SAND2019- 0465PE

Advanced Adaptive Time-Stepping
for Fundamental Studies of
Turbulent, Reacting Flow

Ll T 4

........
.........

- "

.......

PRESENTED BY
Michael A. Hansen, Ph.D., Postdoctoral Appointee

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

1/3/2019



“decision-making”
in engineering

1/3/2019

science
+

mathematics



science
+

mathematics

“decision-making”
in engineering

1/3/2019



science
+

mathematics

“decision-making”
in engineering

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

science
+

mathematics

“decision-making”
in engineering

1/3/2019



‘fundamental reacting flow studies rank among the most expensive calculations possible

“decision-making”
in engineering

RANS LES DNS

science
+

mathematics

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

fundamental studies science

model development +
uncertainty quantification mathematics

“decision-making” Design and
in engineering qualification

Engineering
analysis

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

fundamental studies science

model development +
uncertainty quantification mathematics

“decision-making” Design and
in engineering qualification

Engineering
analysis

Direct Numerical Simulation

» Thermochemical nonequilibrium at high speeds
» chemical reactions
» multiple temperatures

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

fundamental studies science

model development +
uncertainty quantification mathematics

“decision-making” Design and
in engineering qualification

Engineering
analysis

Direct Numerical Simulation

» Thermochemical nonequilibrium at high speeds
» chemical reactions
» multiple temperatures

» Geometry-induced stiffness (e.g. boundary layers)

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

fundamental studies science

model development +
uncertainty quantification mathematics

“decision-making” Design and
in engineering qualification

Engineering
analysis

Direct Numerical Simulation

» Thermochemical nonequilibrium at high speeds
» chemical reactions
» multiple temperatures

» Geometry-induced stiffness (e.g. boundary layers)

» Advanced high-order spatial discretizations
» high-resolution, low-dissipation schemes
» unclear stability limits

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

fundamental studies science

model development +
uncertainty quantification mathematics

“decision-making” Design and
in engineering qualification

Engineering
analysis

Direct Numerical Simulation

» Thermochemical nonequilibrium at high speeds
» chemical reactions
» multiple temperatures

» Geometry-induced stiffness (e.g. boundary layers)

» Advanced high-order spatial discretizations
» high-resolution, low-dissipation schemes
» unclear stability limits

» Explicit time-integration techniques

1/3/2019



fundamental reacting flow studies rank among the most expensive calculations possible

fundamental studies science

model development +
uncertainty quantification mathematics
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in engineering qualification

Engineering
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=t Direct Numerical Simulation
» Thermochemical nonequilibrium at high speeds

» chemical reactions
» multiple temperatures

» Geometry-induced stiffness (e.g. boundary layers)

A
e

» Advanced high-order spatial discretizations
» high-resolution, low-dissipation schemes
» unclear stability limits

» Explicit time-integration techniques

» Millions of cpu-hours on the largest supercomputers
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Runge-Kutta methods allow embedded error estimation

Runge-Kutta methods use the RHS at internal stages to compute a step update
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Runge-Kutta methods allow embedded error estimation

Runge-Kutta methods use the RHS at internal stages to compute a step update

Forward Euler
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Ralston’s RK4
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order p u" T =" 4+ At Z@z

1 : :
order p-1 un+ u" + At E Z‘ Low cost: error estimate uses the same RHS evaluations
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Viscous shock, 200x1x1
order 4 HOFD disc.

IMEX-643 solver
But what do | use for the target error?! reference error est.

(Kanevsky et al.)

“low” target error: effective control, few step failures
“high” target error: poor control, many failures, SLOW!
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4882
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work

(# steps) 3461
O failed

2 failed

target=1.1e-8 2.6e-8 5.7e-8 1.3e-7

* optimal target error

only a factor of ~2 too large and simulation is far slower
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Error-control offers a problem-independent approach |

but current methods need to be ‘tuned’ per problem |
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- Temporal disc. error
Sophisticated PID controllers can do this! - Spatial disc. error dominant
- Model error / uncertainty sources
But what do | use for the target error?! |
’ B
Constraints on time integrator y
temporal '
e Don’t want it to blow up disc.
e Don’t want ‘too much’ time discretization error crror o8
.. : : ; . e .
e Minimal cost = fastest simulation = aggressive stepping loge | o=
e Guess-and-check for every variety is not acceptable! order 4
I
asymptotic range unstable |
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Manipulate the time step to keep

the error estimate at a target value Several sources of error
- Temporal disc. error
Sophisticated PID controllers can do this! - Spatial disc. error dominant
- Model error / uncertainty sources
But what do | use for the target error?! ]
: s other errors 4 :
Constraints on time integrator T
e Don’t want it to blow up disc. i O~ -
 Don’t want ‘too much’ time discretization error error ((\bedde,x’"
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e Minimal cost = fastest simulation = aggressive stepping loge | o= 3
« Guess-and-check for every variety is not acceptable! ‘ order 4
D
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We don’t want to control the temporal error, we only want to keep the simulation stable

Manipulate the time step to keep

the error estimate at a target value Several sources of error
- Temporal disc. error
Sophisticated PID controllers can do this! - Spatial disc. error dominant
- Model error / uncertainty sources
But what do | use for the target error?! ]
: s other errors 4 :
Constraints on time integrator T
e Don’t want it to blow up disc. i O~ -
 Don’t want ‘too much’ time discretization error error ((\bedde,x’"
.. . : . . AN
e Minimal cost = fastest simulation = aggressive stepping loge | o= 3
« Guess-and-check for every variety is not acceptable! ‘ order 4
D
asymptotic range unstable |

log Adg At ‘
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Can we do error control better, knowing that we only want stability?
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Can we do error control better, knowing that we only want stability?

We can do much better!

A newly-desighed method shows far less
reference i
. sensitivity to the target error or mesh
mesh 3
new It runs efficiently at the stability boundary,
\ { | nicely minimizing computational cost
) mesh 2 reference
total 9
work
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4
mesh 1
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N
\ new
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Can we do error control better, knowing that we only want stability?

We can do much better!

: A newly-desighed method shows far less
TS sensitivity to the target error or mesh
mesh 3
new It runs efficiently at the stability boundary,
\ { | nicely minimizing computational cost
mesh 2 reference
total 10"
work
(#RHS) new

reference error estimate
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{b@‘} quadrature coeffs for order p (e.g. 4)
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Can we do error control better, knowing that we only want stability?

\ reference
| 'mesh 3
new
\ |
. mesh 2 reference
0 -
new
——————y 4
mesh 1
reference
new
’ 4
103 - — — N —
10-10 10°8 10°° 10~4 104

target error

10°

We can do much better!

A newly-desighed method shows far less
sensitivity to the target error or mesh

It runs efficiently at the stability boundary,
nicely minimizing computational cost
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N
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{bi} quadrature coeffs for order p (e.g. 4)

{ZTZL} quadrature coeffs for order p-1



Designh of the embedded error estimator
has a major impact on performance

reference
(-0.32, 0.70)

mesh 3
new (-0.55, 1.00)
\ |
) mesh 2 reference
total 19
work
(#RHS) new
— 4
mesh 1
reference
N
\ new
10° +— I
10-10 10°8 10°° 10~4 102

target error

Six stages: 6 b values
Third-order: 4 conditions

Two degrees of freedom

2D parameter space!



Linear stability properties dramatically impact embedded estimator performance

Reference: estimated error remains bounded until solver blows up,
the target error must match this bound precisely!
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Linear stability properties dramatically impact embedded estimator performance

Reference: estimated error remains bounded until solver blows up,
the target error must match this bound precisely!

New: estimated error blows up before the solver
the target error is less important
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Linear stability properties dramatically impact embedded estimator performance

Reference: estimated error remains bounded until solver blows up,

the target error must match this bound precisely! solver stability limit

New: estimated error blows up before the solver
the target error is less important
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Linear stability properties dramatically impact embedded estimator performance

Reference: estimated error remains bounded until solver blows up,

the target error must match this bound precisely! solver stability limit

New: estimated error blows up before the solver
the target error is less important
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Direct calculation of the error on a nonlinear test equation
also shows the distinction between estimators near the stability boundary

boundary is
test error = 1| |
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Direct calculation of the error on a nonlinear test equation
also shows the distinction between estimators near the stability boundary

| Designed to|

‘blow up’

very early_
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Direct calculation of the error on a nonlinear test equation |
also shows the distinction between estimators near the stability boundary |
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very early-

real part

But wait... there’s more...
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Extensive testing has shown the superiority
of relatively unstable embedded estimators
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Extensive testing has shown the superiority
of relatively unstable embedded estimators

ensemble over
estimator design

ensemble over
target error

€1
—> ( SPARC-Tempus

. E
estimator 1 —2>C SPARC-Tempus

€m
—» C SPARC-Tempus

€1
—_— ( SPARC-Tempus

Python/SageMath estimator 2 &5 _
fundamental study, =™ > —’( SPARC-Temp

. . 6
method/estimator design _’m,( SPARC-Tempus

€1
—»( SPARC-Tempus

: e
estimator n —2>C SPARC-Tempus

Em
—» C SPARC-Tempus

I\ A Y A .

1/3/2019




Extensive testing has shown the superiority
of relatively unstable embedded estimators
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Extensive testing has shown the superiority
of relatively unstable embedded estimators
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x3 canonical Navier-Stokes/Euler problems
Xx2-4 mesh refinements

_———

— —
— —
-—

-~ ensemble over Il
-~ . .
/ estimator design N

ensemble over
/ target error N

/ - \

—_— ( SPARC-Tempus

/ estimator 1 . 6—2>C SPARC-Tempus

/ Sm
e ( SPARC-Tempus

| £
v — [ SPARC-Tempus

Python/SageMath estimator 2 &5 _
fundamental study, —> > —’( SPARC-Temp

. . g
method/estimator design _’m,( SPARC-Tempus

evidence regarding
optimal design for
real problems

e

— ( SPARC-Tempus ensembles distributed over

capacity computing clusters

: E
estimator n —2>C SPARC-Tempus

Em
s C SPARC-Tempus

I\ A Y A .

1/3/2019




Extensive testing has shown the superiority
of relatively unstable embedded estimators

x3 RK solvers (4,5,6 stages)
x3 canonical Navier-Stokes/Euler problems

x2-4 mesh refinements
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Improved embedded error design already
provides improvement over existing workflow

Taylor-Green vortex, 3x speedup
Shu-Osher problem, 6x speedup
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‘ Our new error estimators provide dramatic improvement over existing methods,
but error control in this form still has shortcomings
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‘ Our new error estimators provide dramatic improvement over existing methods, |
but error control in this form still has shortcomings

reference Still guess-and-check.
(-0.32, 0.70) e.g. 1e-4 may work for one problem/mesh,
R it may blow up for another.

new (-0.55, 1.00)

\ ) Still a dependency on mesh resolution |
-

. mesh 2 reference
total 19
work
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4
mesh 1
reference :
N i
\ new
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. mesh 2 reference
total 19 °
work
(#RHS) new
4
———————
mesh 1
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new
4 4
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Our new error estimators provide dramatic improvement over existing methods,
but error control in this form still has shortcomings

reference
(-0.32, 0.70)

new (-0.55, 1.00)

target error

Still guess-and-check.
e.g. 1e-4 may work for one problem/mesh,
it may blow up for another.

Still a dependency on mesh resolution

Bigger issue

Constant target error fails or is
inefficient with shifts in dynamics

An optimal target error varies in time
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Cascade control: predict instability and control the controller!

Design an “instability detector” and add a 2" controller
to manipulate the target error
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Standard PID Step Control
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Cascade control: predict instability and control the controller!

Design an “instability detector” and add a 2" controller

to manipulate the target error

Standard PID Step Control

Cascade Control

step
size
Embedc.:led error
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lerror
target
error
Step controller
new
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Cascade control: predict instability and control the controller!

Design an “instability detector” and add a 2" controller
to manipulate the target error
Cascade Control

Standard PID Step Control
step
S1Z€ Embedc.:led error
estimate step E :
e ] Embedded error
error : estimate
target
error
Step controller *— E lerror
: target
: error
nsw : Step controller
step size
new T ——— :
step size

1/3/2019



1/3/2019

Cascade control: predict instability and control the controller!

Design an “instability detector” and add a 2" controller

to manipulate the target error

Standard PID Step Control

Cascade Control

step
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estimate
lerror
target
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1. How do we detect imminent instability?

2. How do we avoid even more problem dependence?
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1. How do we detect imminent instability?

2. How do we avoid even more problem dependence?

Use multiple estimators of the temporal error!

Compared to RHS evaluation (on HPC platforms especially),
extra embedded error evaluation is nearly free



1. How do we detect imminent instability?

2. How do we avoid even more problem dependence?

Use multiple estimators of the temporal error!

Compared to RHS evaluation (on HPC platforms especially),
extra embedded error evaluation is nearly free

‘Lead’ instability with a second more unstable estimator

real part
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1. How do we detect imminent instability?

Instability measure. 5 oy do we avoid even more problem dependence? |

Use multiple estimators of the temporal error!
Compared to RHS evaluation (on HPC platforms especially),

5 - ' . . =— y extra embedded error evaluation is nearly free
b; vs b; vs b; | B .
al | | __ Lead’ instability with a second more unstable estimator |
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For the instability measure to be controllable,
we need to use a lower-order second estimator

€2
€1 T+ €

g:

Two third-order embedded estimators

instability
instability

too much noise

error (too accurate!)

At
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3rd- vs 1st-order embedded estimators

error

smoother growth -> controllable!

A

€1

ratio is monotonic and one-to-one

At

instability
instability



For the mstablllty measure to be controllable, ratio is monotonic and one-to-one
we need to use a lower-order second estimator

62 « What first order method to use? Only requires 2bi=1
g — e Our RK method has a node at tn*1,
€1 + € and Backward Euler has improved smoothness near instability
Two third-order embedded estimators 3rd- vs 1st-order embedded estimators
ity smoother growth -> controllable!
instabl instability
i €1 instability 4 €1 instability
error too much noise orror
|
(too accurate!) eo e
> >
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Method: 6-stage, 4th-order ERK subset
of the IMEX of Kanevsky et al. (2007)

Canonical “isentropic vortex” problem
2-D inviscid, nonlinear Euler equations

Entropy-stable high-order finite difference formulation
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Added oscillation can be reduced

Method: 6-stage, 4th-order ERK subset by improved controller design balance responsiveness vs oscillation
of the IMEX of Kanevsky et al. (2007)

Canonical “isentropic vortex” problem 100x40x1

2-D inviscid, nonlinear Euler equations 14 -

Entropy-stable high-order finite difference formulation
12

10 -
time step 8-

size (us)
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Added oscillation can be reduced

Method: 6-stage, 4th-order ERK subset by improved controller design balance responsiveness vs oscillation
of the IMEX of Kanevsky et al. (2007)
Canonical “isentropic vortex” problem 200x80x1
2-D inviscid, nonlinear Euler equations 6 -
Entropy-stable high-order finite difference formulation B
LD h
3 3.0 -
2.5 4
| E 2.0 4
PERY “q,v./ih«\
time step al A different controller
size (Us) =
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning, no resolution dependence

Added oscillation can be reduced

Method: 6-stage, 4th-order ERK subset by improved controller design balance responsiveness vs oscillation
of the IMEX of Kanevsky et al. (2007) A00x160x1

Canonical “isentropic vortex” problem

2-D inviscid, nonlinear Euler equations a4

Entropy-stable high-order finite difference formulation

time step
size (us)
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The cascade system runs as fast as optimally-tuned standard techniques,
with no case-by-case tuning

=

A different controller
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Added oscillation can be reduced

by improved controller design balance responsiveness vs oscillation
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Empirical ramp tests showcase why cascade control works

a priori testing wherein the time step is slowly ramped up until instability occurs

2-D isentropic vortex
Finest mesh (400x160x1)

101 -

102 -

error
ratio

1073 -

0 2[')0 4['1'0 6(')0
1/3/2019 time step index

800

3-D inviscid Taylor-Green vortex

128x128x128 mesh

— 128x128x128

1071 <
1072 3
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1074 3
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Empirical ramp tests showcase why cascade control works

2-D isentropic vortex ramp test results ‘
4 levels of refinement ‘
3 o *
{|=— 25x10x1 ) —
] —— 400x160x1 [ instability
1 — 200x80x1
| —— 100x40x1
1 — 50x20x1
target error ratio Same target ratio for all resolutions
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I
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Empirical ramp tests showcase why cascade control works

TG 64x64x64
TG 128x128x128

TG 32%x32%x37 2 sessssssssnnnnnnnnnnnnnnnnnnfufysysiadanguannnnnnnnnnnns Both problemS,
all resolutions,

—— IV 25x10x1
— |V 400x160x1
| ORI Blue: isentropic vortex, 2D
—— IV 200x80x1 T
— IV 50%x20x1 Red: invsicid Taylor-Green vortex, 3D

1072 -

= same target ratio!
4]
S
T
1073 7 Same behavior and scales observed
on viscous-dominated problems
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Empirical ramp tests showcase why cascade control works,
and where it doesn’t...

101 -
o 1st order . \ by Flat plate DNS (demo grid)
- mr 10t 1 e
g 10" Eoronpr P Ly Transient startup for shock-BL
S 2 Al | interaction, high-speed flow
G 1075 - 3rd order sn-sp

Initial condition is far from a
physically realizable state

No change of the error ratio
as we approach instability!

error ratio

Higher-order embedded estimator is

le—8 hardly more accurate than 1st-order...
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
due to time integration “guess-and-check” when stability limits performance
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
due to time integration “guess-and-check” when stability limits performance

Importance of the stability of embedded error estimators

Better estimators = better efficiency with less guess-and-check\

Taylor-Green vortex 3x speedup
Shu-Osher problem, 6x speedup
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
due to time integration “guess-and-check” when stability limits performance
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Importance of the stability of embedded error estimators | reference
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
due to time integration “guess-and-check” when stability limits performance
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Improved embedded Runge-Kutta error estimators and a novel cascade control system
are providing dramatic improvements in running fundamental reacting flow studies

Expensive and inefficient workflow for fundamental reacting flow studies,
due to time integration “guess-and-check” when stability limits performance

Importance of the stability of embedded error estimators

-
Better estimators = better efficiency with less guess-and-check\
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Empirical ramp tests showcase why cascade control works,
and that a floor is necessary when the lower-order estimator is very accurate

Viscous shock problem - here we observe more accuracy

, , of the lower-order estimator as mesh resolution increases
predominantly real eigenvalues,

essentially a linear problem
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use first-order method to get smoothness and controllability (Backward Euler)
show ramp test results, show result alongside ramp test g(h) plot, shows instability detection,

show resolution independence on isentropic vortex problem

isentropic vortex a posteriori tests show that the cascade controller (as tuned) added oscillation

while matching the mean time step of optimal target errors in PID control, across resolution

controller dynamics of the cascade controller: needs to be slower - common in cascade control, I
master controller must allow subservient controller to equilibrate

it works and the goal of reducing problem dependence appears to succeed

trying instability detection directly as a time step controller, easier in concept, harder in code as is

problem with transient startup on awful IC (usually not done with high-order method anyway)

one option here is to use a third estimator with less error than the existing 3rd-order one for step control,

which has the error cliff behavior. Eliminate the cliff and the ratio may show better behavior here. ‘
problem with viscous problem seeing 1st-order get closer to 3rd-order at higher resolution.

Unexpected and not observed in the inviscid Taylor-Green vortex where more resolution makes 1st-order worse,
one option here is to try FE as the first-order method. Need to look at stability regions of the 1st-order methods,
as well as theoretical predictions of the error ratio. This is essentially the same problem as the transient startup

Is there an argument for cascade control in general?
Why not always just use the detector as a sole controller?

Find argument from engineering for this
1/3/2019
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Low-pass filters are built into the controller

\_/ T

The offset of numerical instability
is a high-frequency ‘sawtooth’

Filtering removes controller responsiveness
precisely at the stability boundary!






