>, etc. for GPUs

» Backporting of future C++ capabilities
— mdspan for multi dimensional arrays as underlying technology for Kokkos::View
— atomic_ref for portable atomic support

« Expect first usable release end of 2019

Sy
prmmn \ EXASCALE
S— \) COMPUTING

14 Exascale Computing Project

Platform Support w kokkos

* NVIDIA production support in place
 |[BM/Intel/AMD/ARM CPU production support is in place

« AMD: Initial Support but complete restart happening based on AMD
feedback

— AMD’s preferred (most mature) frontend changed: ROCm native to HIP
— Expect usable HIP backend early 2020
— Production support early 2021

* A21 Support: Tracking known information
— Expect usable backend end of 2020
— Production support end of 2021

iy
\ EXASCALE
{) | COMPUTING
i PROJECT

15 Exascale Computing Project

