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; | Introduction & Motivation (

“Future grid is expected to accommodate higher levels of penetration of inverter-
interfaced generation (wind and solar)

*The dynamics of inverter-interfaced generation 1s different from those of
“conventional” generation (rotating machines)

"Increased penetration of inverter-interfaced generation affects the overall dynamics
of the system

*This work analyzes how small signal stability of power systems is affected in the
face of increased wind penetration
= Uses a small power system representative of a power transfer

= Studies the effect of location of wind integration

"Proposes two different controllers to damp inter-area oscillations using WT'Gs
= Active power

= Reactive power



+ 1| Wind Turbine Generator Model

“Dynamic Model: positive sequence model suitable for transient stability time domain simulations
(for bulk power system planning studies).

“The model are observed from the grid as a controlled current source:
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5 ‘ Power System Model (
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“Objective: Study the impact that integrating wind generation has on the inter-area oscillation of the
test system. 3 Cases of WT'G positioning were considered:

= Case A: wind generation performed in Area 1.
= Case B: wind generation performed in Area 2.

= Case C: wind generation performed in the middle of the transfer path

*Two scenarios regarding how the displacement of conventional generation is achieved are considered:
= Scenario 1: reduction on the MVA of the displaced conventional generator

= Scenario 2: constant MVA and only power level reduction on the displaced conventional generator



6 ‘ Inter-area Mode Variations with Increased Wind Penetration &

(a) Inter-area mode (b) Inter-area mode
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7 ‘ Inter-area Mode Variations with Increased Wind Penetration &

(a) Inter-area mode (b) Inter-area mode
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= Analysis was carried out for the two displacement
scenarios and the three cases of WTG positioning.
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s | WTG Damping Control Design (

“Result: integrating wind affects the inter-area oscillation. When wind integration is performed in an
area that is importing power it creates a destabilizing effect.

“Approach: Just as some conventional generation is required to damp inter-area oscillations by
adding a Power System Stabilizer (PSS) to its voltage regulation, this work investigates the capability
of wind generation to perform this damping task.

*Investigation carried out in the 2-area, 2-machine test system.

Case A 400 MW
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WTG Damping Control Design

= Analyze the best combination of input and output signals for control design.

(1) analyze a set of signals to determine the most suitable one to be used as an feedback input for
the controller:

“Bus frequency “Power transfer between the areas

“Voltage Magnitude “Current magnitude between the areas

"(2) evaluates the proper place to integrate the controller within the WTG.

Active power control diagram:

Reactive power control diagram:
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o | WTG Damping Control Design

=System was linearized

"Linear system has 47 states

Control Objective

Increase in A

synchronizing
torque

Desired

Increase in
damping torque

e

Jw

i:Ax+Qﬂ

%:@g

=12 systems to analyze (SISO)

Controller structure:

Input matrices (B) according to controller location

=

Output matrices (C) according to feedback signal

yref
Yxx | 1

1+sT, - 1—0—3T3_> sT, |,
147, 14T, 14sT,
J L ] L J
I Y |
Lead-lag Lead-lag Wash-out

Design approach: increase the damping torque by modifying
the angle of departure (use of root locus).
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"Root locus plots (washout action included)

1 ‘ WTG Damping Control Design
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2 | WTG Damping Control Design @)

"By determining the angle of departure of the angle the time constants of the lead-lag compensator
were determined. The constant was determined with the use of the root-locus plot.
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*The gain was selected with the help of the root locus plots

Controller 77 [s] 1> [s] K, %

Goon 11358 0.0824 0.4
Gperr 56613 0.0165 18




3 ‘ Simulation Results

=System importing 4 pu of power in
Area 1 where the WTG is integrated

"4 cases considered:
= No Wind Case
" WTG with no additional control
= WTG with active power control

= WTG with reactive power control

"Including wind lowers the damping of
the inter-area mode

"Both controllers are effective in damping
the oscillation

= Active power control makes use of the
pitch angle (potentially undesirable)

"Reactive power control causes more
variations in the voltage
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u | WTG Damping Control Design

"Controller also tested at a operating point where
the system exporting 4 pu of power to Area 2

=Same 4 cases considered:
= No Wind Case
" WTG with no additional control
= WTG with active power control

= WTG with reactive power control

"Including wind increases the damping
of the inter-area mode

"Both controllers are effective in damping
the oscillation

= Active power control makes use of the
pitch angle (potentially undesirable)

"Reactive power control causes more
variations in the voltage
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15 ‘ Inter-area Mode Variations with ConnectingWTG TX Line [@

=An study on how the length of the transmission line that connects the WTG to the system was
performed. The three cases of WTG positioning and the two scenarios of conventional generation
displacement were considered.

Inter-area mode Inter-area mode

S.G. Reduced MVA S.G. Constant MVA
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“The reactance was varied from 0 to 0.11 pu (0 to 110 Km equivalent). The loading condition was 400 MW
importing,

“In the reduced MVA scenario, the synchronizing torque is decreased as the connecting reactance is
increased.

"In the constant MVA scenario, for cases A and B there 1s a reduced effect on how the mode is affected by the
increase in the TL reactance. However the trend of synchronizing torque reduction is preserved.

T Ol



16 ‘ WTG Damping Control Design

“When increasing the transmission line connecting the WT'G to the system the zeroes of the system are |

mostly affected while the poles move slightly in comparison
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*The root locus (dominant mode and zero) for different transmission line lengths
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7 | Conclusions (

=]t determined the conditions for which wind integration causes instabilities in the inter-area
oscillation.

"It demonstrated that WT'Gs can be an effective means to damp the inter-area oscillation of
a test power system.

It showed that different combinations of input/output signals can used to implement the
damping controller. In particular it demonstrated both the active and reactive power
controller to be possible places to implement the damping control.

"It showed that increases in the transmission line connecting the WT'G affect mostly the
zeros and not the poles of the system
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*Controller also when the WTG TX line is
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