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Motivation

• Fractional and non-local models allow for a more accurate description of phenomena in a
wide range of applications:
• anomalous diffusion [2],
• material science [14, 1],
• image processing [7, 8],
• finance [16],
• electromagnetic fluids [9].

• Space-Fractional equations arise naturally as the limit of discrete diffusion governed by
stochastic processes with long jumps [10].

Efficient solution of fractional equations in complex domains is of great practical interest.
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Fractional Laplacian in Rd

On full space Rd, it is straightforward to define

(-0)5 u = T-1 kl2s-Fu] •

Rewritten in integral form (for s E (0,1))

(—A)s u () = C(d, s) p. v. f u()-0 u(V) 

Rd lie— Vid±2s

with p. v. the Cauchy principal value and C(d, s) a normalization constant.
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Fractional Laplacians on bounded domains

= C(d, p. v. f 
d Y 

i0
R vld-E2 

E
s '

No unique way of defining the fractional Laplacian on bounded domain Q E C2 (or
polyhedral):

• Integral fractional Laplacian: use full-space operator, enforce u = 0 on QC
(homogeneous Dirichlet condition)

• Regional fractional Laplacian: use full-space operator, set flux from QC to zero
(homogeneous Neumann condition)

• Spectral fractional Laplacian: define operator via spectral decomposition of regular
Laplacian:

(-005 u = E 4,um4Jm, where — = AmOm + B.C.
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Fractional Laplacians on bounded domains

(—A)S u (7) = C(d, p. v. f 
d Y 

cp u — 
d-E2s 

u (V) 
E Rd

R  

No unique way of defining the fractional Laplacian on bounded domain 52 E C2 (or
polyhedral):

• Spectral fractional Laplacian: define operator via spectral decomposition of regular
Laplacian:

(—A)5 u = E 4,um4Jm, where — AOm = AmOm + B.C.

Fractional Poisson problem with homogeneous Dirichlet condition:

(—A)5 u = f in 12,

u = 0 on Oa

Computing eigenpairs (Am, Om) with the required accuracy is inefficient.
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Extension approach [5], [15]

Reformulate as (d + 1)-dimensional integer-order problem:

1 —V • y'VU (i, y) = 0,
U (1, y) = 0,

:,÷jc, (i) = dsf (W) ,

where a = 1 — 2s, d5 = 21-2s r(1r(s) 
, s) and

y) E C := 52 x [0, oo),

(g,y) E aLc := 012 X [O, 00),
E

au 
av 

 
(g) = — l 

y— 
im
+ 

au ya y) ,
r0 

with the solution to the fractional Poisson problem recovered by taking the trace of U on 12, i.e.
u = trn U.
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Discretization

Discretization options explored in the literature:

• Dunford-Taylor integral representation of the solution [3, 4],

• Graded meshes or adaptivity on a truncated cylinder [12, 6], [11],

Define (semi-)norms

= feelu12, 1(41 =  yalvu12 ,f

DUk = 04.2 +

along with the associated weighted spaces

La (C) = {U measurable OUOL2 < , Ha (C) = {u E La (C) < oo} .

Find U E 3La (C) := {V E (C) V = 0 on 8LC} such that

fc y-Vii • Vy = ds (f,trfi VV E (C) .
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Eigenfunctions of the Extruded Problem
The eigenfunction associated with the eigenvalue am is given by

(Z) (y) •

Here, (Om, Am) is an eigenpair of the standard integer-order Poisson problem, and

m
(y) := (Arin/20s (Am1/2y)

where c5 = 21-5/r (s).

—As co
foc° yaomon = {ds Am'n_ Ann if m n, if m n,fo yaomr on/ = {.5 Am _ An

scis4„-1 if m = n, (1 — s)c154, if m = n.

The solution to the extruded problem with right-hand side f is then given by

f = fm0.(i0,
m=0

U (17,y) = E umo.(z)om (y)
01=0

where um = Ar,7,5fm.

Hybrid Finite Element - Spectral Approach

Use finite elements for discretization in )7, and functions resembling on, in y.

NrnetionA
Labownties

7/20



Discretization of the Extruded Problem
Take some approximation A,,, •--:-', )im and set

7. (y) := cs (5;y1/2y)s Ks CA—y1/2y) ,

let Th be a shape regular, globally quasi-uniform triangulation of Q, and let

Vh = {vh E HO (Q) 1 viIIK E Pk (K) VK E Th} ,

m—i

VM = {1/20 = E Vm (v),.-b-m (y) 1 vn, E 14, (Q)} C 1-d, (C),
m=o
m—i.

Vh,M = yh,m = E Vh,m 0-0 '3{ 111 (V) 1 Vh,m E VI, C Id, (C)
m=0

The Galerkin approximation consists of seeking Uh,M E Vh,M such that

fc yaVUh,t,4 • VV = cls (f, trn V) VV E Vh,M,

with the approximate solution of the fractional Poisson problem given by

Uh,M := trci Uh,M.

Approximations am need to be chosen (efficiently)
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A priori error estimate - semi-discrete case

Lemma
Let M E N and U E 910,1 (C) be the solution of the extruded problem. Then

where

Om =

co

VM E
inf U — VM 742 = ds /304,4,

{1 m > M,

g Am) rn = 0, , M — 1,

m=0

g (s, = 1
1

(1 — s)ps sps— 1

Lemma
mniviss,,11,3 

Let s E (0, 1), 0 < e < min { 2e and Ks = I 2e ,(11—s) If

,log pl < ks,\/ . then g (s, p) < s and max{ps ps_i} <e.

9/20



A priori error estimate - fully discrete case

Theorem
Let f E 11ir (Si), for r > —s, and choose M sufficiently large such that Am

(r+s)/2 N hminik,r+sl.

Assume that for 0 < m < M — 1 it holds that

g (s, Arn-iFsh2 min{k,r+s},
s 1—s Am Qs, < co,2

Am )

with a positive constant c, that is independent of h. Moreover, assume that there exist positive
constants Co, C1 independent of h such that the following two inequalities hold for any -7 E m:

m_i
E "Yrran f (Om — 7rn0m) (On — irhOn) < Co log(Ato)
m,n=o

M-1

m=0

2 2
7m 00m — 7rhOm 1L2

m_i m_i
E 7m7n f V (Om — 7r0m) • V (On — irtIOn) log(Ato) E 7r2n OV (Om — 7rhOm)01!2
m,n=0 1.2 m=o

where 7rh is the Scott-Zhang interpolant [13]. Then, the solution Ury,A4 to the fractional Poisson
problem and the solution Uh,N4 to the discretized extruded problem satisfy

Ilu uh,MMTP C 
< c hmin{k,r+s}

where C is independent of h.
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Choice of approximate eigenvalues - upper part of the spectrum
A cheap eigenvalue approximation: Weyl's asymptotic law

m) 2/d
:= Cd (T21

10-2

10-3

10-4

with Cd = 47rr (1 + c1/2)20 .

- 4751,1,, h = 0.00248 g (025, 3LV/44.) — ;"-

- AV5h2, h =0.00248
. 9 (0.75,AVA.)

Figure: Theorem requires g (s,54"1 < Ar:sh2 min{k,r+s}

We display g (s,X,TYI/A„,) and Am̀-E'h2 rnin{k ,r+s} for r s E {0.75, 1.25} and k = 1.

Here, h corresponds to a triangulation of the unit disc with about one million nodes.

All eigenvalues am, m > mo are well approximated by Weyl's law (and mo can be estimated).
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Choice of approximate eigenvalues - lower part of the spectrum CT"
We will be constructing a multigrid preconditioner for a FE discretization of the integer-order
Laplacian on a mesh of size h.

Compute eigenvalue approximations based on coarse representation on mesh of size H > h.

10-2

10-s

10-4

10-6

10'

10,

♦

z

♦

g (o.75,345fl)..), H =0.302

A g H = 0.155

z 9 (0•75,3:Z A,h), H =0.155

A g (0.25,3Z, / Am), H = 0.0785

1;,g

g 0.25, H = 0.571 g (0.75,W „ H = 0.0785

9 (0.75,74V H —0.571 ♦ g 0.25, H = 0.0395

g (0.25, Am , H = 0.302 9 0.75, H = 0.0395

h°,7852',h = 0.00298

AV8h2, h 0.00248

Figure: Theorem requires g (s,VI , H/Am) < Arm+sh2 rnin{k,r+s}.

We display g (s, F,7,EH1 Am) for several choices of coarsened mesh sizes H against Arr,7,Esh2 rnin{k,r+s} for

r + s E {0.75, 1.25} and k = 1.
Here, h corresponds to a triangulation of the unit disc with about one million nodes.

12/20



Complexity

Remember

(Y)m = (A,7112y)sKs (A,7112y) ,

M-1

Vh,M = { VII m = E Vh,m ()I-P-m (Y) 1 Vh,m E Vh .
m=0

lf -An, then

:= dim Vh,m = nM, where n = dim Vh.

Theorem + Weyl's law: M nminfl-k/0"-Esll —> N nP, p E (1, 2].

:1 NrnetionA
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Eigenvalue decimation
Build a smaller approximation space Vh~M from FE and Weyl approximations {-5-tm}:

5,rn = if 5-km-1 satisfies criteria of Theorem,
A-0 = -A0 ,

otherwise

Experimentally, we observe that the number of distinct eigenvalues 1;1- = 0 (logP n) for some
p > 0, and hence ../V = 0 (n I o gP n) .

10-

10-8

10-8

rn -4 1

- , h = 0.00248 • (0.25,L/4,.) . g (o.75,3„,/ a,)
- , h = 0.00248

Figure: Theorem requires g < Arrn+sh2 min { k,r+s},

irWe display g (s,3;„,/.X„,) and Ar,:sh2 m n{k, +s} for r s E {0.75, 1.25} and k = 1.

fronA

Number of DoFs scales quasi-optimally, but we need to solve efficiently as well!
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Solution of the linear system

Set 1.1, i = 0, , n the finite element basis functions, and

MFE = (f (Di4)j)

Mo- = Ya';-b-n-;3n)
0

Fh,M =

Linear system to be solved:

Then

SFE=(f v(Piv4)j),
Sa = (/'

fh = (cis (ft), 4)i)) •

(MFE ® Scr SFE ® M.) Uh,M = ?h,M,

Cholesky factorisation: Mo = LLT

Eigen-decomposition: $, = LPAPT LT

(MFE $cr SFE ® Marl = [i 4'11-')] [MFE ® A + SFE ® i1-1 [i (PTL—l)] .

i.e. solution of a sequence of systems MFEAmm SFE. We use conjugate gradients
preconditioned with geometric multigrid.
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Numerical examples in 2D

Consider the problem

{ (—A)s u = f in S2 = B(0, 1) c R2
u = 0 on Oft,

where
• f = (1 r(12)r-1/2 c

Pr-6 (S2), for all 6 > 0,

• r E {0.5,2},

• s E {0.25,0.75},

• piecewise linear finite elements (i.e. k = 1).

Since eigenpairs are known, errors in 7-ilicnorm can be computed via a convergent series.
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Numerical Examples in 2D - Errors wrt mesh size

hminfic,r+s} minflc,r+s}/dPredicted by Theorem: Ong Ong n1

Expected after decimation: N— min{ k,r+s} /d I logp Arl

x 1-0„ r = 2.0

— h

+ r = 0.5

t 
— h3/4

10-2 10-1

h

10-1

10-2

io-3

10-2 10-1

h

x r = 2.0

— h

+ 7li, r = 0.5

— h

Figure: 940,1 -error for the fractional Poisson problem with right-hand side f = (1 — 1)-<12)r-112 on the unit
disc with piecewise linear finite elements (k = 1). s = 0.25 on the left, s = 0.75 on the right.
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Numerical Examples in 2D - Errors wrt total #DoFs

Predicted by Theorem:

Expected after decimation:

100

10-1 7

10-2

10-3

103 106

hmin{ k,r-Fs} VI log min{k,r+s}/d VI log n1
AT - min{ lc,r+s}/d llogp NI

x , r = 2.0 100 .;

- Ar_112

+ r = 0.5
I
10 1

- Ar-3/8
10-2

103 106

x r = 2.0

AT-112

+ r = 0.5

Figure: 7-1°,1 -error with respect to the total number of degrees of freedom Ar on the unit disc with piecewise
linear finite elements (k = 1). s = 0.25 on the left, s = 0.75 on the right. Quasi-optimal convergence is
obtained.
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Numerical Examples in 2D - Timings

io°

10-2

102 104 106

n

x solve, r = 2.0

x setup, r = 2.0

+ solve, r = 0.5

+ setup, r = 0.5

- n

10°

10-2

102 104

n

X solve, r = 2.0

X setup, r = 2.0

+ solve, r = 0.5

+ setup, r = 0.5

- n

Figure: Timings of setup and solution. s = 0.25 on the left, s = 0.75 on the right. it can be seen that both
setup of the solver, which includes the approximation of eigenvalues, and solution of the resulting linear
system of equations scale roughly as (n), where n is the number of degrees of freedom of the finite
element discretization.
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Conclusion

• Method with quasi-optimal complexity for the solution of a fractional Poisson problem.

• Allows use of standard iterative linear solvers.

• Works for any dimension (as long as we can solve standard Laplace problems).

Thanks for listening!

arnr, n=o.00ms
0.00298
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Numerical Examples in 3D - Errors wrt mesh size

Predicted by Theorem:
Expected after decimation:

10-i -

-

10-1

h

hmin{k,r+s} n- min{ k,r+s). /dVIlog VIlog
Ar_ min{k,r+s}/d I logP NI

x r = 2.0

— h

+ r = 0.5

— h3/4

10-1

h

x 1-1,1 , r = 0.5

— h

+ r = 2.0

— h

Figure: 74°,1 -error for the fractional Poisson problem with right-hand side

f = [xix2x3 (1 — x1)(1 — x2) (1 — x3)Y 1/2 on the unit cube with piecewise linear finite elements
(k = 1). s = 0.25 on the left, s = 0.75 on the right.
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Numerical Examples in 3D - Errors wrt total #DoFs

Predicted by Theorem:

Expected after decimation:

10-1 1

io-21

io-31

io3 105 io7

Ar

hminfk,r+s1 minfk,r+s)./dlog log
min{k,r+s}/d

x r = 2.0

Ar—v3

+ 30„, r = 0.5

Ar-1/4

10-1

10-2 7

10-3

io3 io5 io7

x r = 0.5

Ar-1/3

+ r = 2.0

Ar-1./3

Figure: 7-lal -error with respect to the total number of degrees of freedom Af on the unit cube with
piecewise linear finite elements (k = 1). s = 0.25 on the left, s = 0.75 on the right. Quasi-optimal
convergence is obtained.
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