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ABSTRACT 

Understanding the origins of enhanced reactivity of supported, sub-nanometer in size, metal oxide clusters 

is challenging due to the scarcity of methods capable to extract atomic-level information from the 

experimental data. Due to both the sensitivity of X-ray absorption near edge structure (XANES) 

spectroscopy to the local geometry around metal ions and reliability of theoretical spectroscopy codes for 

modeling XANES spectra, supervised machine learning approach has become a powerful tool for extracting 

structural information from the experimental spectra. Here we present the application of this method to 

grazing incidence XANES spectra of size-selective Cu oxide clusters on flat support, measured in operando 

conditions of methanation reaction. We demonstrate that the convolution neural network can be trained on 

theoretical spectra and utilized to “invert” experimental XANES data to obtain structural descriptors – the 
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Cu-Cu coordination numbers. As a result, we were able to distinguish between different structural motifs 

(Cu2O - like and CuO - like) of Cu oxide clusters, transforming in reaction conditions, and reliably evaluate 

average cluster sizes, with important implications for the understanding of structure, composition and 

function relationships in catalysis. 

INTRODUCTION 

Metal oxides as heterogeneous catalysts have received considerable attention in both fundamental research 

and industrial applications [1-4]. For instance, metal oxide catalysts (MOCs) possess high catalytic 

performance and robustness in water oxidation reaction [1,5,6]. In industry, MOCs are crucial for the 

asphaltene adsorption to enhance the oil discovery [2]. The metal oxide nanocatalysts, in particular, display 

unique electronic properties due to their non-bulk-like coordination geometry and redox properties [7-9]. 

To understand the activities of metal oxide nanocatalysts, identification of the active sites of the catalysts 

[10-13] and, importantly, the size and shape of the particles [14-16] are required. The geometric properties 

of nanoparticles play greater role in their activity mechanisms because of the larger surface-to-volume ratio 

[17] compared to bulk-like particles. Due to the large range of possible structures, the catalytic activities of 

nanocatalysts exhibit large variation with different geometry [14-16,18]. Besides, the nanocatalysts can 

undergo agglomeration under reaction condition [19,20], affecting their catalytic activity.  

In a toolbox of characterization methods tailored for understanding catalytic mechanisms a 

prominent place is taken by the operando method, in which the structure of the catalysts is analyzed in real 

time, during the reaction, and the reaction products are detected simultaneously with the structural 

measurement to build the structure-reactivity relation [21-23]. Due to the formidable challenge that low 

metal loadings and high reaction temperature and/or pressure present to many techniques, extended X-ray 

absorption fine structure (EXAFS) spectroscopy [24-26], the workhorse method for catalytic studies, is 

limited in its applicability to MOCs. X-ray absorption near-edge structure (XANES) is measured in the 

same X-ray absorption spectroscopy experiment and has better signal-to-noise ratio than EXAFS, hence, it 
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can be advantageous for use in the in-situ/operando catalytic experiments [27]. XANES is also sensitive to 

the arrangements of atoms, electronic characteristics [28-31] and is less affected by structural disorder 

compared to EXAFS [24,26]. For some model catalysts, such as size-selective clusters supported on single 

crystal surfaces, for which EXAFS data cannot be obtained due to their ultra-low weight loadings, grazing 

incidence (GI) XANES becomes a unique tool to monitor the transformations in the oxidation state, 

structure and/or size of the cluster [32-34]. However, GI XANES has been rarely employed for structural 

characterization due to the limitations in its quantitative analysis. Recently, we demonstrated that a 

supervised machine learning –based method enabled the establishment of relation between XANES spectral 

features and structural descriptors of monometallic nanoparticles [35,36]. By employing an artificial neural 

network (NN) trained on the large set of theoretical XANES, we were able to obtain metal-metal 

coordination numbers (CNs) and investigate the structure of monometallic nanoparticles and size-selective 

clusters [35-39]. In all prior cases we deliberately selected well reduced systems, to eliminate metal-

nonmetal bonding that would have complicated neural network training and applications. That limitation 

precludes the broad applicability of our NN-based XANES analysis for operando studies, in which the 

changes in chemical states of the catalysts may occur in real reaction conditions.  

In this work, we report the application of the convolution neural network – based method to analysis 

of the structure and chemical state of size selective copper oxide clusters measured by XANES during their 

catalytic reaction process. Copper oxide catalysts are known for their good reactivity and selectivity in 

numerous oxidation and reduction reactions [40-47]. One of the important reactions is CO2 methanation 

which can assist the conversion of CO2 to chemical feedstock and benefit the inhibition of CO2 emission 

[48,49]. We used GI XANES spectra collected for Cu size-selective clusters in the operando experiment 

during the process of catalytic CO2 methanation to extract information about the oxidation state and size of 

the clusters. In what follows, we present our method for training and validating NN, describe the 

experimental data chosen to illustrate its application to MOCs, and demonstrate the applicability of this 

approach to extract their structural descriptors in operando conditions.  
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NEURAL NETWORK TRAINING AND VALIDATION 

The common route for NN construction is preparing training sets, training the NN and validating the NN. 

From our previous works it is known that for the construction of training set, we need hundreds of thousands 

XANES data with unique and a priori known labels (that is, structural descriptors). It is not feasible to 

obtain such a large number of labeled data from experimental measurements for this purpose. Ab initio 

XANES simulations could be a good alternative to the experimental spectra, as demonstrated in our prior 

work [35,36,39]. Before planning the training with theory-generated spectra, it is important to verify that a 

given method or code used for simulations reliably reproduces standard compounds. For example, FEFF9 

[50] is adequate for reproducing experimental XANES of bulk Cu oxides, as illustrated in Figure 1. The 

details of the XANES simulation are given in Note I of supplementary material. 

 

Figure 1. Experimental and theoretical (calculated with FEFF9) XANES spectra for the bulk CuO (a) and Cu2O (b) 
standard compounds.  

a

b
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Verifying the sensitivity of XANES to the size and structure of the nanoscale oxide is the necessary 

first step for any regression-based method in general, and NN-based method in particular, to work. 

Following the strategy, first implemented in Ref. [36], we first examine the absorption site effect on 

XANES spectra, as illustrated in Figures 2a and 2b. Each spectrum in Figures 2 a, b is labeled with two Cu-

Cu CNs (for the first coordination shell and second coordination shell) to represent the structure of copper 

oxide nanoparticles. By comparing the theoretical XANES (calculated by FEFF9) on different sites of CuO 

and Cu2O models (indicated by their respective CNs of the 1st and 2nd nearest neighbors), more pronounced 

features are captured by XANES for the copper atom with the larger Cu-Cu CNs (Figs. 2 a,b). XANES 

spectrum for the copper atom in the inner shell of copper oxide model has greater resemblance of the 

XANES spectrum for the bulk of copper oxide. In contrast, XANES calculated for the copper atom on the 

surface has relatively more smooth features. After establishing the absorption site dependence, we 

examined the cluster size effect on XANES by averaging the site-specific spectra over all atoms in the 

simulated CuO – like and Cu2O – like clusters of different sizes and stoichiometries (Figs. 2 c, d). That 

procedure is described in greater detail below. The simulated XANES spectra reveal that particles with 

larger sizes have more pronounced features compared to the smaller particles, as expected from their 

difference in the surface to volume ratios. As shown in Figure 2 e, experimental XANES spectra measured 

in the Cu oxide clusters show similar trend to have sharper features for larger sizes as obtained for simulated 

clusters of the same motif (CuO). 
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Figure 2. Absorption site, cluster size and motif effects on Cu K-edge XANES spectra. Each spectrum in the Figures 
2a, 2b, 2c and 2d is correlated with Cu-Cu CNs on the first and second coordination shells. (a, b) Site-specific XANES 
(XANES for the specific atom) spectra for CuO and Cu2O, calculated with FEFF9. (c, d) Particle-averaged XANES 
(averaged over all atoms in the particle) spectra for CuO and Cu2O, calculated with FEFF9. (e) Experimental XANES 
of CuO bulk and CuO clusters containing 4 and 12 Cu atoms. 

 

a b

c d

e
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Similar to our previous work [36], to build the training set for NN, we first constructed several sets 

of Cartesian coordinates for atoms residing in the sites that correspond to the crystal structure of bulk CuO 

and Cu2O, and truncated the lists of coordinates to simulate clusters with various shapes (tetrahedral, 

octahedral and cubic) and sizes. This was accomplished by creating the cluster surfaces using (100) and 

(111) planes of bulk CuO or Cu2O. The details of lattice structure information for CuO and Cu2O are listed 

in Table S1 of supplementary material. To generate more models, additional CuO and Cu2O models were 

constructed by truncating the previous regular models with (100) and (111) planes. Furthermore, we also 

constructed the planar structures with one or two layers of (111) plane of CuO and Cu2O to describe the 

active structural motif, thin film, which has been reported as active phase for catalysis [51-53]. As a result, 

we created 25 CuO models and 30 Cu2O models to capture the diversity of CuxO nanostructures, which are 

relevant to catalysis.  

In the nm-scale nanoparticles and sub-nm clusters, the interatomic distances can vary from those 

in their respective bulk compounds [42,54] due to the effects of size, adsorbates and support. For example, 

the nearest Cu-Cu distance for the bulk of CuO is 2.93 Å. However, the Cu-Cu distance of the CuO cluster 

were reported to be longer [54] or shorter [42] compared to the bulk. The shortening of the Cu-Cu distance 

in size-selected reduced Cu clusters was reported by us earlier [39]. To allow for this effect to be recognized 

in the process of NN-based analysis, we isotropically stretched or compressed the structures in our 

theoretical models to generate more training sets. The distance between nearest copper atoms varied from 

2.784 Å to 3.077 Å for CuO models and from 2.879 Å and 3.182 Å in Cu2O models. These ranges bracket 

the reported Cu-Cu distances for copper oxides available from EXAFS analyses or crystallography data 

[42,54,55]. To represent the size and shape of the clusters, we choose first few Cu-Cu coordination numbers 

as structural descriptors for each unique model. We preferred to rely on the Cu-Cu CNs rather than on Cu-

O CNs for this purpose because the latter parameter is not a good descriptor of the cluster size, geometry 

and oxidation state in those cases when all Cu atoms are terminated by oxygens. The copper atoms on the 

surface have smaller Cu-Cu CNs compared to the inner copper atoms, thus providing the desired sensitivity 
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to the size and shape of the copper oxide clusters. We illustrate the sensitivity of Cu-Cu CNs to the different 

size and shape of the copper oxide models in Figures S1 and S2. For different copper oxide models (e.g., 

Cu2O vs CuO), the Cu-Cu CNs exhibit unique values. With the increase of the size of the models, the Cu-

Cu CNs also get larger. For the models with same Cu-Cu CNs of the first shell, the values of the Cu-Cu 

CNs of the second shell provides additional sensitivity to the task of classification of different models. 

In order to construct a required (large) number of spectra in the training set using FEFF9, we 

adopted a combinatorial approach, first developed in Ref. [36] and relying on randomly mixing several site-

specific XANES calculations for CuO and Cu2O models prepared above. Each spectrum was labeled with 

first and second Cu-Cu CNs as structural descriptors. The total size of the training set was 100,000 spectra 

for each of the CuO and Cu2O – type models. In order to compensate for the unknown X-ray energy shift 

between theoretical and experimental XANES spectra for each type of oxide clusters (CuO or Cu2O-like) 

we shifted all the theoretical XANES spectra by ΔE (obtained from the difference in energy between 

experimental and theoretical XANES spectra for the respective bulk oxides). Such approach is reasonable 

because no visible shift was observed in the XANES spectra between different experimental copper oxide 

clusters. Furthermore, the convolution neural network we used for machine learning has the advantage of 

shift invariance [56] which means the results will not depend strongly on the possible, small (shown to be 

within a ±1 eV range, as tested in this work) mismatch in the X-ray energy origins used in theory and 

experiment. An alternative approach, relying on random energy shift between different spectra from the 

training set, was also recently proposed [57]. After the shift was applied, the spectra were interpolated to 

the same energy scale, from Emin=8981.5eV to Emax=9059.3eV. The step size for the energy scale is 0.15 

eV near Emin and increases to 1.5 eV near Emax. Following this step, all spectra were represented as multi-

dimensional vectors, containing 94 data points. Each data point corresponded to the value of absorption 

coefficient at specific energy.  

The NN used in this work was a nonlinear function 𝑓𝑓(𝜇𝜇,𝜃𝜃) = {𝐶𝐶1,𝐶𝐶2} where µ represents the 

preprocessed XANES spectrum (a vector with 94 points) as input and {𝐶𝐶1,𝐶𝐶2} represents the first two  CNs 
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as output. The parameter space θ consists of the weights and biases in the NN models [58]. The purpose of 

the training process is to optimize the parameter space θ to accurately correlate input with output. Once the 

optimal parameters are found, the training process is finished. More details of NN construction and training 

are described in supplementary material. 

The accuracy of our NN was demonstrated by the theoretical XANES calculated by FFFF9 for 

particles with different sizes and shapes. Unlike the data set we used for the training, the spectra for 

validation are particle-averaged spectra (averaged XANES for the particle) corresponding to the real copper 

oxide models and not used in the NN training process. In Figure 3, we compare the true Cu-Cu CNs on the 

first coordination shell with the predicted Cu-Cu CNs for CuO and Cu2O models. The validation for the 

Cu-Cu CNs on the second coordination shell is given in Figure S3 of supplementary material. According 

to the comparison result, NN can predict accurate CNs from the theoretical XANES for a large range of 

particle sizes.  
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Figure 3. Validation of CuO (a) and Cu2O (b) neural networks using theoretical XANES. True Cu-Cu CNs are 
compared with predicted Cu-Cu CNs on the first coordination shell.  

 

APPLICATION TO EXPERIMENTAL DATA 

After the validation of our NN, we applied our NN to the unknown structures of supported ultra-small size-

selected clusters used in a recent work [59]. These copper-based clusters can be used for example as 

catalysts for conversion of CO2 with hydrogen. The data discussed in this paper were extracted from in situ 

grazing incidence XANES (GI XANES) spectra collected on samples of 4-, 12- or 20- atom Cu clusters, 

deposited on zirconia support prepared by atomic layer deposition and by supersonic cluster beam 

deposition, as exposed to a CO2 and H2 under elevated temperatures reaching 375 °C. More experimental 

details are given in Note III of supplementary material. 
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The data extracted from the in situ XANES data were collected and analyzed by multivariate curve 

resolution with alternating least squares (MCR-ALS) method to obtain the mixing fraction of clusters of 

different oxidation states (CuO, Cu2O and Cu) [59]. Because, our NN method is designed for an idealized, 

pure metal oxide phase (either CuO or Cu2O-like), its test required access to the corresponding phase-pure 

clusters, which were not found in the series of spectra obtained in our operando experiments. We thus 

selected those spectra collected and analyzed in Ref. [59] which had the highest fractions of CuO or Cu2O 

phases, based on the results of the MCR-ALS analysis. The fractions of individual copper components 

(CuO, Cu2O and Cu) for the spectra are listed in Tables S2 and S3. The sampling chosen for testing our NN 

prediction correspond to those temperatures, for which the XANES data, as analyzed by MCR-ALS, 

indicated the presence of at least 70% of either CuO or Cu2O phase. As a justification of validity of this 

approach, we note that their XANES spectra have similar features with either CuO or Cu2O bulk XANES 

spectra, thus validating their designation as tests for NN validation purpose.  

 In Table S2, combining the spectra found (by MCR-ALS) to correspond to the CuO – like clusters, 

we show the application results of the CuO - trained NN model for extracting first and second Cu-Cu CNs 

from those XANES spectra. To interpret the results, the correlation between the number of Cu atoms and 

the first Cu-Cu CNs for the CuO models is shown in Figure 4a. All models shown there were selected from 

the NN training and validation steps. Such correlation demonstrates that our method can be used for 

measuring the cluster size, as evident here from the correct detection of the number of atoms which was 

known a priori from the cluster deposition experiment [60,61]). To check the capability of our NN to 

distinguish between CuO and Cu2O motifs, we applied our trained Cu2O NN model to the XANES spectra 

and showed the predicted CNs in Table S2. Not surprisingly, the predicted CNs from Cu2O NN have larger 

error bars for the first nearest neighbors. It means that the result is unstable. By comparing the predicted 

CNs from two NN, we obtained that the oxidation state of the sample is consistent with that obtained by an 

independent chemometric approach, as reported in Table S2. 
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For the samples with large fraction of Cu2O, we performed similar NN-XANES analysis, this time 

– by using our Cu2O NN model. Table S3 lists samples which are mainly composed of Cu2O. The first and 

second Cu-Cu CNs are extracted by our Cu2O NN model. To validate the results, we present the correlation 

between the number of Cu atoms and the first Cu-Cu CNs for Cu2O models in Figure 4b. The results 

demonstrate a correlation between predicted CNs from Cu2O NN with the sizes of the cluster. Similar to 

the prior example, we used the CuO - trained NN to check the capability of our method to distinguish 

between the CuO and Cu2O motifs. The predicted CNs from CuO NN give much larger error bars for the 

first nearest neighbors than those obtained from the Cu2O NN for the same experimental spectra (Figure 

4a). Thus, by combining the predicted CNs from two NN, and comparing them with the known CN values 

that correspond to the known cluster sizes, we demonstrated the oxidation state and structural information 

can be extracted from the spectra for Cu2O like clusters (Table S3). 
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Figure 4. The correlations between the number of Cu atoms and true Cu-Cu CNs for theoretical Cu2O (a) and CuO 
(b) models built during the NN training. The blue, green and red points are shifted horizontally around their actual 
values (4, 12 and 20) to show the error bars. S1 to S7, T1 to T7 and Cu20 represent the experimental samples with CNs 
extracted by the NNs. The detailed description of samples S1 to S7, T1 to T7 and Cu20 is given in Tables S2 - S4. 

 

After validating the NNs using experimental spectra for clusters with the known sizes and structures 

(dominated by either Cu2O or CuO clusters, as described above), we applied the NNs to analyze the spectra 

for samples of a nominal size of Cu20 and unknown structure and oxidation state. Our trained NNs were 

applied to answer the question whether the sample was mainly composed of a CuO-like or a Cu2O – like 

phase. In Table S4, we present the first and second Cu-Cu CNs extracted by our CuO NN and Cu2O NN. 

To analyze the results and determine the oxidation states, we correlate the predicted CNs with the sizes of 

the cluster and examine the relation between Cu-Cu CNs and the number of copper atoms in Figure 4. The 

a

b
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predicted CNs from CuO NN follow the size-dependent trend in Figure 4a. However, the predicted CNs 

from Cu2O NN show large error bars when compared with the CuO NN prediction (Figure 4b). Based on 

the results for Cu4 and Cu12 clusters, described above and summarized in Tables S2 and S3, larger error 

bars were always obtained when the incorrect NN models were applied. Therefore, by comparing the 

predicted CNs and taking into consideration the difference in the error bars (that were demonstrated to be 

an important factor in discriminating between two possible phases of the copper oxides) from CuO NN and 

Cu2O NN, we conclude that the Cu clusters containing 20 atoms were dominated by the CuO phase.  

CONCLUSIONS 

In summary, a neural network method was utilized to build the relationship between the XANES spectra 

and structural parameters for copper oxide cluster systems. This method enabled the determination of the 

average particle size and the oxidation state of metal clusters during the catalytic reaction by “inverting” 

their XANES spectra. Since the metal clusters acted as important catalysts in many reactions, this method 

is poised to have many applications. For instance, for the carbon dioxide and nitrogen oxide related 

reduction reaction where the metal cluster acts as catalyst and gets oxidized [62], NN method can be soon 

utilized to analyze the structure of these metal oxide clusters and thus help decipher the reaction mechanism. 

At this stage, while our method is an improvement compared to the previously developed NN-based 

XANES analysis approach, because it is applied, for the first time, not to pure metallic clusters but to the 

metal oxides, the present NN method still has several important limitations. For example, it relies on the 

CNs as descriptors and thus cannot distinguish isomers with the same CNs. It is also favoring those 

speciations where one (CuO, Cu2O or Cu) phase dominates and would not be helpful when these phases 

coexist with similar fractions during a particular reaction step. We envision that such recently developed 

techniques for XANES analysis as MCR-ALS, linear combination and principle component analysis will 

be used in combination with our approach for accurately obtain both the mixing fractions of different types 

of clusters and structural characteristics of each type. Our method, after the required training and validation, 
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is also applicable to a wide range of metal oxide cluster catalysts and for the understanding of structure, 

composition and function relationships in catalysis. 

SUPPLEMENTARY MATERIAL 

See the supplementary material for additional details on the XANES calculation, neural network 

implementation and training, experiment, and results of speciation analysis of clusters used in this work.  
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