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High Thermal Gradients Produce High Residual

;| Stresses
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Neutron Diffraction (ND) Measurements on AM —
+1 Part

Axial (Build Direction) Stress
600.0 — ! !

400.0

N3
S
=
o

0.000

-200.0

Axial

Residual Stress (MPa)

-400.0 - y

_600.0 | | | 1 | |
0 5 10 15 20 25 30 35

. Distance From West Edge (mm
« 316L stainless steel part ge (mm)

« >1000 layers

* Internal channels

* Preliminary results from Don Brown, Bjorn Clausen, and Maria Strantza
(LANL) using estimate for lattice parameter (values could change)

» Tensile on exterior, compressive on interior

* *Note, stresses shown with baseplate trimmed




.| Inherent Strain Method

» Part size is challenging for full solution
* Inherent strain method developed for weld
stress prediction
« (Ueda, Fukuda, Tanigawa 1979; Ueda,
Kim, Yuan 1980, Hill and Nelson 1995)
* Volumetric strain is applied in layers over time
* Quick approximation for distortion and
stress
» Does not capture local variations due to
different thermal gradients
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« | Bammann-Chiesa-Johnson (BCJ) Material Model

= Temperature and history-dependent viscoplastic internal state variable model
Stress is dependent on damage ¢ and evolves according to

. _(E_ ¢ .
O'=(E—1_¢>O'+E(1—¢)(E—Ep)

Flow rule includes yield stress and internal state variables for hardening and damage

T _
€y, = fsinh™ <% — 1)

The isotropic hardening variable k evolves in a hardening minus recovery form.

K = K% + (H(8) — Rz (B)K)é,




-1 Anisotropic Inherent Strain
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s | Anisotropic Inherent Strain Stress Contours
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Axial stress values appear similar to ND measurements
« ~ 300 MPa exterior, ~ -200 MPa interior

Wall time ~8 min on 60 cpus (~45X faster than real time 6 hr build)




o | Residual Stress Predictions Show Similar Trends to ND Results | B
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o | Multiscale Inherent Strain Method
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» Run full fine-scale solution on manageable part with same process settings —
tensile dogbone gage section

* Upscale strain information to valve housing

« Could be different based on scan pattern




11 I Thermal Approach

Pre-meshed part is initialized with
"Iinactive" elements. Baseplate
elements are active.

Laser heat source is scanned
according to input path

Elements are activated by a
thermal conductivity increase once
they reach melt temperature

Conduction, convection, and
radiation are considered.
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12 1 Solid Mechanics Approach

Pre-meshed part is initialized
with "inactive" elements.
Baseplate elements are active.

Thermal output file is read at
every time step to provide
temperatures , vonmjsos

-8.000e+08

6e+8
Elements are activated once ovs
they reach melt temperature »

~0.000e+00

Residual stress builds as
elements contract upon cooling
and build thermal strain

Approximate Melt Pool
(~zero stress)




131 Thermal and Structural Results
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14 I Significant Tensile and Compressive Residual Stresses Remain

Mid-plane Cut View
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15 ‘ Results Show Higher Stresses and Distortion
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16 | Lumped Laser Method
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*  Approach similar to Hodge &7 2/ 2014 and 2016; Stender &f 2/ 2018; Strantza,  Ganeriwala & 2/ 2018
» ~3 mm laser diameter

« laser radius to layer height ratio and total inter-layer cooling time held constant from actual conditions
e [.84 mm layer height

« laser speed unchanged - 1400 mm/s

40 layers

 Walltime ~B hours on 100 cpus
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17

Residual Stress Results
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18 | Importance of Baseplate Boundary Conditions
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Axial Stress (MPa)

19‘ Comparison of Approximation Methods
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o1 Gonclusions

o Valve housing contains very high residual stresses
* Residual stress in valve housing can be predicted using efficient approximation methods

Future Work

Layer and mesh size dependence of inherent strain methods need to be understood

Heat input in lumped laser model needs to be validated

Examine different laser and layer sizes

Average stresses over Zmm volume for direct comparison to ND results
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Questions?
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2 I SNL Modeling Work
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