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Blur in x-ray imaging

Camera

Visible light (lens and detector)

\/
/\

Pl A AN
F iy ry.:

X-ray source

Thin scintillator



Spatially varying blur in x-ray imaging with thick
scintillators and cone beams
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X-rays near the edge of the
scintillator have a larger
apparent diversion than x-rays
N near the center. This effect
becomes more pronounced as a
scintillator becomes thicker.
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Spatially varying blur in x-ray imaging with thick
scintillators and cone beams
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Synthetic data from optical software
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Synthetic data example 1: radially symmetric
object
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Synthetic data example 2: Orion nebula
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Real data: checkerboard object
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Standard deconvolution model

* B:image data
e Blurred and noisy
b = vec(B): column stacked
image data
* X: image reconstruction
 Unknown, deblurred
« x = vec(X): column stacked
image
e A: Blurring matrix

* Based on a known blurring
kernel

b= Ax
x=(ATA+yL) 1A™b

* y:regularization scaling
parameter
e L: regularization matrix



Standard deconvolution model with UQ

e Likelihood:
e b|lx,A ~ N(Ax, A"1I)
e A: likelihood precision
* Prior:
* x|6 ~N(O,(5L)™)
e O: prior precision
e A: Blurring matrix

* Based on a known blurring
kernel

* L: regularization matrix
¢ Hl,(f — AATA + oL

b=Ax+ €
x|b,2,8 ~ N(AH;} ATh, H;})

« Hyperprior parameters:
* A~T(ay, L)
* 6 ~T'(as, Bs)



Problem with the deconvolution approach

* When blur varies spatially, assuming the same blurring kernel

everywhere is incorrect and can result in poor reconstructions
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Spatially Varying Parameters and Multi-
regularization
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Spatially Varying Parameters and Multi-
regularization

* Allow different
regularization
parameters at different
locations in the signal

A, & are now vectors
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Spatially Varying Parameters and Multi-
regularization in 2D

* Need to choose how to partition the image for regularization
* Need methods that will work on large (e.g. 4k x 4k) images

Reconstruction Blurred Partition




Possible approaches to spatially varying
deblurring

* Piecewise convolution algorithms
* Wavelet based deblur
* Machine Learning



