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Motivation
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m Fractional and non-local models allow for a more accurate description of phenomenain a
wide range of applications:

anomalous diffusion [2],
material science [14, 1],
image processing [7, 8],
finance [16],
electromagnetic fluids [9].

m Space-Fractional equations arise naturally as the limit of discrete diffusion governed by
stochastic processes with long jumps [10].

Efficient solution of fractional equations in complex domains is of great practical interest.
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Fractional Laplacian in R9 () ..

On full space RY, it is straightforward to define
(=AY u=F1 [\§|25 fu] .
Rewritten in integral form (for s € (0, 1))

u(x) —uy)

d+2s

(~A)u (%) = C(d,s) p.v. / dy

RS XY

with p. v. the Cauchy principal value and C(d, s) a normalization constant.
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Fractional Laplacians on bounded domains s,

(fA)Su()?):C(d,S)p-v./Rd dv%, XeR?

No unique way of defining the fractional Laplacian on bounded domain Q € €2 (or
polyhedral):

m Integral fractional Laplacian: use full-space operator, enforce u = 0 on Q¢
(homogeneous Dirichlet condition)

m Regional fractional Laplacian: use full-space operator, set flux from € to zero
(homogeneous Neumann condition)

m Spectral fractional Laplacian: define operator via spectral decomposition of regular
Laplacian:

(=AY u= Z AppUm®m, where — A¢m = Amém + B.C.
m
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Fractional Laplacians on bounded domains s,

(fA)Su()?):C(d,S)p-v./Rd dv%, XeR?

No unique way of defining the fractional Laplacian on bounded domain Q € €2 (or
polyhedral):

m Spectral fractional Laplacian: define operator via spectral decomposition of regular
Laplacian:

(=AY u=>" X, umdm, where — A¢gm = Amém + B.C.
m

Fractional Poisson problem with homogeneous Dirichlet condition:
(=AY u=f inQ,
u=0 onodq.
- |
Computing eigenpairs (Am, ¢m) with the required accuracy is inefficient.
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Extension approach [5], [15]

Reformulate as (d + 1)-dimensional integer-order problem:

-V -y*VU(X,y) =0, (X,y) € C:=Q x [0,00),
UX,y) =0, (X,y) € 8.C := 99 x [0, 00),
N ®) —dfR), KeQ

where « = 1 — 2s,ds = 21_25%, and

ou ou
=R =— i aZZ (%
5a X Jim Y5y &),

with the solution to the fractional Poisson problem recovered by taking the trace of U on €2, i.e.

u=trqU.
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Sandia
Discretization .

Discretization options explored in the literature:
m Dunford-Taylor integral representation of the solution [3, 4],
m Graded meshes or adaptivity on a truncated cylinder [12, 6], [11],

Define (semi-)norms

ol = [ v 102, Uy = [ v IvuP,
@ C o C
2 2 2
“U"H}l = "U"Lg + |U|Hé )
along with the associated weighted spaces

12 )= {U measurable | HUHLi < oo}, HL (¢) = {U el ()] "U"H; < oo}
Find U € H., (C) == {v € HlLa (C) |V =00n aLc} such that

/ YOVU- UV =ds (f,trg V) W e HL (C).
C
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Eigenfunctions of the Extruded Problem s,

The eigenfunction associated with the eigenvalue )3, is given by

ém (X) Pm (v) -

Here, (¢m, Am) is an eigenpair of the standard integer-order Poisson problem, and
s
m (1) = s (Ady) ks (M%)
where cs = 2175/T (s).

o Al
“mifm #n

X . AmAS—
o2 ds$m—2n ifm #£ n, o8 dg Smen_nom ,
[ v = B3z TME [Tyt ST
0 sds A\ if m=n, 0 (1—=s)dsx;, ifm=n.
The solution to the extruded problem with right-hand side f is then given by

f(x) = Z fin b (X)

%) = Z Um®m(X)¥m (y) where um = A\, *fm.

Hybrid Finite Element - Spectral Approach

Use finite elements for discretization in X, and functions resembling 4/ in y.
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Discretization of the Extruded Problem ez

Take some approximation Xm ~~ Am and set

~ ~ 5 ~
T () = e (3 %) ks (%),
let 7, be a shape regular, globally quasi-uniform triangulation of €2, and let

h = {vh € Hg () | vh|, € Pk (K) VK € Tr},

vM_{vM_va |vmeH0(Q)}cH;(C),

M—1
Vhm = {Vh,M = Z Vh,m (X) D (¥) | Vhm € Vh} CH, (C)

m=0

The Galerkin approximation consists of seeking U, » € Vi m such that
/ YDLVUhYM -VV = ds <f, tI’Q V> YV e Vh,Mv
c

with the approximate solution of the fractional Poisson problem given by

Up,m = trg Up M-

|
Approximations A\p, need to be chosen (efficiently)
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A priori error estimate - semi-discrete case =

Lemma

LetM € Nand U € H], (C) be the solution of the extruded problem. Then

||u VM"?-Ll _dSZﬂmu o

m=0
where
S, Am/A m=0, ,M—1, 1
Bm = ( m/ m) 3(s,p) =1— —
1 m> M, (1=s)p°+sp
Lemma

Lets € (0,1),0 <e < min { §mat=k 1} and s = /2L of

logp| < ksv/e then g(s,p) < eand max{p®, p° '} <e.
p p PP
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A priori error estimate - fully discrete case e

Letf € H" (Q), forr > —s, and choose M sufficiently large such that )\A;(HS)/Q ~ hmin{k,r+s}
Assume that for 0 < m < M — 1 it holds that

i~ & il
g (s, /\m//\m)i N sh2min{korts} (i—m> : (;—m) <c2
m m

with a positive constant c, that is independent of h. Moreover, assume that there exist positive
constants Co, C1 independent of h such that the following two inequalities hold for any 5 € RM:

M—1 M—1
Z ’Ym’Yn/ (ém — Thém) (¢n — Thn) < Co log(Am) Z %% |ém — mhm HfZ )
m,n=0 Q2 m=0
M—1 M—1
Z YmYn /Q V (¢m — Thpm) - V (¢n — Thén) < Ci1 log(Am) Z ’Yr%: IV (¢m — 7l'h<Z>m)||,?2 )
m,n=0 m=0

where T, is the Scott-Zhang interpolant [13]. Then, the solution up, p to the fractional Poisson
problem and the solution Uy, v to the discretized extruded problem satisfy

lu = unmllgs < €U = Unmll,n < Clfl A™ 62 /Tloghl,
where C is independent of h.
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Choice of approximate eigenvalues - upper part of the spectrum s,
A cheap eigenvalue approximation: Weyl’s asymptotic law

m 2/d 2/d
AWeyl . — ¢y (IQI> with C4 = 4#T (1 4 d/2)/9.

1071 4

L

1074

107 10! 10%

AT p = 0,00248 P (n 25, X)Z”“,/Am) A
ALZR2, b = 0.00248

Figure: Theorem requires g (s, Xﬁey'/)\m) < Arbsh? min{k,r+s}

We display g (s, Xﬁey'/km) and ArFsp2min{krts) forr 45 € {0.75,1.25} and k = 1.
Here, h corresponds to a triangulation of the unit disc with about one million nodes.

All eigenvalues A, m > mq are well approximated by Weyl'’s law (and mq can be estimated).
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Choice of approximate eigenvalues - lower part of the spectrum

We will be constructing a multigrid preconditioner for a FE discretization of the integer-order

Laplacian on a mesh of size h.

— Compute eigenvalue approximations based on coarse representation on mesh of size H > h.

i X l“‘
x x ‘M
xxX
aaE .
@ x x P
xx ~
x xX -y e
® x x n.n‘" 2 =
xxX s
)
y
x x
/‘//
x
10° 10! 102
m+1
_u( .2 ) H=0571 ) H = 0.0785
,,( ,\m), H=0571 ) H = 0.0395
g (0 25, X“;,/A,,,). H=10.302 X{;’i,/A,,,)A H =0.0395
g (0»7 H,/,\,u). H =0.302
= 0.00248
y( 2 ) H=0155 = 0.00248
g[( 5, ) H=0.155
y( ) H=00785

Figure: Theorem requires g (s, X,ny,,,/)\m> < ALeh? minEkee),
We display g (s, X;E’H/)\"J for several choices of coarsened mesh sizes H against Al"*h? min{k,r+s} for

r+se {0.75,1.25} andk = 1.
Here, h corresponds to a triangulation of the unit disc with about one million nodes.
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Complexity s,

Remember
~ o~ S ~
m (y) = ¢s (Arln/Qy> Ks (k}n/2y> .
M—1 _
Vv = {Vh,M = Z Vh,m (%) Ym (¥) | vam € Vh} ;
m=0
If Xm # Xn, then
N :=dimVym = nM, where n = dim V.

Theorem + Weyl's law: M ~ n™in{Lk/(r+5)} 5 A7~ P p € (1,2].

= — — ——————————————— —"“+/|
The method does not have optimal complexity!
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. . . @s-m
Eigenvalue decimation ~ 18
Build a smaller approximation space 1}, v from FE and Weyl approximations {/\m}:

~ ~ ~ Xm_l if Xm_l satisfies criteria of Theorem,
Ao = Ao, Am =4~ .

Am otherwise
Experimentally, we observe that the number of distinct eigenvalues M=0 (logP n) for some
p > 0, and hence N' = O (nlogP n).

1072

1072

10 & -

1075

10°°

Figure: Theorem requires g (s, Xm//\m) < Apeh? min{k,r+s}

We display g (s, Xm/Am) and ArFsh2min{krtst for s € {0.75,1.25} and k = 1.

Number of DoFs scales quasi-optimally, but we need to solve efficiently as well!
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Solution of the linear system [ =

Set ®;,i = 0,...,n the finite element basis functions, and

Mg = (/ ‘13,‘@]) 3 SrE = (/ V@;V@j) 5
Q Q
Mo = ([ v min). So= ([ vedudh)
0 0
Fhm = fn ® T, fr = (ds {fn, ®1)) -
Linear system to be solved:

(Mre ® So + Sre @ Mg Uh,M = f?h,M7

Cholesky factorisation: M, = L’
Eigen-decomposition: S, = LPAPTLT
Then
(Mre ® S + S OMo) ™ = 10 (L7TP)] Mre @ A+ Sre @ 1] [1@ (PTL1)]
i.e. solution of a sequence of systems Mg Amm + Spe. We use conjugate gradients

preconditioned with geometric multigrid.
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Numerical examples in 2D (D=

Consider the problem

{ (=A¥u = inQ =B(0,1) C R?
u =0 on 0%,
where
mf= <1 — })?|2)r71/2 € H—=(Q),foralle > 0,
mre€{0.5,2},

m s e {0.250.75},
m piecewise linear finite elements (i.e. k = 1).

Since eigenpairs are known, errors in ’Ha—norm can be computed via a convergent series.
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Numerical Examples in 2D - Errors wrt mesh size

Predicted by Theorem: pmin{k.r+s} | /Tiogh| ~ n= min{kir+s}/d, /liogn]
Expected after decimation: ~ A/~ Min{kir+s}/d ||ogP A/|

x HLr=20 ol x HL, r=20
107" 4 X — p 1071 4 = Ji

He,r =105 + My, r=05
—2 ] ¥ ar a?
10 h,3/4 1072 4 % h
1073 4 .
vl 107 /
1072 107! 1072 107!
h h

1 — [%12)"™/ on the unit

Figure: ’H}l-error for the fractional Poisson problem with right-hand side f = (
= 0.75 on the right.

disc with piecewise linear finite elements (k = 1). s = 0.25 on the left, s
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Predicted by Theorem:
Expected after decimation:

100 A

10~ 4

10~2 4

1073 4

T T
10° 108

N

Numerical Examples in 2D - Errors wrt total #DoFs

pmin{k,r+s} |Iogh| a0 min{k,r+s}/d\/m

N— min{k,r+s}/d ||0gp N|

% /H(I,(, r=20 100 +
S—— N—l/z

s HLr=05 107"

AN -3/8 10-2 ]

1073 4

T
10°

N

T
109

x Hi,r=20
p— N—l/z

+ Hl,r=05
N—1/2

Figure: ?—L;—error with respect to the total number of degrees of freedom A on the unit disc with piecewise
linear finite elements (k = 1). s = 0.25 on the left, s = 0.75 on the right. Quasi-optimal convergence is

obtained.
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Numerical Examples in 2D - Timings =

% solve, r =2.0
*x  setup, r = 2.0

x  solve, r =2.0
*  setup, r = 2.0

100 3
+  solve, 7 =0.5 +  solve, r =0.5
+  setup, r=0.5 +  setup, r =0.5

1072 4 — n — n

¢
T T > T T T
102 10 108 102 10* 106
n n

Figure: Timings of setup and solution. s = 0.25 on the left, s = 0.75 on the right. It can be seen that both
setup of the solver, which includes the approximation of eigenvalues, and solution of the resulting linear
system of equations scale roughly as O (n), where n is the number of degrees of freedom of the finite
element discretization.
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Conclusion s,

m Method with quasi-optimal complexity for the solution of a fractional Poisson problem.
m Allows use of standard iterative linear solvers.
m Works for any dimension (as long as we can solve standard Laplace problems).

Thanks for listening!

Sh=000u8 o g(025.Ru) o+ g (07530/)
— 028
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Numerical Examples in 3D - Errors wrt mesh size

Predicted by Theorem: pmin{kr+st | /liogh| ~ n= min{kr+s}/d, /liogn]
Expected after decimation: A/~ Min{kir+s}/d ||ogP A/

101 X ’H},, r=20 1071 i X X /H{ll, r=0.5
—_— — h
HL, =05 HL, 7 =20

P

-2 -2
10 - B3/ 10725~ .
-3 4 >
0 ./‘// 1073
107! 107t
h h

Figure: Hé—error for the fractional Poisson problem with right-hand side

f = [xixaxs(1 — x1)(1 — x2) (1 — x3)]~ /2 on the unit cube with piecewise linear finite elements
(k = 1). s = 0.25 on the left, s = 0.75 on the right.
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Predicted by Theorem:
Expected after decimation:

+
10714
1072 4%
X
10—3_
T T T
10° 105 107
N

Numerical Examples in 3D - Errors wrt total #DoFs

WE:
National
Laboratores.

pmin{k,r+s} ||ogh| ~ A min{k,r+s}/d\/m

N = min{kir+s}/d |1ogP A/

x HL,r=20
— N*I/S 10~ 4
+ HLr=05
N-1/4 1072 4
1073 4

T
10°

T
10°
N

T
107

x HL.r=05

— N3

+ Hi,r=20
N-1/3

Figure: H}!—error with respect to the total number of degrees of freedom A on the unit cube with
piecewise linear finite elements (k = 1). s = 0.25 on the left, s = 0.75 on the right. Quasi-optimal

convergence is obtained.
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