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Abstract

High resolution electron backscatter diffraction (HREBSD), an SEM-based diffraction technique, may be used to mea-
sure the lattice distortion of a crystalline material and to infer the geometrically necessary dislocation content. Uncer-
tainty in the image correlation process used to compare diffraction patterns leads to an uneven distribution of measure-
ment noise in terms of the lattice distortion, which results in erroneous identification of dislocation type and density. This
work presents a method of reducing noise in HREBSD dislocation measurements by removing the effect of the most
problematic components of the measured distortion. The method is then validated by comparing with TEM analysis of
dislocation pile-ups near a twin boundary in austenitic stainless steel and with ECCI analysis near a nano-indentation
on a tantalum oligocrystal. The HREBSD dislocation microscopy technique is able to resolve individual dislocations
visible in TEM and ECCI and correctly identify their Burgers vectors.
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1. Introduction

The mechanical behavior of ductile, crystalline mate-
rials is dictated largely by the collective motion and ac-
cumulation of dislocations. A fundamental understand-
ing of how the dislocation state in a material evolves as a
function of applied loading conditions is essential to un-
derstanding basic material behavior such as work harden-
ing, fatigue damage accumulation, and creep. Detecting
and mapping dislocation structures has historically been
the domain of transmission electron microscopy (TEM),
where individual dislocations and dislocation networks
can be resolved and characterized in terms of their density,
slip plane, line direction, and Burgers vector. However,
TEM is limited in both the maximum characterizable area,
which is on the order of tens to hundreds of microns, and
maximum sample thickness, requiring destructive sample
preparation and limiting in situ deformation investigations
to thin films. For these reasons, TEM-based dislocation
characterization excels at understanding local dislocation
phenomena, but not at mesoscale mapping of dislocation
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structures and their evolution under applied loading con-
ditions, motivating the search for additional avenues for
dislocation characterization.

Electron channeling contrast imaging (ECCI) is a
scanning electron microscope (SEM)-based technique
that offers an alternative to TEM for the direct imaging
and characterization of dislocation structures [1, 2]. While
ECCI offers significantly weaker contrast, is often more
limited in tilt range, and is more difficult to carry out than
TEM, particularly if the instrument at hand does not have
selected area electron channeling capabilities, it offers the
ability to examine the dislocation structures in the near
surface region of bulk samples. Thus, ECCI is not limited
to thin foils and destructive sample preparation, allowing
ECCI to be carried out on very large areas of interest. Fur-
thermore, ECCI allows TEM style contrast analysis to de-
termine Burgers vectors and dislocation line direction [3–
5].

Electron backscatter diffraction (EBSD) based dislo-
cation microscopy provides another method for measur-
ing dislocation content in an SEM. Conventional EBSD
software/hardware set-ups determine the local crystallo-
graphic orientation of a material with about 0.1-0.5o reso-
lution [6, 7]. This orientation information may be used
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to infer the geometrically necessary dislocation (GND)
content of the material via the Nye-Kröner-Bilby rela-
tionship in a continuum sense [8–11]. High resolution
EBSD (HREBSD), a means of extracting relative elas-
tic strain and misorientation between patterns to a much
greater accuracy (around 0.006o for typical equipment and
ideal conditions [12]) has further improved the resolution
and accuracy of EBSD dislocation microscopy [13–24].
HREBSD dislocation microscopy has simple, relatively
non-destructive sample preparation like ECCI, but it has
the advantage of being largely automated. Using ECCI to
identify dislocations requires manual tilt and rotation pro-
cedures, which are not typically automated. Because of
long exposure times for diffraction patterns and compu-
tationally intensive image processing, HREBSD can take
more instrument time and analysis time than ECCI, but
it requires far less user input. Because of the necessity
of calculating numerical derivatives for dislocation anal-
ysis, HREBSD has inferior spatial resolution compared
to ECCI. However, because it is formulated for contin-
uum analysis, HREBSD is superior at analyzing dislo-
cation content at large length scales and higher disloca-
tion densities compared to ECCI. HREBSD dislocation
microscopy also has difficulty sorting out dislocation den-
sities of individual Burgers vector/line direction combina-
tions because relating the continuum dislocation density
tensor to individual dislocation densities is an undercon-
strained problem. When it may be assumed that only one
dislocation type is present in an area (for example at small
length scales where only a single dislocation or pile-up
strongly influences the lattice distortion gradients), and
that dislocation type’s line direction is not parallel to the
surface, the exact dislocation type may be recovered [19].
Because of these contrasting, but overlapping capabilities,
ECCI and HREBSD maybe thought of as complementary
techniques.

The resolution of HREBSD dislocation microscopy
has been steadily improving. Recently, studies have fa-
vorably compared the results with ECCI, but these studies
stopped short of identifying individual dislocations with
both methods [25–27]. Prior work by the authors has
shown qualitative agreement between TEM and HREBSD
dislocation measurements [28]. Both the deformation res-
olution and the spatial resolution of HREBSD limit its
utility in detecting individual dislocations. Several ef-
forts are underway that will favorably impact the spa-
tial resolution of EBSD, including transmission Kikuchi
diffraction (TKD) [29–31], direct electron detectors [32]
and improved EBSD pattern simulation (which allows the
use of lower accelerating voltage) [33–35]. TKD in par-

ticular has been shown to accurately detect dislocation
fields [36] and, when using the cross-correlation-based
approach of HREBSD, has been used to accurately mea-
sure the strain fields around individual dislocations in
tungsten [37], though this comes at the expense of thin-
ning the sample to electron transparency. Because of con-
tinued improvements in EBSD/TKD detector technology,
such as the recent advent of complementary metal-oxide
semiconductor (CMOS)-based detectors associated with
an order of magnitude increase in the rate of high reso-
lution pattern collection, HREBSD and HRTKD are ex-
pected to see increasingly widespread use.

This paper presents a method for improving the ge-
ometrically necessary dislocation density resolution of
HREBSD dislocation microscopy by reducing the effects
of noise in the process. This method takes advantage of
the uneven noise distributed between components of the
deformation gradient tensor when measured via HREBSD
[38, 39]. These noisy deformation components may be
isolated as individual terms of the measured deformation
gradient when transformed into the reference frame of the
diffraction detector. When applied, this noise reduction
operation allows HREBSD to identify individual dislo-
cations (or clumps of a few similar dislocations if they
are close together) by their Burgers vectors and in some
cases their line direction as well. This capability is con-
firmed by comparing HREBSD results to dislocation anal-
ysis performed by TEM on two dislocation pile-ups in
an austenitic 302 stainless steel sample. The method is
also applied to an HREBSD scan from a previous study
[27] that was taken around a nanoindent in tantalum that
was concurrently characterized with ECCI. The implica-
tions of this work on the limitations and capabilities of
HREBSD dislocation microscopy are discussed in detail
in the conclusion.

2. Background

HREBSD is a method where image correlation is per-
formed between a reference and a test EBSD pattern to
determine their relative deformation in the plane of the
diffraction detector. This deformation may then be related
via the geometry of diffraction to the deformation between
the lattices where each pattern originated. Although more
complex methods of image correlation have been devel-
oped recently for HREBSD [40–43] this paper will fo-
cus on cross-correlation, which is the standard method
used with HREBSD because of its computational speed
and simplicity. With cross-correlation HREBSD (some-
times abbreviated CCEBSD), the two patterns are divided
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into a number of overlapping regions of interest (ROIs)
and cross-correlation is performed to measure a shift be-
tween the patterns for each ROI. The relationship between
a measured shift, ~q, and the desired 3D elastic deforma-
tion gradient between the patterns, F, is diagrammed in
Figure 1.

~P

~r

∆~P

~r ′

F~r

~q

ẑ

~x

Figure 1: Illustration of the geometry of HREBSD relative to the de-
tector used to collect the pattern (bottom).

The other terms in Figure 1 are ~P, the location of the
reference interaction volume relative to the EBSD detec-
tor (also called the pattern center), ∆~P, the displacement
vector between the test pattern’s interaction volume and
the reference pattern’s, and ~x, the location of the ROI’s
center. The vector~r is defined as the vector between the
reference pattern center and the ROI center, and~r ′ is de-
fined as the vector between the test pattern interaction vol-
ume and the shifted center of the ROI. Any change in the
direction of~r ′ relative to~r is due to the deformation gradi-
ent between the patterns, i.e.~r ′ ‖F~r. The direction normal
to the plane of the detector is ẑ. The relationship between
the shift, the relative deformation gradient and the rele-
vant geometric terms is encapsulated in Equation 1 (see
[41] for the full derivation of this equation):

~q = ∆~P+F~r
−(~P+∆~P) · ẑ

F~r · ẑ
−~r (1)

Equation 1 from at least four non-collinear ROIs form a
system of equations that may be used to calculate eight
degrees of freedom of F. In practice, anywhere from 20 to
200 ROIs are used, with 50 being a typical value. The last,
missing degree of freedom is approximately equal to the
spherical strain component of F and cannot be recovered
because of the projection of F~r onto the detector surface.
This missing degree of freedom is typically recovered ei-
ther by enforcing the traction free condition [44], or by

recovering only the portion of the deformation gradient
associated with deviatoric stress [45]. For typical detector
resolutions and pristine patterns, the relative accuracy of
this method is often quoted as 200 microstrain [12].

Naturally, uncertainty in ~q propagates as uncertainty
in F. However, it is less obvious that this uncertainty is
not evenly distributed across all components of F. In order
to elucidate this relationship, it is convenient to substitute
(~x−~P) for~r. Additionally, the substitution F = I+β (β
here is commonly referred to as the lattice distortion) is
made so that each term has a similar magnitude:

~q = ~P+∆~P+(I+β )~r
−(~P+∆~P) · ẑ
(I+β )~r · ẑ

−~x (2)

The derivatives of ~q with respect to the terms of β pro-
vide insight into how the different terms will have differ-
ent sensitivity to error in~q. The derivatives are determined
at the point where β = 0 and ∆~P =~0 and in the reference
frame where the z-axis is normal to the detector and the
origin lies in the plane of the detector (i.e. q3 = x3 = 0)
[38]:

dqi

dβ jk
=



0 i 6= j, j 6= 3

xk−Pk i = j,k 6= 3

−P3 i = j,k = 3
(xk−Pk)(xi−Pi)

P3
j = 3,k 6= 3

Pi− xi j = k = 3

(3)

where i ∈ {1,2} and j,k ∈ {1,2,3}. From Equation 3, we
see that to a first order approximation the β11, β12, β21 and
β22 terms represent a linear deformation between the two
patterns in the plane of the detector, β13 and β23 represent
a translation, and β31 and β32 represent non-linear defor-
mation between the patterns [41]. The term β33 repre-
sents a linear dilation in the pattern plane, and is therefore
redundant with the linear transformation terms, which is
why the traction free or deviatoric constraint is required
in HREBSD. It is also important to note that individual
terms have very different relationships with different com-
ponents of the pattern center, ~P. For example, the terms
that approximate a linear shift, β13 and β23 are approxi-
mately independent of (x1−P1) and (x2−P2) and have a
linear relationship with P3, while the non-linear deforma-
tion terms β31 and β32 have a quadratic relationship with
(x1−P1) and (x2−P2) and an inverse relationship with P3.

While these derivatives are instructive, particularly
with regards to how simple geometric factors like detector
distance and ROI spacing can affect HREBSD results, the
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relationship between uncertainty in individual terms of β ,
σ(βi j), and uncertainty in measurement of ~q is more use-
ful. Because β depends on the particular arrangement of a
large number of ROIs used, it is difficult to obtain or inter-
pret these results analytically, even with symbolic solvers.
Instead, the relationship between uncertainty in ~q and un-
certainty in β was determined via simple Monte Carlo
simulations. A similar simulation was performed previ-
ously, but with no emphasis on individual terms of the de-
formation gradient [46]. In reality, measurement error in
~q stems from the resolution of the diffraction images and
white noise in the pattern [47]. To simulate this, the shifts,
~q, were drawn from a normal distribution, with a standard
deviation of σq for both the x and y component. These ran-
domly generated shifts were then inserted into Equation 1,
a system of equations is created from all the shifts and β

is calculated. Because there was no simulated lattice dis-
tortion, this β is entirely the propagated error. Repeating
this process a large number of times allows the recovery
of σ(βi j). The N ROIs were arranged annularly about the
center of the pattern with a radius of ρ . The pattern center
was selected to be ~P = [0.5;0.5;d], in units of fractions of
the phosphor screen width. The expression d is referred to
as the detector distance. The ninth degree of freedom of β

was determined by setting the trace of β to 0, which is a
linear approximation of the deviatoric constraint for cubic
materials. Note that this simple Monte Carlo simulation
requires no crystallographic information, and no simula-
tion of either EBSD patterns or cross-correlation, because
the shift error is simply drawn from a normal distribution.
The parameters σq, ρ , d and N were varied over ranges
relevant to HREBSD (σq = 0.01 to 1 pixel, ρ = 15 to 45%
of the detector screen width, d = 20 to 100% of the detec-
tor screen width, and N = 4 to 100) and 10,000 simula-
tions were performed to determine σ(βi j) at each set of
HREBSD parameters. From this data, the following rela-
tionships were determined empirically:

σ(β13),σ(β23)≈
√

2
d
√

N
σq (4)

σ(β31),σ(β32)≈
2d

ρ2
√

N
σq (5)

σ(β12),σ(β21)≈
√

2
ρ
√

N
σq (6)

σ(β11),σ(β22)≈
1.05
ρ
√

N
σq (7)

σ(β33)≈
0.67
ρ
√

N
σq (8)

The relationship between sensitivity and the geometric pa-
rameters d and ρ is supported by the derivatives of~q with
respect to the terms of β , where the detector distance, d,
is analogous to P3 and the ROI radius, ρ , is analogous to√
(x1−P1)2 +(x2−P2)2. The inverse relationship with√
N is consistent with the central limit theorem. However,

there are three important caveats to go along with Equa-
tions 4-8. The first is that the constants depend on the
choice of constraint to recover the ninth degree of free-
dom. The second is that the inverse

√
N relationship as-

sumes that additional shifts are independent, meaning it
should only hold as long as the ROIs are not overlapping.
Finally, these relationships depend on the ROIs being an-
nularly distributed about the pattern center, and any varia-
tion in that arrangement will lead to different results. Us-
ing these results and assuming typical geometric param-
eters (ρ = 0.25 and d = 0.65 in units of fractions of the
detector width), the ratio of the noise in the most suscep-
tible terms (β31 and β32) to the least susceptible (β13 and
β23) is 9.6, almost an order of magnitude.

This model of the noise in different terms of β mea-
sured by HREBSD holds well with actual data from a
piece of epitaxial silicon that was scanned in a previous
work [39]. HREBSD was performed with each point in
the scan as the reference pattern with its neighbor to the
right as the test pattern (such as would be calculated to
determine lattice distortion gradients). The material was
assumed to be strain and defect free, so any measured de-
formation was assumed to be error due to random noise.
The scan was taken at 20 kV with a beam current of 13 nA
over a 60× 60 micron area with a step size of 0.4 microns
in a HeliosTM SEM. The patterns were collected with no
binning on a Hikari SuperTM camera with no gain and an
exposure time of 200 ms. The working distance was ap-
proximately 12 mm. A histogram of each term of β in
the reference frame of the detector is shown in Figure 2a.
For comparison, a similar histogram for data generated via
Monte Carlo is shown in Figure 2b. For the simulation, no
real distortion was simulated, only noise. The geometric
parameters were selected to match the real data, d = .65,
ρ = 0.25, and N = 48. The shift error, σq was fit em-
pirically so that the data sets had the same magnitude, and
was found to be 8.2% of a pixel. Because the real scan had
overlapping ROIs, σq must be thought of as a fitting pa-
rameter, rather than an estimate of the actual uncertainty.
Note the good agreement between the real data and the
simulation.

While highly effective at modeling the relative noise
of individual terms in HREBSD measurements of the de-
formation gradient, this model relies on the assumption
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Figure 2: Histograms of the terms of β in the detector reference frame
for (a) an epitaxial silicon sample where any measured distortion is
assumed to be erroneous and (b) a Monte Carlo simulation where the
measured shifts were random noise.

that noise in the shifts is uniform and random. This is
not the case in reality. For example, pattern center er-
ror can result in offset type error [38]. The fact that β13
and β23 do not have a mean of 0, for example, suggests
that there is some error in the calibration of the spacing
between points in the scan, ∆~P. Additionally, the signal
to noise ratio of the pattern depends on the level of illu-
mination, which varies across the surface of the detector,
meaning that σq is not constant for all points on a pat-
tern. Finally, shift error will also depend on the sharpness
and complexity of the features in the ROI, which means
that shift error will also be a function of crystal orienta-
tion. All of these effects are small or may be mitigated
with good practice, and so their inclusion is not necessary

to qualitatively match the experimental results in Figure
2a. Shift error will also strongly depend on ROI size, but
it should have no effect on the relative error of different
components.

Once the relative distortions between neighboring
points in a scan is measured via HREBSD, they may be
used to estimate the two orthogonal derivatives of the dis-
tortion on the surface of the material with the following
equation:

dβ

dxi

∣∣∣∣
~p
=

β~p,~p+∆~xi

L
(9)

where ~p is a location on the surface of a scan, ∆~xi is the
vector between the first pattern and an adjacent pattern,
L is the spacing between raster points and the magnitude
of ∆~xi, and β~p,~p+∆~xi is the relative distortion between pat-
terns at location ~p and ~p+∆~xi. These derivatives may be
obtained by cross-correlating each pattern with its near-
est neighbors or by cross-correlating each pattern with a
single reference pattern per grain and then calculating the
relative distortions. In this work, each relative distortion
is calculated separately, using every point as a reference
for its neighbors. Determining relative distortions in this
way minimizes the need for remapping [40, 41, 45, 48],
reduces noise in the calculation by not compounding the
random error between two separate cross-correlations and
eliminates any bias associated with reference pattern se-
lection. The downside of performing individual cross-
correlations for each derivative is that it is twice as com-
putationally intensive as computationally intensive as the
reference pattern method (without remapping) and does
not recover relative strain and orientation information at a
grain level.

These derivatives may be related to the geometrically
necessary dislocation content of the material via the fun-
damental relation of continuum dislocation theory [49–
51]:

α = ∇×β (10)

Nye’s tensor, α , provides a concise representation of net
dislocation density and type on a continuum level. Nye’s
tensor may then be related to dislocation densities on in-
dividual dislocation types[52]:

α =
N

∑
t=1

ρ
t~bt ⊗~̀t (11)

where ρ t , ~bt , and ~̀t , represent the dislocation density,
Burgers vector and dislocation line vector of each disloca-
tion type (indicated by t), respectively. A dislocation type
is here defined as a unique combination of Burgers vector
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and dislocation line vector. There are a finite number of
possible Burgers vectors, but due to the nature of mixed
character dislocations there can be an infinite number of
unique dislocation line vectors. To make this problem
more tractable, this analysis makes the assumption that
all dislocation content may be modeled as a linear super-
position of pure edge and pure screw dislocation densities.
Under this assumption, an FCC material like the austenitic
stainless steel in this study, has 6 screw dislocation types
for each Burgers vector in the family 〈110〉 (this method
cannot distinguish between screw dislocations with the
same Burgers vector on different slip planes) and 12 edge
dislocation types (one for each slip system with 〈110〉 a
Burgers vector and a {111} slip plane). For BCC materi-
als there are four screw dislocation types (one for each
Burgers vector in the family 〈111〉), but depending on
what slip planes are considered, the number of edge dis-
location systems can vary. For the tantalum used in this
study, both the {110} and {112} slip planes were consid-
ered for a total of 24 edge dislocation systems. Assuming
we have distortion derivatives in only two directions (be-
cause a numerical derivative normal to the surface would
only be possible via sectioning), we can only determine
3 terms of α , αi3. By assuming that the strain part of
the distortion derivatives is small, Pantleon noted that an
additional two terms (α12 and α21) and a difference of
terms (α11−α22) become available [53]. This means that
if the dislocation densities of individual dislocation types
are desired, Equation 11 becomes an under constrained
problem with 18 unknowns and at best 6 constraints (at
worst 3). These constraints are usually incorporated into
an energy minimization problem:

minimize
N

∑
t=1
|wt

ρ
t |, such that α =

N

∑
t=1

ρ
t~bt ⊗~̀t (12)

where wt is a weighting factor for each dislocation type
that allows more energetically favorable dislocations to be
better represented and only the known/estimated terms of
α are used. In this study, weight factors are set to unity.
Note that the inclusion of the energy minimization con-
straint is somewhat arbitrary, because there is no guaran-
tee that the dislocations at a given point are not in some
metastable state. When calculating total dislocation den-
sity, also known as bulk dislocation density, use of the
energy minimization constraint represents a lower bound
of the dislocation density. For FCC materials, the 6 con-
straints and the minimization have been shown to be ef-
fective at resolving all 18 dislocation types when they are
present individually (such as at very low length scales, as

in this study), except in specific pathological cases where
the orientation of the crystal is such that these dislocations
are near parallel to the sample surface [19]. When multi-
ple dislocation systems are present or when more dislo-
cation systems must be considered, such as in the case
of HCP materials or BCC materials when {112} and/or
{123} planes are also taken into account, interpretation of
these results becomes more ambiguous.

Selection of a step size for an EBSD scan, the spac-
ing between points probed with the SEM, has a strong in-
fluence on dislocation density measurements because this
step size also serves as the step size for the numerical
derivative of the lattice distortion (Equation 9). At larger
step sizes, the effect of noise is much lower, but more
of the dislocation content cancels out due to the length
scale dependent definition of geometrically necessary dis-
locations [54–58]. For this reason, the step sizes in this
study are very low, 30 nm for the stainless steel and 25
nm for the tantalum, in an attempt to detect the total dis-
location content of the material. The Nye-Kröner-Bilby
method presented here was originally intended for treat-
ment of dislocation densities as continua. Here, however,
this method will be applied at a length scale where the in-
fluence of individual dislocations will be discernible, and
the continuum assumption breaks down, which will nega-
tively affect the accuracy of this method.

3. Method

The missing derivatives of the lattice distortion, βi j,3,
mean that only the αi3 terms are known for certain, and
only when calculated in a reference frame where the z-
axis is normal to the sample surface. This in turn prevents
rotating α into the detector frame, where the noisy com-
ponents on the distortion derivatives are isolated into in-
dividual terms. Instead, the noisy terms in the derivative
must be dealt with in the detector reference frame before
rotating into the sample frame and taking the curl. The
method presented here for minimizing the contribution of
the noisy distortion terms on the determination of disloca-
tion density is referred to as enforced antisymmetry. This
method involves sacrificing some amount of information
to reduce the effects of noise on dislocation density calcu-
lations.

For this method, the relative elastic distortions be-
tween points are rotated into the reference frame of the
detector and the problematic terms, β31 and β32, are dis-
carded and replaced by -β13 and -β23, respectively. This
substitution is appropriate only when the relative distor-
tion is expected to be approximately antisymmetric, as is
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the case when the distortion is small, strain free rotation.
The strain free assumption is already made in the devel-
opment of Nye’s tensor and in Pantleon’s assumption to
recover more of the missing terms of Nye’s tensor. The
relationship between noise in measuring dislocation shifts
and terms of β (Equations 4-8) suggest that making this
change reduces the operator 2-norm of the noise by a fac-
tor of 2.8 for a typical HREBSD set up. This comes at
the expense of some bias error associated with the ne-
glected symmetric part of the discarded and replicated
terms. Other attempts to neglect strain effects, such as
averaging the β12 and -β21 terms, using only the antisym-
metric part of β (ω) and/or performing polar decompo-
sition after enforcing antisymmetry to enforce a pure ro-
tation, led to a discrepancy between the HREBSD-based
GND measurements and the ECCI- and TEM-based mea-
surements in terms of the predicted dislocation system,
presumably because the strain portion of the derivatives is
critical. This result suggests that strain free assumptions
(like Pantleon’s assumption and the enforced antisymme-
try presented here) introduce error into Nye-Kröner anal-
ysis at small length scales. Despite this potential source
of error, qualitative agreement is still achieved between
HREBSD dislocation microscopy and ECCI and TEM.
In order to preserve as much strain information as pos-
sible, only the noisiest two terms are discarded. Once this
antisymmetry constraint is enforced, the relative distor-
tion terms may be rotated back into the sample frame, the
derivatives may be determined using Equation 9, and the
whole algorithm proceeds as expected. In practical terms,
the strains tend to be a small part of the relative distor-
tion when step sizes are large because a large number of
dislocations will tend to arrange themselves in a way that
minimizes residual elastic energy, i.e. strain. However,
when step sizes and dislocation densities are lower, as in
the case when there is an attempt to locate single dislo-
cations, this, and other strain free assumptions may intro-
duce error.

This method was tested on a scan taken from a re-
gion on a stainless steel sample after first characteriz-
ing the dislocation content via TEM. The type 302 stain-
less steel sheet was purchased from VWR (Catalog No.
300082-552). A 2×2 cm square piece was cut out with
wire electrical discharge machining (EDM) and annealed
at 1060°C for 30 minutes in a reducing atmosphere of N2
and H2 mixture. The annealed sample was then thinned
using Struers Rotopol-15 and a 3 mm disk was prepared
using a punch-out. The disk was then jet polished us-
ing Fischione Model 110 Automatic Twin-Jet Electropol-
isher using a 10% perchloric acid and 90% ethanol solu-

tion at -25°C. Electron micrographs were collected using
a FEI Tecnai F30 TEM at 300 kV acceleration voltage.
EBSD patterns were collected using a TESCAN MIRA3
SEM equipped with an EDAX/TSL Hikari highspeed de-
tector. The accelerating voltage was 20 kV and the sample
was tilted to a conventional 70°. All EBSD patterns were
saved at 1×1 binning (465×465 pixels) for offline anal-
ysis. The HREBSD calculations were carried out using
OpenXY, an open source software package, with modi-
fications to implement the noise reducing methods men-
tioned [59]. The 48 ROIs were sized to be 25% of the
detector width, and they were arranged annularly. Dis-
tortion derivatives were determined by comparing neigh-
boring points, which kept relative distortion terms below
1000µε . In addition to the noise reduction method dis-
cussed, a local average was performed on the distortion
derivatives to smooth the data and eliminate some of the
noise at the expense of spatial resolution. Individual dislo-
cation densities were determined using all 6 of Pantleon’s
constraints.

The noise reduction method was also tested on
an HREBSD scan around a nanoindent in a tantalum
oligocrystal. The area scanned was first characterized via
ECCI analysis. For details concerning the preparation,
HREBSD scan parameters and ECCI analysis of the tan-
talum sample examined in this study, please refer to pre-
vious work by the authors [27].

4. Results

The grain containing the pile-ups was determined to
have a crystallographic orientation defined by the Euler-
Bunge angles [85.6o,39.9o,287.5o], which corresponds to
a surface plane normal aligned with the [3̄14] crystallo-
graphic direction. Figure 3 shows bright field TEM im-
ages of the area of interest in two different diffraction
conditions: ~g = 111 (Figure 3a) and ~g = 022̄ (Figure 3b).
The first pile-up of interest, labeled system 1, is the most
prominent pile-up under the diffraction condition g= 111,
but it is invisible under g = 022̄, indicating that the Burg-
ers vector of the dislocation system is~b= a/2[011], where
a is the lattice parameter. The second pile-up, labeled sys-
tem 2, cuts across the first pile-up and is clearly visible
under ~g = 022̄ but is seen only edge-on under ~g = 111,
indicating that these dislocations lie on the (111) plane.
Additional diffraction analysis identified the system 1 slip
plane and the dislocation line direction as (1̄11̄) and [011]
respectively and the system 2 dislocations as having a
Burgers vector of~b= a/2[01̄1]. Multiple secondary phase
particles with dislocations accumulated around them are
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Figure 3: Bright field TEM images of the dislocation pileups of interest from two different diffracting conditions: g = 111 (a) and g = 022̄ (b).
Red arrows indicate the twin boundary, blue arrows denote the fiducial secondary phase particles, and the black arrows indicate a common point
on the system 1 pile-up.

(a) (b)

Figure 4: Log plot of the total dislocation density of the region of interest as determined by HREBSD without (a) and with (b) enforced antisym-
metry noise reduction.

visible in the image (Figure 3 blue arrows), as well as a
twin boundary (indicated by a red arrow). These features
facilitated direct alignment with the HREBSD scan.

The relative distortion (β ) between each point and its
neighbor to the right and to the top are mapped in Figures
6 and 5 respectively. These relative distortions, used to
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β11 β12 β13

β21 β22 β23

β31 β32 β33

Figure 5: Relative distortion measured via cross-correlation between each point and its neighbor to the right. Distortions are in the reference
frame of the detector screen, where the ẑ-axis is normal to the detector surface
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β11 β12 β13

β21 β22 β23

β31 β32 β33

Figure 6: Relative distortion measured via cross-correlation between each point and its neighbor to the top. Distortions are in the reference frame
of the detector screen, where the ẑ-axis is normal to the detector surface
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(screw)[1̄10] (screw)[1̄01] (screw)[01̄1] (screw)[110]

(screw)[011] (screw)[101] (111)[1̄10] (111)[1̄01]

(111)[01̄1] (11̄1)[110] (11̄1)[011] (11̄1)[1̄01]

(111̄)[101] (111̄)[011] (111̄)[1̄10] (1̄11)[110]

(1̄11)[101] (1̄11)[01̄1]

Figure 7: Dislocation density measured by HREBSD resolved onto individual dislocation types according to Equation 12 in austenitic stainless
steel. Negative densities represent dislocation density with an opposite signed Burgers vector.
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Figure 8: A detail of the dislocation density map for the [011](11̄1)
edge dislocation that shows only the dislocation pile-up on system 1
shown in Figures 3-7.

calculate distortion derivatives, have been smoothed to re-
duce noise. They are presented in the reference frame of
the detector so that the noisy β31 and β32 terms are appar-
ent. These terms are removed and replaced with−β13 and
−β23 respectively before being rotated into the sample
reference frame and used to calculate derivatives. The to-
tal calculated dislocation density (with derivative smooth-
ing and all 6 of Pantleon’s constraints) from the HREBSD
scan of the same area is shown in Figure 4 with and with-
out enforced antisymmetry noise reduction. While the
fiducial features marked in the TEM micrograph are diffi-
cult to distinguish without noise reduction, they are visi-
ble with noise reduction enabled. All of the same features
are highlighted. Note that because the interaction volume
of EBSD is only a few nanometers deep, the dislocation
pile-up appears as a line where the dislocations intersect
the surface of the material.

The HREBSD results for the dislocation density of
each type, as determined by Equation 12, are shown in
Figure 7. Negative values represent dislocation densities
with Burgers vectors that have the opposite sign. The
absolute value of these densities was summed to gener-
ate Figure 4b. System 1 is identified as edge dislocations

with Burgers vector~b = a/2[011] on the (11̄1) slip plane.
System 2 is identified as edge dislocations with Burgers
vector~b = a/2[01̄1] on the (111) plane. That is, in both
cases the dislocation Burgers vector was correctly iden-
tified, but the slip plane and dislocation type were only
identified correctly in system 2. The trace of system 2
with the free surface deviates in the two measurements,
suggesting potential local charging effects near the sec-
ond phase particle during HREBSD pattern acquisition.
One possible cause of this misidentification in system 1
is that the information lost when enforcing antisymmetry
or applying Pantelon’s assumption (both of which involve
neglecting strain) affects the resolution of the disloca-
tion density onto individual slip systems. Note that while
the underconstrained nature of Equation 12 and the arbi-
trary inclusion of the energy minimization constraint can
lead to misidentification, simulations suggest that at this
grain’s orientation under ideal circumstances and includ-
ing Pantleon’s extra constraints, these two dislocations
should be readily resolved. When only the αi3 terms are
considered, distinguishing between the [011](11̄1) edge
dislocation and the [011] screw dislocation becomes am-
biguous. An alternative explanation is that image forces
lead to a change in dislocation line direction where the
dislocation intersects the free surface. Image forces most
strongly affect dislocations that lie parallel to the free sur-
face, causing the dislocation segments near the free sur-
face to bend towards the surface. In the characterized dis-
location systems, TEM analysis showed that the system
2 dislocations lie near-perpendicular to the surface nor-
mal while the system 1 dislocation line direction is near
parallel to the free surface, supporting the image force hy-
pothesis for the dislocation misidentification.

In addition to the identified dislocation systems, there
are regions of high local dislocation density. Some of
these can clearly be attributed to dislocations surround-
ing second phase particles, such as the (1̄11)[01̄1] system
seen in Figure 7, but there is also a large amount of dis-
location density noise for certain dislocation types. Be-
cause the noise has varying magnitude in each term of the
measured distortion (even after enforced antisymmetry),
phantom dislocation identification can still occur in the
measurements.

The dislocation densities measured are all well below
the threshold of one dislocation per pixel. This occurs be-
cause a single dislocation is not detected as a point defect
where it intersects with the surface, but instead as a dif-
fuse distortion field. The diffuse nature of these disloca-
tion densities is due to both the smoothing operation and
the finite size of the EBSD interaction volume, as well as
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b)
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~g = 2̄11̄c)

× 1014 m/m3
0.1 1  10 

Figure 9: Three different images of the dislocation content around a nanoindent in tantalum: Log plot HREBSD total dislocation density without
(a) and with (b) noise reduction as well as an ECCI image (c). Images (a) and (c) are from a previous study by the authors [27]. A red arrow
marks a dislocation pair as an example of a feature visible in both forms of imaging. In (a) and (b), points with a confidence index below .18 are
whited out to exclude the indent and material too damaged or out-of-plane for successful HREBSD.

the fact that the distortion fields around a single disloca-
tion are detectable for at least 100 nm. To emphasize this
effect, a detail of the [011](11̄1) dislocation density map
(as seen in Figure 7) which corresponds to the system 1
pile-up in Figure 3 is shown in Figure 8. Summing the
density at each point in this subsection of the [011](11̄1)
dislocation density map and multiplying by the area re-
sults in a value of only 8.8 dislocations, whereas the TEM
micrograph (Figure 3) suggests that there are actually 23
dislocations intersecting the surface. This discrepancy is
most likely due to one or more of the following factors:
the effect of a finite interaction volume, step size effects
on derivative measurements and the fact that the algorithm
neglects strain (both when applying Pantleon’s assump-
tion and when applying noise reduction). The influence of
these factors should decrease with larger EBSD step sizes.
However, when viewed at this higher magnification, it be-
comes obvious that individual dislocations, which appear
diffuse and equi-axed, have been identified. It is more dif-
ficult to resolve individual dislocations when the disloca-
tion spacing is smaller. Counting the dislocations by hand
in the (11̄1)[011] dislocation density map yields around
20 dislocations, although this method is somewhat sub-
jective and laborious. Note that if all other dislocation
types are taken into account, many of which are prefer-
entially affected by noise, 91.1 dislocations are detected
in this area, which is consistent with the high background
noise. If the actual dislocation type were one of the phan-

tom noise dislocations, detecting it would be less likely.
The noise reduction technique was also applied to an

EBSD scan collected near a nano-indentation in a tanta-
lum oligocrystal. This scan was used in a previous work
by the authors where ECCI analysis was also performed
on the same area and the results were compared [27]. In
the previous study, there was good general agreement, but
correlating individual dislocations was impossible. After
the application of noise reduction, however, features, in-
cluding individual dislocations, are much easier to cor-
relate. The total dislocation density as determined via
HREBSD with and without noise reduction is contrasted
with the ECCI image of the dislocation structure in Figure
9. Agreement is now much more obvious, and individual
dislocations may be directly correlated between the ECCI
and the HREBSD data. In the previous study, the majority
of the individually distinguishable dislocations in the up-
per left quadrant of the ECCI micrograph were found to
be screw dislocations with a Burgers vector of [111]. This
is confirmed by plotting the individual dislocation densi-
ties in Figure 10. A red arrow marks one dislocation pair
in Figures 9 and 10.

5. Conclusion

In this study, HREBSD dislocation density measure-
ments were compared with TEM characterization of two
dislocation pile-ups near a twin boundary in austenitic
stainless steel. To make this comparison possible, the
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(screw)[111] (screw)[11̄1] (screw)[111̄] (screw)[1̄11] (1̄10)[1̄11]

(1̄01)[111] (01̄1)[111] (110)[11̄1] (011)[11̄1] (1̄01)[11̄1]

(101)[111̄] (011)[111̄] (1̄10)[111̄] (110)[1̄11] (101)[1̄11]

(01̄1)[1̄11] (112̄)[111] (12̄1)[111] (2̄11)[111] (1̄12)[11̄1]

(121)[11̄1] (211̄)[11̄1] (112)[111̄] (1̄21)[111̄] (21̄1)[111̄]

(11̄2)[1̄11] (121̄)[1̄11] (211)[1̄11] 1 µm

Figure 10: Dislocation density measured by HREBSD resolved onto individual dislocation types according to Equation 12 near a nanoindent in
tantalum. Negative densities represent dislocation density with an opposite signed Burgers vector. A red arrow marks the dislocation pair also
marked in Figure 9.
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noise in the HREBSD measurements was reduced by dis-
carding problematic terms of the measured lattice distor-
tion in the detector reference frame. The two methods
showed good qualitative agreement as to the location and
distribution of the dislocations. HREBSD dislocation mi-
croscopy successfully identified the Burgers vector of the
dislocations in the pile-ups, but only identified the slip
plane in one of the two systems. It is thought that this is
due to image forces locally changing the dislocation line
direction.

Quantitatively, the predicted densities were low by a
factor of around three compared to the TEM analysis,
most likely due to the effect of finite interaction volume of
EBSD, local smoothing done to reduce noise and the fact
that strain was neglected. Additionally, noise in the dislo-
cation density measurements, which manifests as predic-
tions of dislocation density on other, erroneous slip sys-
tems, were still of a comparatively high magnitude even
with the noise reduction technique. However, use of the
[011](11̄1) dislocation density map to count individual
dislocations yields a more accurate, if crude, estimate of
the actual dislocation content of the material. Consider-
ing that the Nye-Kröner-Bilby method of relating lattice
distortion to geometrically necessary dislocation content
was originally intended to be employed at the continuum
scale, this level of agreement is impressive. Additionally,
it is necessary to assume that strain is negligible at a num-
ber of steps in this technique (Nye-Kröner, Pantleon, and
the assumption made here to perform denoising), which
is not the case at low length scales. This will negatively
impact both quantitative and in some cases qualitative
agreement. To mitigate these issues, future efforts to use
HREBSD/TKD to detect individual dislocations should be
formulated to address the discrete nature of dislocations,
the finite interaction volume size, the presence of strain
at low length scales and the uncertainty in measuring the
lattice distortion gradients. These efforts will likely rely
on forward modeling of the distortion fields around dis-
locations and uncertainty quantification to accommodate
the noise.

The noise reduction technique for HREBSD was also
compared with ECCI characterization of the dislocation
content around a nanoindent in a tantalum oligocrystal.
Both methods successfully identified the dislocations in
the area of interest as screw dislocations with a Burg-
ers vector of [111] showing that the improved resolution
demonstrated in the austenitic stainless steel is not limited
to thin specimens or FCC crystal structures. The ability
to resolve individual defects with EBSD is likely to con-
tinue improving as EBSD hardware and HREBSD meth-

ods continue to develop in terms of both spatial and strain
resolution.
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[50] E. Kröner, Modified green functions in the theory of heteroge-
neous and/or anisotropic linearly elastic media, in: G. Weng,
M. Abe (Eds.), Micromechanics and Inhomogeneity, Springer,
Berlin, 1989, pp. 197–211.

[51] B. Bilby, L. Gardner, E. Smith, The relation between dislocation
density and stress, Acta Metallurgica 6 (1) (1958) 29 – 33.

[52] J. Nye, Some geometrical relations in dislocated crystals, Acta
Metallurgica 1 (1953) 153–162.

[53] W. Pantleon, Resolving the geometrically necessary disloca-
tion content by conventional electron backscattering diffraction,
Scripta Materialia 58 (11) (2008) 994 – 997.

[54] D. Field, C. Merriman, J. Smith, Excess dislocation density mea-
surement dependence on EBSD step size, Microscopy & Micro-
analysis 13 (2007) 920–921.

[55] B. Adams, J. Kacher, EBSD-based microscopy: Resolution of
dislocation density, Computers, Materials and Continua 14 (3)
(2010) 185–196.

[56] J. Jiang, T. Britton, A. Wilkinson, Measurement of geometri-
cally necessary dislocation density with high resolution electron
backscatter diffraction: Effects of detector binning and step size,
Ultramicroscopy 125 (2013) 1–9.

[57] A. Leff, C. Weinberger, M. Taheri, Estimation of dislocation den-
sity from precession electron diffraction data using the Nye ten-
sor, Ultramicroscopy 153 (0) (2015) 9 – 21.

[58] T. Ruggles, T. Rampton, A. Khosravani, D. Fullwood, The effect
of length scale on the determination of geometrically necessary
dislocations via EBSD continuum dislocation microscopy, Ultra-
microscopy 164 (2016) 1 – 10.

[59] Brigham Young University, OpenXY (2016).

17


