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Runge-Kutta methods allow embedded error estimation

Runge-Kutta methods use the RHS at internal stages to compute a step update
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Low cost: error estimate uses the same RHS evaluations

1/3/2019



Runge-Kutta methods allow embedded error estimation,
and error control offers a problem-independent approach to time step adaptation

order p U
n±l

um + At
s

iri
i l
s

order p- 1 U
n+1 

un + At >m2 biri
i — 1

1/3/2019



Runge-Kutta methods allow embedded error estimation,
and error control offers a problem-independent approach to time step adaptation

s

order p U
n+1 
= un + At iri

i l
s

order p-1 u
n+1 

un + At >m2 biri

S s

i-1

) orer -1)
)70f/J)i) err

d
or es

(p
timate

f bi 1 quadrature coeffs for order p (e.g. 4)

04 quadrature coeffs for order p-1

Manipulate the time step to keep
the error estimate at a target value

Sophisticated PID controllers can do this!

1/3/2019



Runge-Kutta methods allow embedded error estimation,
and error control offers a problem-independent approach to time step adaptation

s

order p U
n+1 
= un + At iri

i l
s

order p-1 u
n+1 

un + At >m2 biri

S s

i-1

) orer -1)
)70f/J)i) err

d
or es

(p
timate

f bi 1 quadrature coeffs for order p (e.g. 4)

04 quadrature coeffs for order p-1

Manipulate the time step to keep
the error estimate at a target value

Sophisticated PID controllers can do this!

But what do I use for the target error?!

1/3/2019



Runge-Kutta methods allow embedded error estimation,
and error control offers a problem-independent approach to time step adaptation

s

order p U
n+1 
= un + At iri

i l
s

order p-1 u
n+1 

un + At >m2 biri

S s

i-1

) orer -1)
)70f/J)i) err

d
or es

(p
timate

f bi 1 quadrature coeffs for order p (e.g. 4)

04 quadrature coeffs for order p-1

Manipulate the time step to keep
the error estimate at a target value

Sophisticated PID controllers can do this!

But what do I use for the target error?!

Let's try some values on a well-known problem...

1

1/3/2019
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But what do I use for the target error?!

Viscous shock, 200x1x1 
order 4 HOFD disc.
IMEX-643 solver
reference error est.
(Kanevsky et al.)

"low" target error: effective control, few step failures
"high" target error: poor control, many failures, SLOW!

work
(# steps) 3461

0 failed
3321

2 failed

4882

1400 failed

5932

2200 failed

target 1.1e-8 2.6e-8 5.7e-8 1.3e-7

* optimal target error

only a factor of -2 too large and simulation is far slower
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Error-control offers a problem-independent approach
but current methods need to be 'tuned' per problem
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Manipulate the time step to keep
the error estimate at a target value

Sophisticated PID controllers can do this!

But what do I use for the target error?!
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We don't want to control the temporal error, we only want to keep the simulation stable

Manipulate the time step to keep
the error estimate at a target value

Sophisticated PID controllers can do this!
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Design of the embedded error estimator
has a major impact on performance
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Li nea r stability properties dramatically impact embedded estimator performance

Referem : estimated error remains bounded until solver blows up,
the target error must match this bound precisely!
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Direct calculation of the error on a nonlinear test equation
also shows the distinction between estimators near the stability boundary
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Our new error estimators provide dramatic improvement over existing methods,
but error control in this form still has shortcomings
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Our new error estimators provide dramatic improvement over existing methods,
but error control in this form still has shortcomings
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it may blow up for another.

Still a dependency on mesh resolution 1
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inefficient with shifts in dynamics

An optimal target error varies in time
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Cascade control: predict instability and control the controller!
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Instability measure

1. How do we detect imminent instability?

2. How do we avoid even more problem dependence?

bi vs bi vs bi
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real part

Use multiple estimators of the temporal error!
Compared to RHS evaluation (on HPC platforms especia(ly),
extra embedded error evaluation is nearly free

'Lead' instability with a second more unstable estimator 1

Use the ratio to hopefully eliminate most problem dependence,

g
e2

e.g. dimensionless
vs dimensional

and use an Loo norm to avoid mesh dependence
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For the instability measure to be controllable, ratio is monotonic and one-to-one

we need to use a lower-order second estimator
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For the instability measure to be controllable, ratio is monotonic and one-to-one

we need to use a lower-order second estimator
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Method: 6-stage, 4th-order ERK subset
of the IMEX of Kanevsky et al. (2007)

Canonical "isentropic vortex" problem
2-D inviscid, nonlinear Euler equations

Entropy-stable high-order finite difference formulation
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Method: 6-stage, 4th-order ERK subset
of the IMEX of Kanevsky et al. (2007)

Canonical "isentropic vortex" problem
2-D inviscid, nonlinear Euler equations

Entropy-stable high-order finite difference formulation

time step
size (us)
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with no case-by-case tuning, no resolution dependence

Method: 6-stage, 4th-order ERK subset
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Method: 6-stage, 4th-order ERK subset
of the IMEX of Kanevsky et al. (2007)

Canonical "isentropic vortex" problem
2-D inviscid, nonlinear Euler equations

Entropy-stable high-order finite difference formulation
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning
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Empirical ramp tests showcase why cascade control works

a priori testing wherein the time step is slowly ramped up until instability occurs

error
ratio

10-

2-D isentropic vortex
Finest mesh (400x160x1)

►
)00

time step index

800

3-D inviscid Taylor-Green vortex
128x128x128 mesh

10

128x128x128
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h/hjmax
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Empirical ramp tests showcase why cascade control works
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2-D isentropic vortex ramp test results
4 levels of refinement
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Empirical ramp tests showcase why cascade control works
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Empirical ramp tests showcase why cascade control works,
and where it doesn't...

3rd order
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Flat plate DNS (demo grid)

Transient startup for shock-BL
interaction, high-speed flow

Initial condition is far from a
physically realizable state

No change of the error ratio
as we approach instability!

Higher-order embedded estimator is
hardly more accurate than lst-order...
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
due to time integration "guess-and-check" when stability limits performance
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
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Importance of the stability of embedded error estimators

Better estimators = better efficiency with less guess-and-check
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Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate

Viscous shock problem - here we observe more accuracy
of the lower-order estimator as mesh resolution increases

predominantly real eigenvalues,
essentially a linear problem

10-E -

50x1x1 800x1x1

1st-order embedded

3rd-order embedded

lo-15 -

0.2 0.6 0.8 1.

hihmax

1/3/2019



Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate

Viscous shock problem - here we observe more accuracy
of the lower-order estimator as mesh resolution increases

predominantly real eigenvalues,
essentially a linear problem

10-E -

10

50x1x1

1st-order embedded

3rd-order embedded

10-15 -

0.2 0.6

hihmax
0.8 1.

-

10-1: -

10-1, -

800x1x1

1st-order embedded

0.0

3rd-order embedded

a .x

0.6

1/3/2019



Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate

Viscous shock problem - here we observe more accuracy
of the lower-order estimator as mesh resolution increases

predominantly real eigenvalues,
essentially a linear problem

10-E -

50x1x1

-

1st-order embedded

3rd-order embedded

10-15 -

0.2 0.6 0.8 1.

hihmax

800x1x1

The 3rd-order estimator is bound by roundoff error,
and the error ratio loses monotonicity and smoothness

1st-order embedded

0.0

3rd-order embedded
•—•
I e-,.

a.:x:

0.6

1/3/2019



Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate

Viscous shock problem - here we observe more accuracy
of the lower-order estimator as mesh resolution increases

predominantly real eigenvalues,
essentially a linear problem

10-E -

50x1x1

-

1st-order embedded

3rd-order embedded

10-15 -

0.2 0. 6 0.8 1.

I-71 h cri

800x1x1

The 3rd-order estimator is bound by roundoff error,
and the error ratio loses monotonicity and smoothness

1st-order embedded

0.0

Imposed floor

3rd-order embedded
•—•
I e-,.

a .:x:

0.6

1/3/2019



Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate
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Empirical ramp tests showcase why cascade control works,
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Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate
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- use first-order method to get smoothness and controllability (Backward Euler)
- show ramp test results, show result alongside ramp test g(h) plot, shows instability detection,
show resolution independence on isentropic vortex problem

- isentropic vortex a posteriori tests show that the cascade controller (as tuned) added oscillation
while matching the mean time step of optimal target errors in PID control, across resolution

- controller dynamics of the cascade controller: needs to be slower - common in cascade control,
master controller must allow subservient controller to equilibrate

- it works and the goal of reducing problem dependence appears to succeed
- trying instability detection directly as a time step controller, easier in concept, harder in code as is
- problem with transient startup on awful IC (usually not done with high-order method anyway)
one option here is to use a third estimator with less error than the existing 3rd-order one for step control,
which has the error cliff behavior. Eliminate the cliff and the ratio may show better behavior here.

- problem with viscous problem seeing lst-order get closer to 3rd-order at higher resolution.
Unexpected and not observed in the inviscid Taylor-Green vortex where more resolution makes lst-order worse,
one option here is to try FE as the first-order method. Need to look at stability regions of the lst-order methods,
as well as theoretical predictions of the error ratio. This is essentially the same problem as the transient startup

Is there an argument for cascade control in general?
Why not always just use the detector as a sole controller?
Find argument from engineering for this

1
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Low-pass filters are built into the controller

The offset of numerical instability
is a high-frequency ̀ sawtooth'

Filtering removes controller responsiveness
precisely at the stability boundary!
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