

TuckerMPI: Optimised library for distributed data compression

Grey Ballard (WFU), Alicia Klinvex (NNL), Tammy Kolda, Gavin Baker, Tom Otahal, Prashant Rai, Drew Lewis, Ron Oldfield, **Hemanth Kolla** (SNL).

Exceptional
service
in the
national
interest

ECP Annual Meeting: Lossy Data Compression Breakout
Jan 16th, 2019, Houston

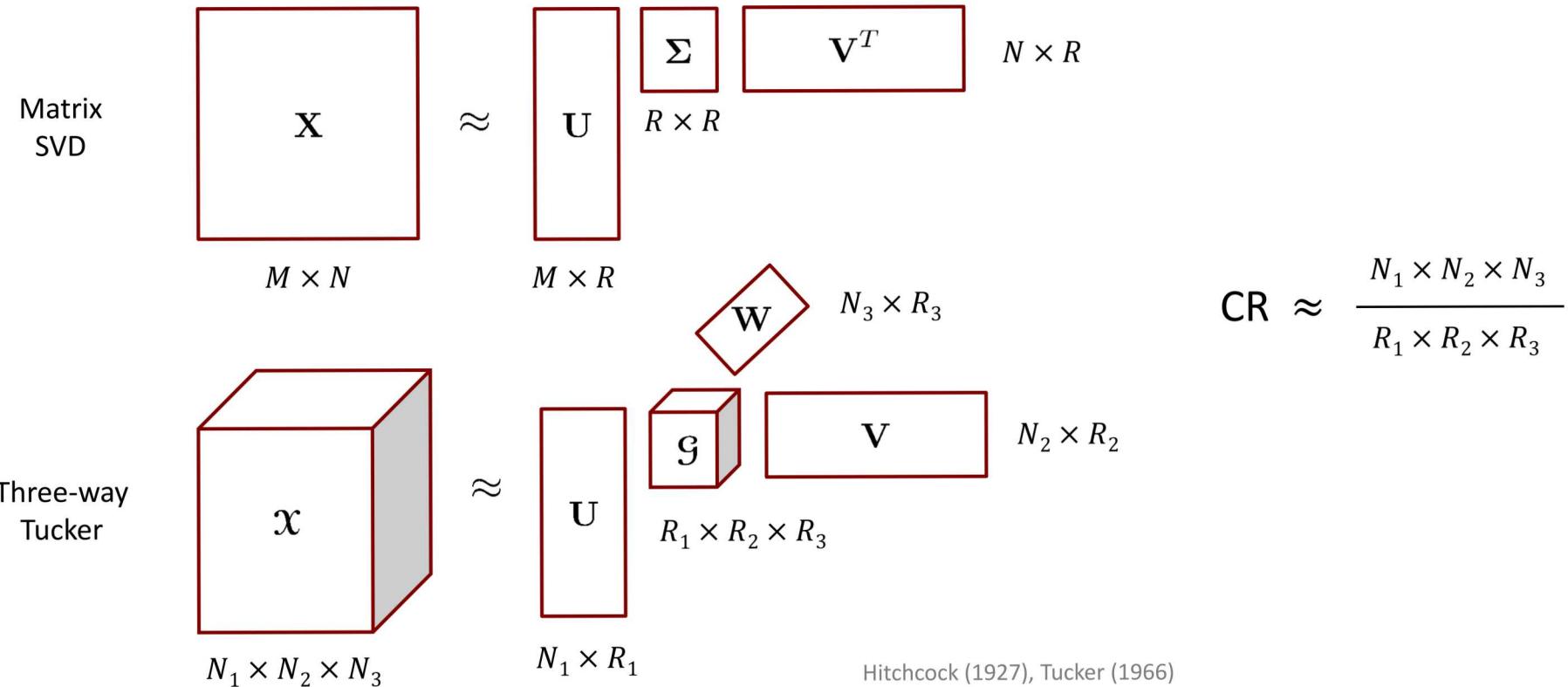
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

High level Objective

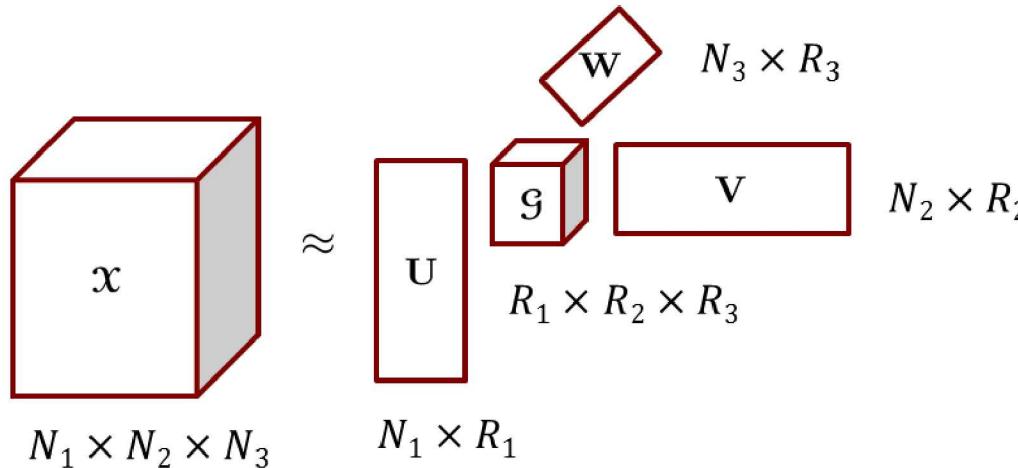
- Enable orders-of-magnitude (lossy) compression:
 - distributed data, *in-situ*.
 - scalable, efficient.
- Allow exploring the accuracy-compression-cost tradeoff.
- What are downstream implications (archival, analysis, sharing)?
- How do workflows change:
 - *in-situ* vs *in-tandem* vs *offline*.
 - Can we reconstruct partially?
 - Characterizing risks and mitigation factors.
- Augment the *in-situ* capability for SNL-ATDM apps.

Tucker Compression: Overview

Extend Matrix SVD to multi-way arrays (tensors)



Tucker Compression - Overview



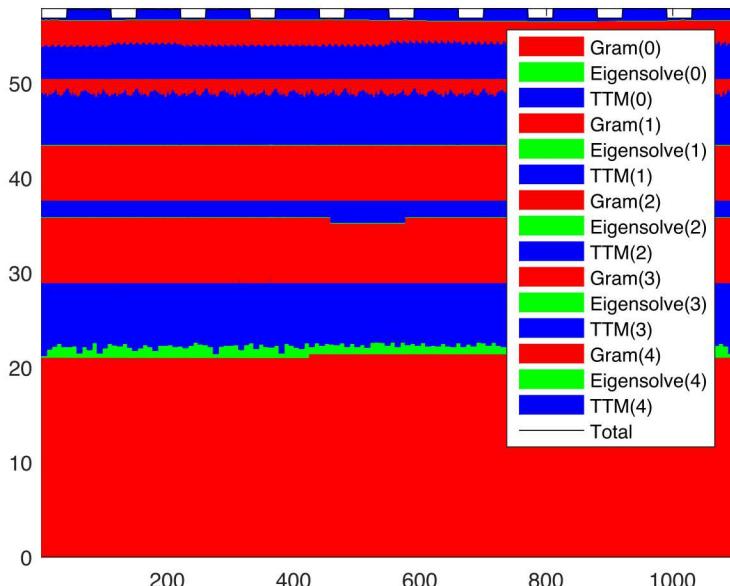
- For specified relative error, choose projection ranks R_1, R_2, R_3 such that:
$$\|\mathcal{X} - (\mathcal{G} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W})\| \leq \epsilon \|\mathcal{X}\|$$
- Find orthogonal matrices $\mathbf{U}, \mathbf{V}, \mathbf{W}$ that reduce the tensor size but retain its “mass”.
$$\mathcal{G} = \mathcal{X} \times_1 \mathbf{U}' \times_2 \mathbf{V}' \times_3 \mathbf{W}' \quad \Rightarrow \quad \|\mathcal{X}\|^2 - \|\mathcal{G}\|^2 \leq \epsilon^2 \|\mathcal{X}\|^2$$
- User can specify either ϵ or $R_1/R_2/R_3$.

Algorithm: ST-HOSVD

1. Choose \mathbf{U} with projection rank R_1 such that: $\|\mathbf{X}_{(1)}\|^2 - \|\mathbf{U}'\mathbf{X}_{(1)}\|^2 \leq \epsilon^2 \|\mathbf{X}\|^2/3$
 - a) Compute gram matrix: $\mathbf{X}_{(1)}\mathbf{X}_{(1)}'$
 - b) Use eigendecomposition of $N_1 \times N_1$ matrix to choose R_1
 - c) Set $\mathbf{U} = R_1$ leading eigenvectors of gram matrix
2. Shrink to size $R_1 \times N_2 \times N_3$: $\mathbf{Y} = \mathbf{X} \times_1 \mathbf{U}'$
3. Choose \mathbf{V} with projection rank R_2 such that: $\|\mathbf{Y}_{(2)}\|^2 - \|\mathbf{V}'\mathbf{Y}_{(2)}\|^2 \leq \epsilon^2 \|\mathbf{X}\|^2/3$
 - a) Compute gram matrix: $\mathbf{Y}_{(2)}\mathbf{Y}_{(2)}'$
 - b) Use eigendecomposition of $N_2 \times N_2$ matrix to choose R_2
 - c) Set $\mathbf{V} = R_2$ leading eigenvectors of gram matrix
4. Shrink to size $R_1 \times R_2 \times N_3$: $\mathbf{Z} = \mathbf{Y} \times_2 \mathbf{V}'$
5. Choose \mathbf{W} with projection rank R_3 such that: $\|\mathbf{Z}_{(3)}\|^2 - \|\mathbf{W}'\mathbf{Z}_{(3)}\|^2 \leq \epsilon^2 \|\mathbf{X}\|^2/3$
 - a) Compute gram matrix: $\mathbf{Z}_{(3)}\mathbf{Z}_{(3)}'$
 - b) Use eigendecomposition of $N_3 \times N_3$ matrix to choose R_3
 - c) Set $\mathbf{W} = R_3$ leading eigenvectors of gram matrix
6. Shrink to size $R_1 \times R_2 \times R_3$: $\mathbf{G} = \mathbf{Z} \times_3 \mathbf{W}'$

Scalable Parallel implementation

- Three main kernels (Gram, Evecs, TTM) have been parallelized.
- MPI implementation of Tucker available (open):
 - <git@gitlab.com:tensors/TuckerMPI.git>



- 4.4TB \rightarrow 10GB (410X).
- Total of 55s; 1100 cores.
- Bulk of time is in first mode (GRAM computation).
- Fast BLAS for Eigensolve.
- **Time for I/O is order of magnitude greater (~450s)**

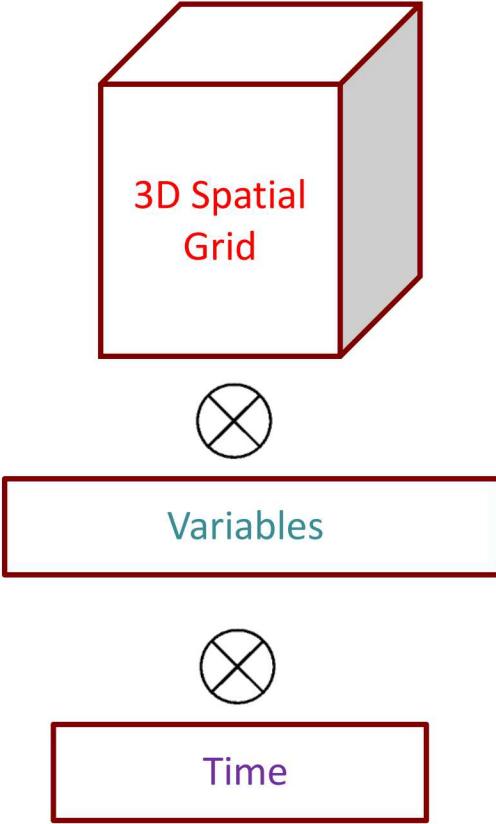
[1] W. Austin, G. Ballard and T.G. Kolda, IPDPS'16 (arXiv:1510.06689).

[2] Tammy Kolda, SC16 talk.

TuckerMPI: Usage

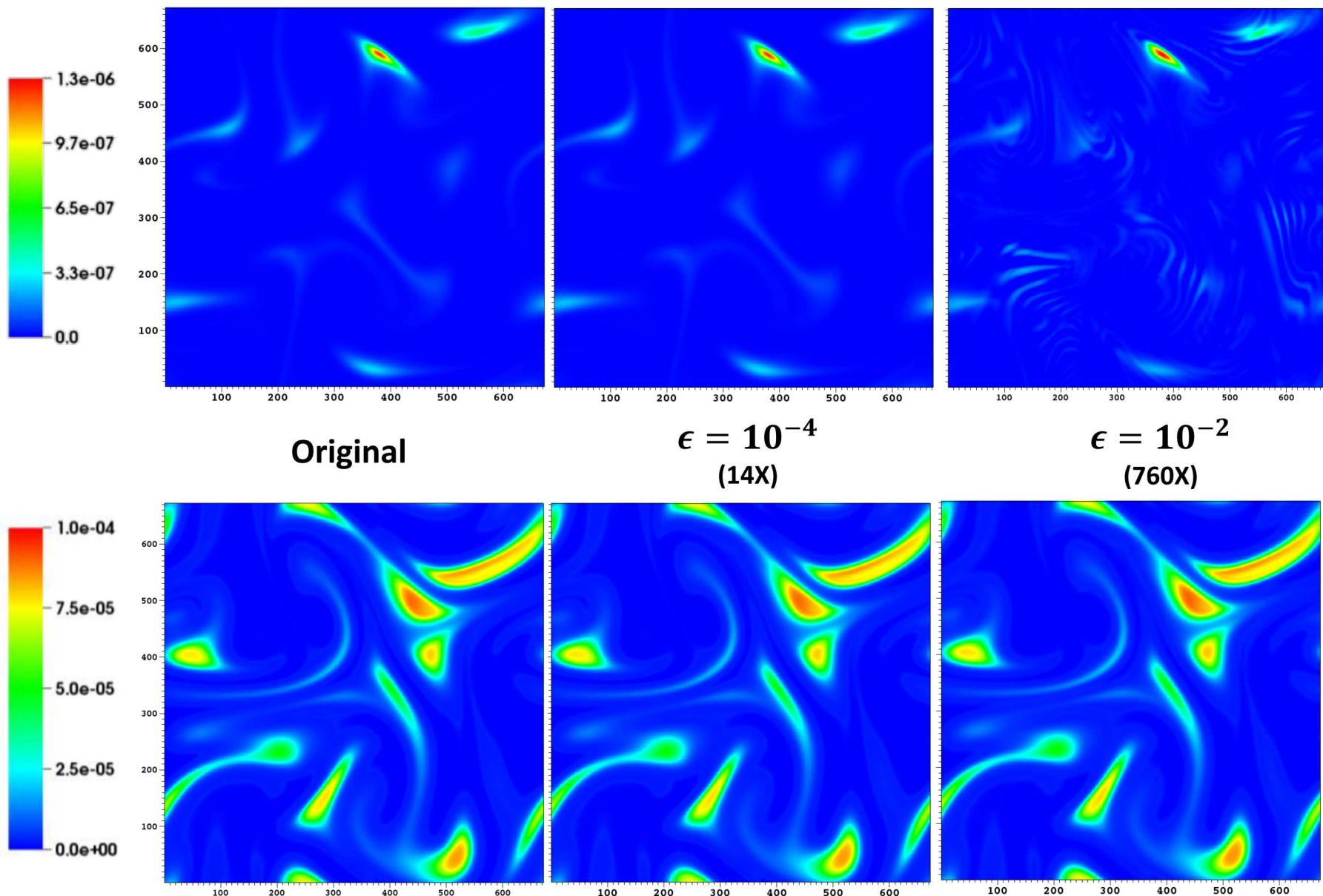
- Primary use case: structured mesh distributed data sets
 - Recently extended to handle multi-block capability.
 - Not currently usable for unstructured meshes, AMR meshes, particle data.
- Clean, portable C++ library with minimal dependencies (MPI, BLAS/LAPACK).
- Currently set up to work with parallel MPI-IO (read/write).
- Can be used offline, or *in-situ* (later slides).
- User need only specify:
 - Global dimensions of input data (tensor)
 - Desired global error threshold (ϵ), OR,
 - Desired ranks of truncation along each mode ($R_1/R_2/R_3$)

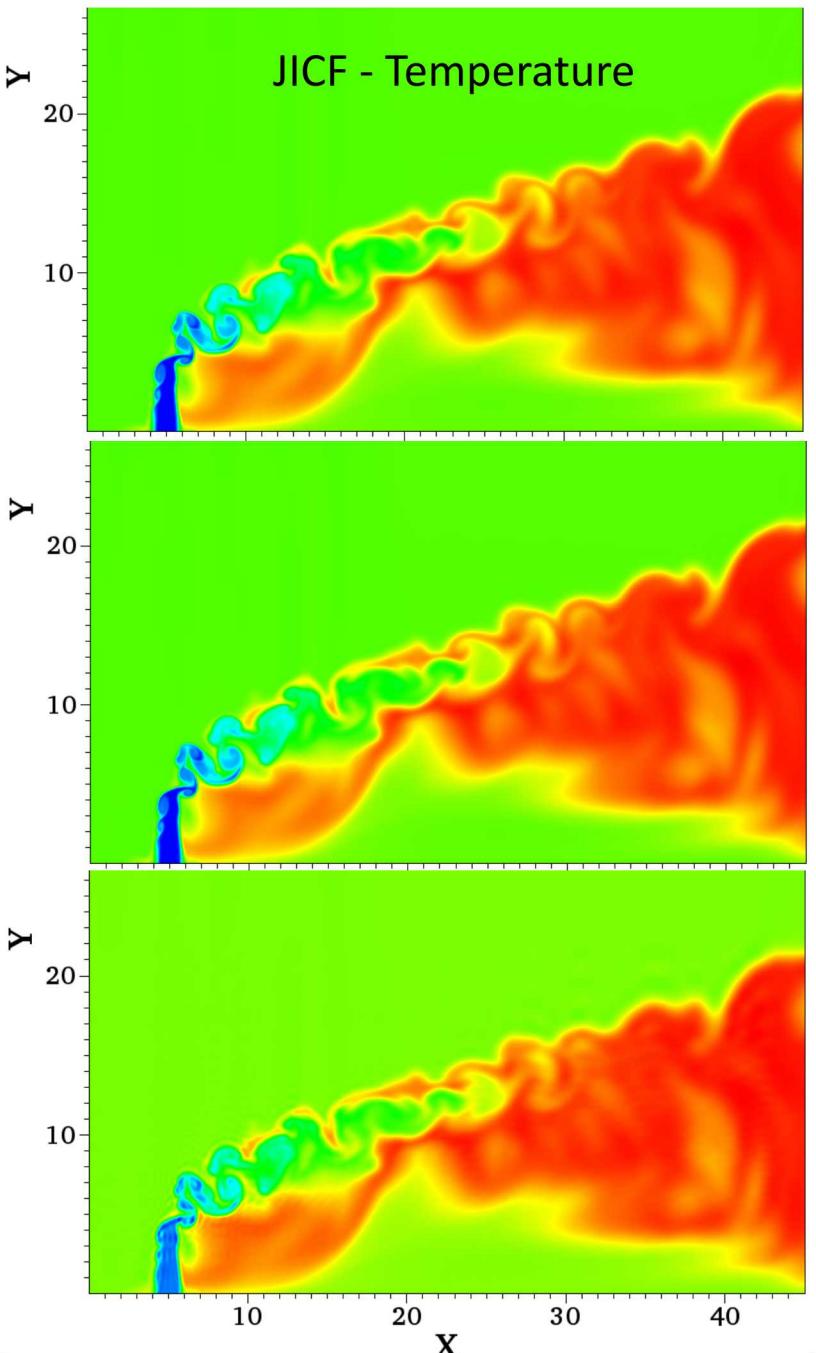
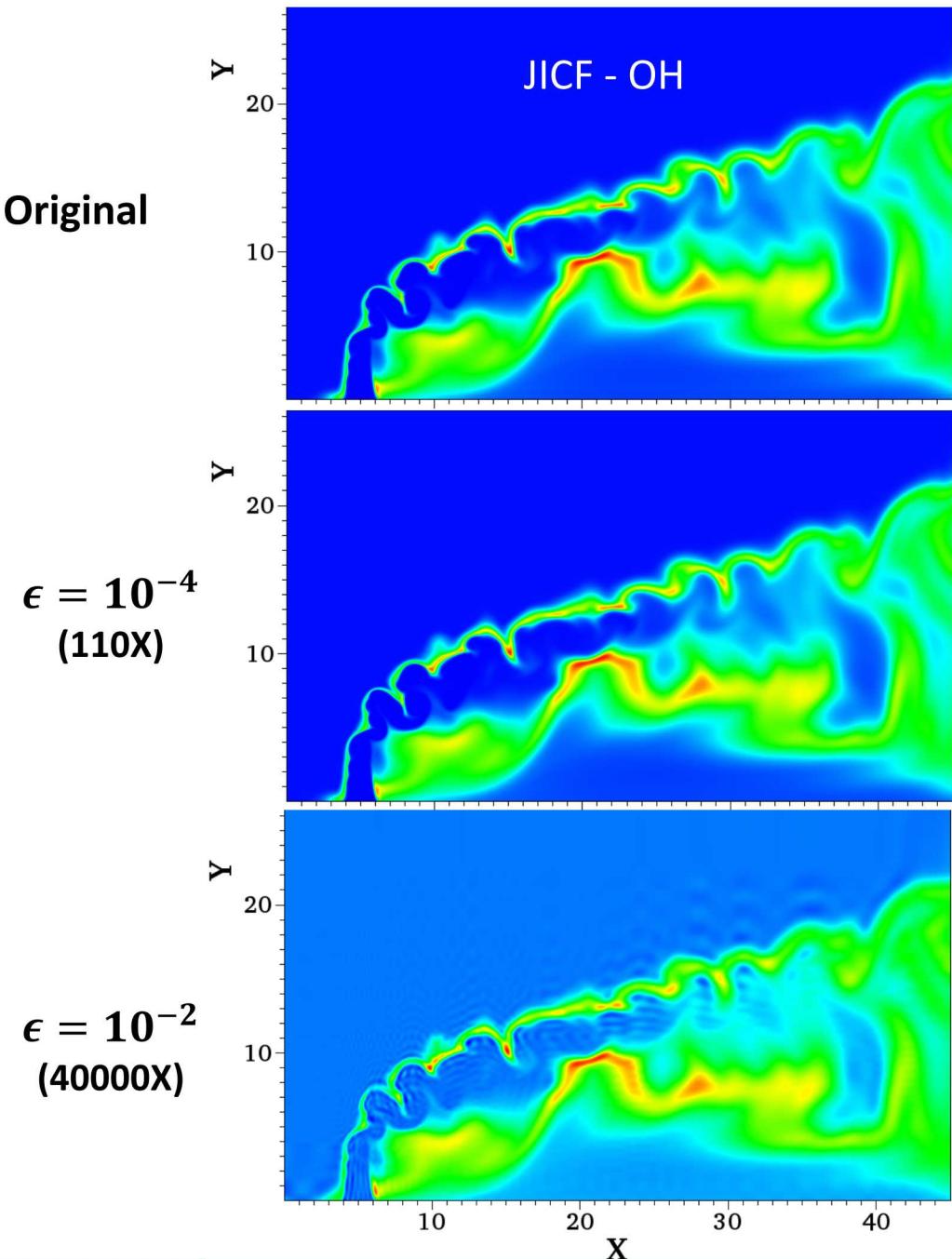
Sample Results: S3D datasets



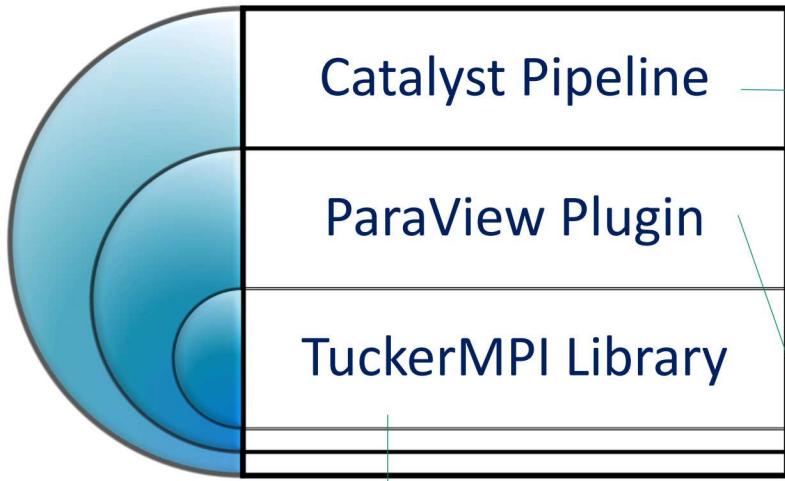
	Original	$\epsilon = 10^{-4}$	$\epsilon = 10^{-2}$
HCCI	672×672 \times 32 \times 626	330×310 \times 31 \times 199 $(14 \times)$	111×105 \times 22 \times 46 $(760 \times)$
SP	$500 \times 500 \times 500$ \times 11 \times 400	$95 \times 129 \times 125$ \times 7 \times 125 $(410 \times)$	$30 \times 38 \times 35$ \times 6 \times 11 $(20000 \times)$
JICF	$1500 \times 2080 \times 1500$ \times 18 \times 10	$424 \times 387 \times 261$ \times 18 \times 10 $(110 \times)$	$90 \times 61 \times 48$ \times 13 \times 6 $(40000 \times)$

HCCI – OH concentration





In-Situ capability with ParaView/Catalyst



```
def DoCoProcessing(datadescription):  
    global coprocessor  
    coprocessor.UpdateProducers(datadescription)  
  
    LoadPlugin('/path/to/plugin/libSMTuckerMPICompression.so')  
  
    vtk_test = coprocessor.CreateProducer(datadescription, 'input')  
  
    ts = str(datadescription.GetTimeStep())  
    SaveData('grid_compressed_' + ts + '.tucker', proxy=vtk_test)
```

- Dynamic library interface to TuckerMPI
- API for Tensor data structures, MPI domain decomposition maps/objects
- API for key kernels: tensor matricization, ST-HOSVD, Gram matrix computation.
- Plugin can be loaded into the ParaView GUI or Catalyst in-situ
- Plugin maps between ParaView and TuckerMPI data structures in parallel, MPI communicator re-mapping, and supports input types of vtkMultiBlockDataSet, vtkImageData, and vtkStructuredGrid
- Writer compresses vtkMultiBlockDataSet input by iterating over all blocks in parallel.

Ongoing Work

- In-situ reader (i.e. reconstruction) ParaView plugin.
- User-specified partial reconstruction.
- In-situ analysis on compressed data.
- Compress time snapshots in streaming manner.
- Compression of unstructured mesh data:
 - Key Idea: Unstructured mesh data are realizations of multi-D function
 - Compress by seeking low rank approximations of multi-D functions.

Thank you!