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Background and Motivation

* Some structures are sufficiently nonlinear that linear models are unable to
adequately capture important dynamics.

* Previous works have shown the ability of pseudo-modal modeling
approaches to accurately capture the nonlinear characteristics of a structure

* Nonlinear identification is achieved on a mode-by-mode basis

* Excitation techniques have included hammer impacts and windowed

////////////////

* Extrapolation with nonlinear models is inadvisable, so higher responses must
be achieved 1n testing

* Exciting a structure by dwelling at a resonant frequency of a targeted mode
produces large responses and is closely alighed with Nonlinear Normal Mode

(NNM) testing techniques

* Therefore this work presents a preliminary exploration which uses a
hybrid of NNM and pseudo-modal modeling testing and analysis
techniques to investigate the nonlinear characteristics of a test article
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Brief Overview of Nonlinear Normal Mode Theory

* Equation of motion of a nonlinear dynamic system Objective of nonlinear
. M)'i(t) + CX(t) + Kx(t) + }lnl,s(x(t)) + “nl,d(x(t)), —_ ue(t) identification is to .dfetermme
X these quantities

* A Nonlinear Normal Mode (NNM) is a solution to the underlying conservative system
* MXpnm + KXpnm + Unis (Xpnm) = 0
* Xnnm 18 the NNM response

* This implies
* CXpnm + unl,d(xnnm) = Ug

* Thus, if Xppm = 2n AnCos(nwt) then u, = )., b,sin(nwt)
* Harmonics due to nonlinearities

e Excitation is 90° out of phase with response (phase quadrature
p p q

* Analogous to force appropriation testing to extract linear frequency and damping
* This must hold for each harmonic of each DOF

* Peeters [1,2] showed NNM 1solation can be approximately achieved using single input excitation

This phase quadrature criterion will be used in nonlinear testing to isolate the target mode




Test Set-Up and Linear Modal Analysis Results
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% Description ‘

129 0.61 15t bend of Beam in X-direction
Bl 17 0.09 1t bend of Beam in Z-direction
Bl 386 0.07 Ovaling of Cylinder
B 392 0.06 Ovaling of Cylinder

547 0.30 Axial mode

945 0.42 Ovaling of Cylinder
BEE 950 0.46 Ovaling of Cylinder

1025 0.08 2 bend of Beam in X-direction
BEE 1224 0.42 Ovaling of Cylinder
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Control Scheme for Nonlinear Testing

Trigger once at quadrature:
90+0.2° phase for 20 consecutive frames
&S Asin(w;t)

d Function
| Generator Amplifier

O

Force

Only controlling and inputting the
fundamental frequency

Shaker

Controller
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Beam Tip
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DAQ
Computer

Bk DAQ 76 Channels

* 95 voltage increments were used (quadrature
was achieved for 95 different excitation
amplitude levels)

* Small increases in amplitude

Objective of nonlinear testing: excite mode 7 using force appropriation to characterize nonlinearity



Force and Acceleration Response
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* Force appropriation testing controlled as desired and nonlinear effects evident in data

* Remainder of presentation will investigate nonlinear analogies of linear modal analysis:

* Natural frequency, MIFs, mode shapes, and damping



Frequency Content and Tracking

* Measured signals were fit to a sum of sines and
cosines for a selected number of harmonics

*r(t) = Z{f:lAk sin(kwt) + By, cos(kwt)

* Amplitude and phase of each harmonic was then
computed

* Plots below show amplitude of first 16 harmonics
for each frame for the excitation force and control
acceleration
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Mode Indicator Functions

Nonlinear Normal Mode Appropriation Indicator (NNMAI) Power Based Mode Indicator Function (PBMIF)
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Mode Shape Analysis

* Computed Modal Assurance Criterion (MAC) between the deflection shapes of the fundamental frequency
and the linear mode shapes

* MAC value for mode 7 (target mode) does not drop below 0.999
¢ Shape of target mode is not changing with amplitude

* Thus, we assume that a modal filter can be applied to isolate the responses of each mode
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Mode Shape Analysis

* The modal filter was applied to the response data to investigate the frequency content of each mode
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Conclusions and Future Work

* A SISO control system was used to excite mode 7 by achieving quadrature between the excitation and
control location

* Achieved maximum acceleration of 400g while being well below amplifier limits
* The response of the 9™ harmonic was due to an interaction between modes 7 and 14

* The uncontrolled response of the 9™ harmonic increased uncertainty in the purity of NNM response as
indicated by MIFs

* Future work will focus on multi-harmonic control to achieve quadrature for all significant harmonics

* A framework for extracting nonlinear damping has been started, but more development is needed

[1] M. Peeters, G. Kerschen and J. Golinval, "Dynamic testing of nonlinear vibrating structures using nonlinear normal modes," Journal of Sound and Vibration, vol. 330, pp. 486-509, 2011.
[2] M. Peeters, G. Kerschen and J. Golinval, "Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration," Mechanical Systems and Signal Processing, vol. 25, pp. 1227-1247, 2011.
[3] S. Peter and R. L. Leine, "Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation," Mechanical Systems and Signal Processing, vol. 96, pp. 139-158, 2017.
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Nonlinear Damping Estimation

* Nonlinear damping is computed using the energy dissipated per cycle of oscillation of the target mode

* The wotk done by the modal dissipation force, W, ., is the integral of the modal dissipation fotce, u,

times the modal displacement, q

* Wydiss = Sﬁuq,ddq

* If the NNM is appropriately isolated, the modal dissipation force is equal to the modal excitation force, u,..

Thus
* Wy diss = ﬁuq’edq = Sﬁuq,eth = Sﬁceffqzdt
*Uge = Ugq = Ceffd

* c. 1s analogous to 20w, and is assumed constant for each
excitation level

* c.¢ can be tracked to determine its dependency on response
amplitude
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Modal Dissipation Force

Nonlinear Damping Estimation
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9th harmonic significant

* Oscillations in modal dissipation force vs displacement due to Oth harmonic in excitation force

* Low level c ¢ does not connect with linear value
* Not achieving low enough amplitude in nonlinear testing?

* Throughout the many tests (low and high level) on CPB, the damping varied
* Epoxy between plate and beam deteriorated (eventually failed altogether)

* There is higher uncertainty in damping where 9 harmonic is significant



Controller Performance

* If quadrature was not achieved after 50 tries, the convergence tolerances were doubled

* Convergence criteria reset after each frame

* Due to noise, the low level data needed more control iterations to converge, thus the final phase error is

beyond the original 0.2°
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Mode Indicator Functions

* Two MIFs are shown here to judge purity of NNM isolation

Nonlinear Normal Mode Appropriation Indicator (NNMAI)
* Developed by Peeters, et al.[2]

T
° NNMAI — 121’2]:1Re()/k)H Re()/k)
, YrY

Vector of complex
Number of

Fourier coefficients of
acceleration response

* Assumes a purely sinusoidal input (purely imaginary in
the complex plane)

included harmonics

* NNMALI is a measure of how purely cosinusoidal the
response of each harmonic 1s (purely real in complex

plane)
* Equals 1 when NNM is perfectly isolated

Power Based Mode Indicator Function (PBMIF)
* Developed by Peter [3]

* Derived from electrical engineering concepts

* Uses only the drive point force and response

« PBMIF =§

.S=\/P2_|_Q2

Distortion Power
Power exchanged between
different harmonics in
force and velocity

Apparent Power

RMS measure of | Active Power Reactive Power

Power associated | Power associated with
with response in response 90° out of

quadrature quadrature

total power

* NNM is perfectly isolated when Q) =D =0,
resulting in PBMIF = 1

[2] M. Peeters, G. Ketschen and J. Golinval, "Modal testing of nonlinear vibrating structutes based on nonlinear normal modes: Expetimental demonstration," Mechanical Systems and Signal Processing, vol. 25, pp. 1227-1247, 2011.
[3] S. Peter and R. I. Leine, "Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation," Mechanical Systems and Signal Processing, vol. 96, pp. 139-158, 2017.



Distortion Power Terms at Frame 69
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Mode Shape Analysis—Other Potential Interactions

* Plotting the evolution of all harmonics with the linear natural frequencies will show potential modal :
interactions with the target mode

* There are many instances of harmonics crossing linear natural frequencies of higher modes, but only mode
14 was shown to significantly respond in the measured data

* Potentially indicates that there must be shape compatibility in addition to frequency/harmonic alignment for
modes to interact
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