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Radiography at the NNSS



Blur in x-ray imaging
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x-ray source

Thick monolithic scintillator

X-rays near the edge of the 
scintillator have a larger 
apparent diversion than x-rays 
near the center. This effect 
becomes more pronounced as a 
scintillator becomes thicker.

Spatially varying blur in x-ray imaging with thick 
scintillators and cone beams
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Synthetic data from optical software
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Synthetic data example 1: radially symmetric 
object



Synthetic data example 2: Orion nebula



Real data: checkerboard object



Standard deconvolution model

• 𝑩: image data
• Blurred and noisy

• 𝒃 = 𝑣𝑒𝑐 𝑩 : column stacked 
image data

• 𝑿: image reconstruction
• Unknown, deblurred 

• 𝒙 = 𝑣𝑒𝑐 𝑿 : column stacked 
image

• 𝑨: Blurring matrix 
• Based on a known blurring 

kernel

𝒃 = 𝑨𝒙
𝒙 = 𝑨⊤𝑨 + 𝛾𝑳 −𝟏 𝑨⊤𝒃

• 𝛾: regularization scaling 
parameter

• 𝑳: regularization matrix 



Standard deconvolution model with UQ

• Likelihood:
• 𝒃|𝒙, 𝜆 ∼ 𝑁 𝑨𝒙, 𝜆−1𝑰

• 𝜆: likelihood precision 

• Prior:
• 𝒙|𝛿 ∼ 𝑁 𝟎, 𝛿𝑳 −1

• 𝛿: prior precision

• 𝑨: Blurring matrix 
• Based on a known blurring 

kernel

• 𝑳: regularization matrix

• 𝑯𝝀,𝜹 = 𝜆𝑨⊤𝑨 + 𝛿𝑳

𝒃 = 𝑨𝒙 + 𝝐

𝒙|𝒃, 𝜆, 𝜹 ∼ 𝑵 𝜆𝑯𝜆,𝛿
−𝟏 𝑨⊤𝒃,𝑯𝜆,𝛿

−𝟏

• Hyperprior parameters:
• 𝜆 ∼ Γ 𝛼𝜆, 𝛽𝜆
• 𝛿 ∼ Γ 𝛼𝛿 , 𝛽𝛿



Problem with the deconvolution approach

• When blur varies spatially, assuming the same blurring kernel 
everywhere is incorrect and can result in poor reconstructions



Spatially Varying Parameters and Multi-
regularization
• Allow different 

regularization 
parameters at different 
locations in the signal
• 𝝀, 𝜹 are now vectors

• Allow different 
regularizations 
depending on the signal
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Spatially Varying Parameters and Multi-
regularization in 2D
• Need to choose how to partition the image for regularization

• Need methods that will work on large (e.g. 4k x 4k) images

Truth Reconstruction Blurred Partition



Possible approaches to spatially varying 
deblurring
• Piecewise convolution algorithms

• Wavelet based deblur

• Machine Learning


