This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 0453C

Rethinking the C++ / Python Boundary in
Modeling and Optimization Tools

William E. Hart, Jose S. Rodriguez, John
Siirola, Carl Laird

Purdue University
Sandia National Laboratories

wehart@sandia.gov

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

2 I Rethinking the Software Stack within Pyomo

Decomposition Algorithm Have we struck the right balance?
(E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Evaluation, Derivatives (AD)
ASL Compiled

C / Fortran code

Python Code

Boundary - (currently file-based)

Nonlinear Solver, Linear Algebra, HSL

3 I Rethinking the Software Stack within Pyomo

Decomposition Algorithm Have we struck the right balance?
(E.g. Progressive Hedging)

» Concerns that Python is slow have
Algebraic Modeling Language motivated alternative AMLs
Pyomo (esp. JUMP).

Optimization Problem

« Pyomo meta-solvers written in Python
have exhibited performance
bottlenecks

Core Expressions
 C(Callbacks to C/Fortran solvers cannot
be used with file-based solver

Evaluation, Derivatives (AD) interfaces

ASL

Nonlinear Solver, Linear Algebra, HSL

4 I Rethinking the Software Stack within Pyomo

Decomposition Algorithm Three Recent Efforts
(E.g. Progressive Hedging)

1. Reimplementation of Pyomo

Algebraic Modeling Language expressions to support PyPy
Pyomo

2. PyNumero: Python framework for

Optimization Problem efficient numerical algorithms

3. Poek/Coek: Lightweight Python
expressions that enable direct solver
interfaces

Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

5 I Rethinking the Software Stack within Pyomo

Decomposition Algorithm Three Recent Efforts
(E.g. Progressive Hedging)

Reimplementation of Pyomo

Algebraic Modeling Language expressions to support PyPy |
Pyomo e

. PyNumero: Python framework for
Optimization Problem efficient numerical algorithms

Poek/Coek: Lightweight Python
expressions that enable direct solver
interfaces

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

¢ I Rethinking the Software Stack within Pyomo

Decomposition Algorithm Three Recent Efforts
(E.g. Progressive Hedging)

Reimplementation of Pyomo

Algebraic Modeling Language expressions to support PyPy
Pyomo

. PyNumero: Python framework for |
Optimization Problem efficient numerical algorithms :
. Poek/Coek: Lightweight Python
interfaces

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

7 I Rethinking the Software Stack within Pyomo

Decomposition Algorithm Three Recent Efforts

(E.g. Progressive Hedging)

. Reimplementation of Pyomo

Algebraic Modeling Language expressions to support PyPy
Pyomo

PyNumero: Python framework for

efficient numerical algorithms

3. Poek/Coek: Lightweight Python |
expressions that enable direct solver
interfaces

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

Support for the PyPy Python
Interpreter

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

Motivations

1. PyPy is a faster Python implementation

8.42

\
/.66 7.61 .63x

7.02 , ! ; .
| 6.45x 6. 44x

5.61 - - 5.24x |

421 | : L

1.40 4

2 |

‘ﬁkﬁ&n}%uﬁmx A 0.@0{@-

s o
& o o qé’:p 0 mqp@q@m q#’*qf"*q-F* ﬁ@@m

10 I Motivations

2. Pyomo 5.5 leverages recursion in many operations, including expression cloning.

> Even simple non-linear expressions can result in deep expression trees where these recursive
operations fail because Python runs out of stack space.

3. Unexpected performance bottlenecks arise due to implicit expression cloning

M = ConcreteModel() M = ConcreteModel()
M.x = Var(range(100)) M.p = Param(initialize=3)
M.q=1/M.p
This loop is fast. M.x = Var(range(100))
e=0
for i in range(100): # M.q is cloned every time it is used.
e =e + M.x[i] e=0
for i in range(100):
This loop is slow (?!?). e = e + M.x[i]*M.qg
e=0
for iin range(100):
e = M.x[i] + e

11 I Expression Immutability

Pyomo 5.5 expressions are mutable, so they can be modified in place.
> Shared subtrees between expressions can lead to unexpected models.

> Pyomo 5.5 uses cloning and reference counts to detangle expressions.

Pyomo 5.6 ensures that expressions are immutable,
so detangling is not necessary!

M = ConcreteModel()
M.v = Var()
M.w = Var()

e =2"M.v
f=e+3

e += M.w

12 I Testing Performance

There are at least four elements of Pyomo’s performance that could be impacted by
the new expression system:

1. Time to generate expressions

2. Time to generate the standard representation
used for sending problems to a solver

3. Time to write problem files
4. Time to perform optimization

Our tests measured the time to construct and write models (1+2+3).

We expect that (3) will not be a factor for NL files, since the
problem representation is effectively unchanged.

bilinear_100000 -

dcopfl O A

diag_100000 A

SWwa|qo4d 159 OWOoAd

P

pmedian_8 -

stochpdegasl O A

ucl O -

bilinear_100000

dcopfl O

diag_100000

jump_cInlbeam_50000

jump_facility_25

jump_lgcp_500

SWwa|qo.id 1591 OwoAd

jump_opf 6620

pmedian_8

stochpdegasl 0

ucl O

- e -

- G

Runtime

1

- 0C

jump_cInlbeam_50000 A

jump_facility 25 A

jump_lgcp_500 A

jump_opf 6620 -

g =a °

ASP JdXS mmEm
Jojsew mmm

N
o
1

Runtime

09

- 08

ASP JdXo mmm
Jloisew mmm

AdAd :9|I14 |U e 93E81D) 01 DWI|

9'cuoylAd :3|14 |u e 93e31) 0] dWI]|

uostiedwo?) aduew.do}iad

€l

3114 TN SULILIM

14 I Summary

Pyomo now runs using PyPy

The median performance of the new expressions is 4% slower in CPython and 2.5x
faster in PyPy (relative to CPython)

All cloning operations were eliminated, which eliminates a key source of “unexpected”
performance bottlenecks

PyNumero: Python Numerical
Optimization

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

16 I Motivation

Pyomo is a Python-based, open-source optimization modeling language with a diverse set of
optimization capabilities

It is built upon Python - a full programming language that allows Pyomo to be used in
scl)lutiORS ranging from simple scripting to high-level domain specific tools and meta-
algorithms.

> |t is easy to build *on top* of Pyomo

Low-level solvers are implemented in compiled languages and interfaced with Pyomo

They are not aware of Pyomo models and structure
> Maybe with the exception of suffixes

Pyomo has not supported (until now) a framework for low-level numerical treatment of
Pyomo models

> Provide efficient numerical derivatives in “Pyomo” format (e.g., outer-approximation)
> New numerical methods (e.g., NLP algorithms, sensitivity, trust-region surrogate methods)
> Implementation of decomposition approaches that are natively aware of Pyomo model structure

17 I What is PyNumero?

PyNumero: A high-level python framework focused on compatibility with NumPy/SciPy
and Pyomo for rapid development of nonlinear algorithms without large sacrifices on
computational performance.

Very similar goals to NLPy (provide high-level interface for building NLP algorithms)
> Focused on compatibility with NumPy/SciPy and Pyomo

Impact:

- Dramatically reduce time required to prototype new serial and parallel numerical methods
while minimizing the performance penalty

> Supports projects with novel numerical algorithm needs

18

Nonlinear Optimization Algorithms

-

min
s.t.

Formulation

z)

R
pr—

I (
c(x)
dr <d(z) < dy

zp <z < Iy

Q.
»-PYOMO

f(z) Obijective

T

c(z)

\d(w)

Variables
Equalities
Inequalities

~

/ Solution \

VoL(2*,Ye, Yar 2 s V5 V) = 0
c(z*) =0

dr <d(z*) < dy

.

a1 g NumPy ASL

Derivatives V. f(z),J.(z)-..
Sparse Algebra VZ_L

/

KSqution of sparse systemS/

19 I PyNumero and Pyomo

ldea: PyNumero provides a new solver interface that can interact with models very
efficiently

a

A
)-PYOMO

Solver Interfaces

CPLEX

Gurobi

Meta-Solvers

* Generalized Benders
* Progressive Hedging
« Linear bilevel
 Linear MPEC

|

Xpress

Core Optimization
Objects

GLPK

CBC

BARON

Modeling Extensions

« Disjunctive programming
« Stochastic programming
* Bilevel programming

* Differential equations

* Equilibrium constraints

Core Modeling
Objects

OpenOpt
—Hie

AMPL Solver Library

Model
Transformations

Ipopt

KNITRO

Bonmin

Couenne

DAKOTA

from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

m = aml.ConcreteModel() ‘V‘PYOMD
m.x = aml.Var([1l, 2, 3], bounds=(©.0, None))

m.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)
m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)
m.obj = aml.Objective(expr=m.x[1]**4-m.x[3]*m.x[2]**3)

def my_algorithm(model):
nlp = PyomoNLP(model)

x = nlp.create_vector_x() |_ !
c = nlp.evaluate_c(x) :PQilllll?)f

Jc = nlp.jacobian_c(x)

20 I Structure and Decomposition

Optimization with inherent structure is ubiquitous in engineering applications
> Stochastic programming

> Dynamic optimization

> Network optimization problems fgig Z fi(z;)

- PDE optimization 7 ep

S.t. CZ(ZUZ) >0,21€P

Decomposition approaches allow for parallelization
P PP P © Az, + Biz=0, (y;)

o Internal decomposition
> Schur-complement decomposition

1€P

> Cyclic reduction = =
> External decomposition | | wews prrmeerere)4
> Alternating direction method of multipliers (ADMM) k2]eereeene | 4
> Progressive Hedging (PH) . -

PyNumero provides data structures to develop external el 2
and internal decomposition approaches :
- BlockMatrix, BlockVector AT AL e A | 2

° mpidpy

21 I Summary

PyNumero is a flexible framework for prototyping and developing NLP algorithms in
Python.

- Basic interior-point implemented in 3 weeks solved 200 Cuter tests.

PyNumero exploits the Numpy ecosystem and C++ python extensions to achieve good
performance.

> Python interior-point implementation only 1.5 times slower than ipopt on a 100K
variables/constraints problem

o Supports python calls to efficient linear solvers (e.g. MA27 and Mumps)
> Access to ASL from python
o Efficient interface to Cylpopt

PyNumero facilitates research of decomposition algorithms.
> Schur-complement decomposition

> Alternating direction method of multipliers
> Progressive hedging

PyNumero is distributed with Pyomo and conda-forge.

POEK: A Python Op
Expression Kernel

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

23 | IDEA/Motivation

ldea: Pyomo expression kernels could be executed in C++
> COEK - C++ expression library that interfaces to AD

> POEK - Python expression library that interfaces to COEK
> Qverload operators on expressions objects: variables, constants, expressions
- Each operator call results in a Python-C call to create a new expression

There are several obvious performance wins
> Create fewer Python objects for expressions

> Avoid creating Python expression objects with long lifetimes (which will help with memory)
> Avoid creating canonical expression representations
> Avoid file I/0 (including expensive string manipulation for floating point humbers)

Many Performant Python frameworks move compute-intensive kernels into C
> Numpy/Pandas

o Tensorflow

Conceptual Design of POEK and COEK

Python API

C-API
Using CFFI

COEK

C++ Expression
Trees

C++ Models

C++ Solver
Interfaces

C++ Autograd

CppAD,
Sacado,

25 | P-Median Model: POEK

X = {}
for n in range(N):
for m in range(M):
x[n,m] = variable(lb=0, ub=1, initialize=0)
y = variable(N, 1b=0, ub=1, initialize=0)
d = {}
for n in range(N):
for m in range(M):
d[n,m] = random.uniform(0.0,1.0)

pmedian = model()

objective
pmedian.add(sum(d[n,m]*x[n,m] for n in range(N) for m in range(M)))

single x
for m in range(M):
pmedian.add(sum(x[n,m] for n in range(N)) == 1)

bound_y
for n in range(N):
for m in range(M):
pmedian.add(x[n,m] - y[n] <= 0)

num_facilities
pmedian.add(sum(y[n] for n in range(N)) == P)

26 I P-Median Model: Pyomo

model = ConcreteModel()

model.N = RangeSet(N)

model.M = RangeSet(M)

model.x = Var(model.N, model.M, bounds=(0,1), initialize=0)
model.y = Var(model.N, bounds=(0,1), initialize=0)

model.d = Param(model.N, model.M,

initialize=lambda n, m, model : random.uniform(1.0,2.0))

def rule(model):
return sum(model.d[n,m]*model.x[n,m] for n in model.N for m in model.M)
model.obj = Objective(rule=rule)

def rule(model, m):
return sum(model.x[n,m] for n in model.N) == 1.0
model.single x = Constraint(model.M, rule=rule)

def rule(model, n,m):
return model.x[n,m] - model.y[n] <= 0.0
model.bound y = Constraint(model.N, model.M, rule=rule)

def rule(model):
return sum(model.y[n] for n in model.N) == P
model.num_facilities = Constraint(rule=rule)

27 | Preliminary Performance Results

Time to construct model and setup Ipopt
> P-median: N=M=640, P=1
> Cpython 3.6

| Pyomo| _____ POEK Speedup

Build Model 22.7 10.3 2.2x
Setup Ipopt 44.6 6.8 6.6x
TOTAL 67.3 17.1 3.9x

Observations & Conclusions
> CFFl interface is fast enough to justify many Python-C calls when constructing expressions
- Eliminating expression translation and file 1/0 in NL writer is a big win (NL files)
> Matrix/Vector expressions would make model build faster
o C++ expressions can be interrogated from Python using callbacks

28 I FINAL THOUGHTS

Faster Pyomo Expressions
> PyPy provides a nontrivial speedup over Cpython

- However, PyPy is not commonly used
- NOTE: PyPy can now be easily installed with Conda

PyNumero
> PyNumero’s hybrid strategy is well-established in the Python community

> |s distributed with Pyomo and conda-forge making it easy to install and use
> Extends Pyomo to build hybrid solvers using python and C/C++

Poek/Coek
> This is a proof-of-concept
> But Poek already does a lot of the basics
> NOTE: Coek looks a lot like the AMPL Solver Library

29 I Acknowledgements

* This work was conducted as part of the Institute for the Design of Advanced
Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-
Cutting Research, U.S. Department of Energy

IDAES

Institute for the Design of
Advanced Energy Systems

,',/,}I A Sandia Carnegie Mellon
‘ ‘ National

Laboratories wv WeStV].rg]maUﬂlverSlW

EEEEEEEEE

30 | Questions?

31 I Test Problems

Pyomo/POEK was tested with the following test problems:

bilinear_100000
dcopf1_0

diag_100000
jump_clnlbeam_50000
jump_facility_25
jump_lqcp_500
jump_opf_6620
pmedian_8
stochpdegas1_0

uc1_0

A model with large bilinear expressions
A DC OPF power grid model

A large diagonal model

The JuMP clnlbeam test problem

The JuMP facility test problem

The JuMP lqcp test problem

The JUMP opf test problem

A large, dense p-median test problem
A large dynamic optimization problem
A unit commitment model

