
Sandia
National
Laboratories

Kokkos Roadmap 3.0

:kokkos

C.R. Trott, D. Sunderland, N. Ellingwood, D. lbanez, S. Bova, J. Miles, D.
Hollman, D. Lanbreche, V. Dang

Sandia National Laboratories
www.github.com/kokkos

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA-0003525.

ce
S 'ence

EXRISCRLE CO P TIN I E T

SAND2018-13126 C

SAND2019-0508PE

Kokkos Timeline
2015 2019 2020 2021 2022

Kokkos 2.0 Kokkos 3.0
"Usable" "Production"

AMD Support

2 Exascale Computing Project

Kokkos 4.0

"Usable" "Production"
A21 Support

"Fine Grained" "Coarse Grained"
Kokkos Tasking

"PGAS"
A:emote Spaces

"10/Resilience"

AI*

EPP EXRSCRLE
COMPUTING
PROJECT

2018 What's New?

• Reorganization of the Kokkos Team
— Carter Edwards left for NVIDIA => Christian Trott took over as PI

— Team expanded: Jeff Miles, Vinh Dang, David Hollman

• Production support for Summit/Sierra
— Tons of subtle issues around Volta's new threading semantics

• Deprecation of Features in preparation for Kokkos 3.0
— https://github.com/kokkos/kokkos/wiki/DeprecationPage

— Expect Kokkos 3.0 in H1 2019

3 Exascale Computing Project

:kokkos

EPP EXRSCRLE
COMPUTING
PROJECT

LayoutTi led KOKK OS

• LayoutTiled : a requested feature from the SPARC development team

• SPARC
— ATDM code approximates Navier-Stokes equations for atmospheric re-entry

— is built on Kokkos and includes two independent algorithms

• structured finite volume method (SFVM) uses a 4-dimensional array

• unstructured finite volume method (UFVM) uses a 2-dimensional array

• The observed performance of the structured algorithm is less than unstructured*

• It is believed the culprit is the stride of the access pattern with the 4-d array

• Could tiling increase the locality?

4 Exascale Computing Project

EXRSCRLE
COMPUTING
PROJECT

Using LayoutTiled ..411111..

• Designed so that minimal changes from other layouts are required to use it. Eg, if you have

View4DType = View<aouoi, ****, layout4D >;

— Change the layout4D from e.g. LayoutRight to

Experimental: LayoutTiled<Iterate::Right, Iterate: :Right, Tz_size, Ty_size, Tx size>;

— Change the MDRangePolicy from non-tiled

Experimental: :MDRangePolicy <Kokkos::Rank<3>>({(„ }, {Nx,Ny,Nz}) ;

to Tiled

MDRangePolicy <Rank<q>>({0,010}„ {Nx,Ny,Nz}, {Tx_size, Ty_size, Tz_size})

• The same functor code works with both layouts
KOKKOS_INLINE_FUNCTION

void operator() (i, int j, int k) const {

dfdx(k,j,i) = (fields(k+1,j,i, fieldIndex) - fields(k,j,i, fieldIndex))*invhx;

}

5 Exascale Computing Project EknP EXRSCRLE
COMPUTING
PROJECT

Improving Kokkos Task Support

• Generalization of TaskScheduler abstraction to allow
user to be generic with respect to scheduling strategy
and queue

• Implementation of new queues and scheduling
strategies:
— Single shared LIFO Queue (this was the old implementation)

— Multiple shared LIFO Queues with LIFO work stealing

— Chase-Lev minimal contention LIFO with tail (FIFO) stealing

— Potentially more

• Reorganization of Task, Future, TaskQueue data
structures to accommodate flexible requirements from
the TaskScheduler
— For instance, some scheduling strategies require additional
storage in the Task

6 Exascale Computing Project

kokkos

Fibonacci 30 (V100)
7

6

-o
c 5o
a)

L- 4a)
o_

2 3

2

1

0

• Old Single Queue • New Single Queue

• Multi Queue • Chase-Leve MQ

E,c1f= EXRSCRLE
COMPUTING
PROJECT

Kokkos Tasking Proposed Interface Changes :kokkos

• Very minor interface changes so far:
— Now requires the user to get the scheduler instance from the team member parameter

(rather than storing it in a data member of the user's task functor)
— Kokkos::task_spawn() and Kokkos::respawn() become sheduler.task_spawn() and

scheduler.respawn()
— Future type is now scheduler-specific; users should now use

Kokkos::BasicFuture<ValueType, SchedulerType> instead of Kokkos::Future
• (An alias is provided for backwards compatibility)

• Future directions:
— More backend scheduling strategies, focusing on less allocation.
— Correct use of memory orders in atomics on Volta and later
— Aggregation of Kokkos::TaskSingle tasks into team tasks, when possible, and

aggregation of team tasks for better use of cooperative groups
— Long term:. integration with macro-tasking (streams, CudaGraphs) for a uniform

expression of coarse-grained tasking and fine-grained tasking in one programming
model.

7 Exascale Computing Project

EXRSCRLE
COMPUTING
PROJECT

Tasking and C++ Standard
• C++ standard is moving towards more asynchronicity with Executors

— Dispatch of parallel work consumes and returns new kind of future

• Aligning Kokkos with this development means:

— Introduction of Execution space instances
DefaultExecutionSpace spaces[2];
partition(DefaultExecutionSpace()„ spaces);
// f1 and f2 are executed simultaneously
parallel_for(RangePolicy<>(spaces[0], 0, N), f1);
parallel_for(RangePolicy<>(spaces[1], 0, N), f2);
// wait for all work to finish
fence();

— Patterns return futures and Execution Policies consume them
auto fut_1 = parallel_for(RangePolicy<>("Functl", 0, N), f1);
auto fut_2a = parallel_for(RangePolicy<>("Funct2a", fut_1, N), f2a);
auto fut_2b = parallel_for(RangePolicy<>("Funct2b", fut_1, N), f2b);
auto fut_3 = parallel_for(RangePolicy<>("Funct3", all(fut_2a,fut2_b), N), f3);
fence(fut_3);

8 Exascale Computing Project

:kokkos

EXRSCRLE
COMPUTING
PROJECT

The Kokkos EcoSystem: Remote Spaces

Kokkos

Tools

Debugging

Profiling

Kokkos Remote Spaces

PGAS io

Erience and Engineering Applications II

Kokkos EcoSystem

Kokkos Kernels

I Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution

Parallel Data
Structures

:kokkos

Kokkos
Support

Documentation

Tutorials

Bootcamps

App support

j

Multi-Core Many-Core APU
9 Exascale Computing Project

CPU + GPU I= EXRSCRLECOMPUTING
PROJECT

Kokkos Remote Spaces: PGAS Support
• PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of "super-node" architectures

• Example DGX2 V100 V100 V11
• First "super-node"

• 300GB/s per GPU link

V100 V100

LOO

V100 V100

r- V100

V100

V100

V100

V100

V100

V100

V100
• Idea: Add new memory spaces which return data handles with shmem semantics

to Kokkos View

• Viewdouble**[3], LayoutLeft, NVShmemSpace> a("A"I NI M);

• Operator a (j,k) returns: template<>
struct NVShmemElement<double> {

NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_) {}

int pe; double* ptr;
void operator = (double val) { shmem_double_p(ptr,val,pe); }

} ;

10 Exascale Computing Project EtE)1=
EXRSCRLE
COMPUTING
PROJECT

PGAS Performance Evaluation: miniFE

• Test Problem: CG-Solve
• Using the miniFE problem 1\1^3
• Compare to optimized CUDA
• MPI version is using overlapping
• DGX2 4 GPU workstation

• 3 Variants
• Full use of SHMEM
• lnline functions by ptr mapping
• Explicit by-rank indexing

11 Exascale Computing Project

6000

5000

1 4000o.
_c
c5/• 3000
o
-c 2000

1000

0
100^3

CGSolve Performance

:kokkos

200^3 400^3

• MPI SHMEM SHMEM-Inline • SHMEM-Index

EPP EXRSCRLE
COMPUTING
PROJECT

Kokkos Remote Spaces: Resilience/I0 :Kokk

• View abstraction flexible enough to help with more complex tasks
— As with PGAS we can define custom storage and return types

— Special hooks to do actions during launch of kernels

• Explore utilization of Views for 10 and Resilience
— HDF5 memory space

— In memory cross MPI rank snapshotting

— Automatic idempotentization of kernels

// Concept
Viewint", CheckPointSpace> a("A"I NI M);

CheckPointSpace::

create_check_point("CP1");

CheckPointSpace::

- Interface to existing data warehouse libraries? restore_from_check_point(a,"A","CP1")

• Early stage exploration development
- Many collaboration opportunities

12 Exascale Computing Project Eknim
EXRSCRLE
COMPUTING
PROJECT

The Kokkos EcoSystem

Kokkos
Tools

Debugging

Profiling

Kokkos Remote Spaces

PGAS io

13 Exascale Computing Project

Erience and Engineering Applications II

Kokkos EcoSystem

Kokkos Kernels

I Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution

Multi-Core Many-Core

Parallel Data
Structures

APU

:kokkos

(
Kokkos
Support

Documentation

Tutorials

Bootcamps

App support

CPU + GPU

Base C++ Capabilities

Std Backl.111 Std Portabiltiy

EPP EXRSCRLE
COMPUTING
PROJECT

Base C++ Capabilities

• Collaboration with LLNL RAJA team

• Avoid replication of providing basic portable C++ capabilities
— complex<...>, pair<...>, etc. for GPUs

• Backporting of future C++ capabilities
— mdspan for multi dimensional arrays as underlying technology for Kokkos::View

— atomic ref for portable atomic support

• Expect first usable release end of 2019

14 Exascale Computing Project

EXRSCRLE
COMPUTING
PROJECT

Platform Support

• NVIDIA production support in place

• IBM/Intel/AMD/ARM CPU production support is in place

• AMD: Initial Support but complete restart happening based on AMD
feedback
— AMD's preferred (most mature) frontend changed: ROCm native to HIP

— Expect usable HIP backend early 2020

— Production support early 2021

• A21 Support: Tracking known information
— Expect usable backend end of 2020

— Production support end of 2021

15 Exascale Computing Project EknP

