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3 I Rethinking the Software Stack within Pyomo
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Support for the PyPy Python
Interpreter
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Motivations

1. PyPy is a faster Python implementation
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10 I Motivations

2. Pyomo 5.5 leverages recursion in many operations, including expression cloning.

> Even simple non-linear expressions can result in deep expression trees where these recursive
operations fail because Python runs out of stack space.

3. Unexpected performance bottlenecks arise due to implicit expression cloning

M = ConcreteModel() M = ConcreteModel()
M.x = Var(range(100)) M.p = Param(initialize=3)
M.q=1/M.p
# This loop is fast. M.x = Var(range(100))
e=0
for i in range(100): # M.q is cloned every time it is used.
e =e + M.x[i] e=0
for i in range(100):
# This loop is slow (?!?). e = e + M.x[i]*M.qg
e=0
for iin range(100):
e = M.x[i] + e




11 I Expression Immutability

Pyomo 5.5 expressions are mutable, so they can be modified in place.
> Shared subtrees between expressions can lead to unexpected models.

> Pyomo 5.5 uses cloning and reference counts to detangle expressions.

Pyomo 5.6 ensures that expressions are immutable,
so detangling is not necessary!

M = ConcreteModel()
M.v = Var()
M.w = Var()

e =2"M.v
f=e+3

e += M.w




12 I Testing Performance

There are at least four elements of Pyomo’s performance that could be impacted by
the new expression system:

1. Time to generate expressions

2. Time to generate the standard representation
used for sending problems to a solver

3. Time to write problem files
4. Time to perform optimization

Our tests measured the time to construct and write models (1+2+3).

We expect that (3) will not be a factor for NL files, since the
problem representation is effectively unchanged.
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14 I Summary

Pyomo now runs using PyPy

The median performance of the new expressions is 4% slower in CPython and 2.5x
faster in PyPy (relative to CPython)

All cloning operations were eliminated, which eliminates a key source of “unexpected”
performance bottlenecks



PyNumero: Python Numerical
Optimization
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16 I Motivation

Pyomo is a Python-based, open-source optimization modeling language with a diverse set of
optimization capabilities

It is built upon Python - a full programming language that allows Pyomo to be used in
scl)lutiORS ranging from simple scripting to high-level domain specific tools and meta-
algorithms.

> |t is easy to build *on top* of Pyomo

Low-level solvers are implemented in compiled languages and interfaced with Pyomo

They are not aware of Pyomo models and structure
> Maybe with the exception of suffixes

Pyomo has not supported (until now) a framework for low-level numerical treatment of
Pyomo models

> Provide efficient numerical derivatives in “Pyomo” format (e.g., outer-approximation)
> New numerical methods (e.g., NLP algorithms, sensitivity, trust-region surrogate methods)
> Implementation of decomposition approaches that are natively aware of Pyomo model structure



17 I What is PyNumero?

PyNumero: A high-level python framework focused on compatibility with NumPy/SciPy
and Pyomo for rapid development of nonlinear algorithms without large sacrifices on
computational performance.

Very similar goals to NLPy (provide high-level interface for building NLP algorithms)
> Focused on compatibility with NumPy/SciPy and Pyomo

Impact:

- Dramatically reduce time required to prototype new serial and parallel numerical methods
while minimizing the performance penalty

> Supports projects with novel numerical algorithm needs
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19 I PyNumero and Pyomo

ldea: PyNumero provides a new solver interface that can interact with models very
efficiently

a

A
)-PYOMO

Solver Interfaces

CPLEX

Gurobi

Meta-Solvers

* Generalized Benders
* Progressive Hedging
« Linear bilevel
 Linear MPEC

|

Xpress

Core Optimization
Objects

GLPK

CBC

BARON

Modeling Extensions

« Disjunctive programming
« Stochastic programming
* Bilevel programming

* Differential equations

* Equilibrium constraints

Core Modeling
Objects

OpenOpt
—Hie

AMPL Solver Library

Model
Transformations

Ipopt

KNITRO

Bonmin

Couenne

DAKOTA

from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

m = aml.ConcreteModel() ‘V‘PYOMD
m.x = aml.Var([1l, 2, 3], bounds=(©.0, None))

m.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)
m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)
m.obj = aml.Objective(expr=m.x[1]**4-m.x[3]*m.x[2]**3)

def my_algorithm(model):
nlp = PyomoNLP(model)

x = nlp.create_vector_x() |_ !
c = nlp.evaluate_c(x) :PQilllll?)f

Jc = nlp.jacobian_c(x)




20 I Structure and Decomposition

Optimization with inherent structure is ubiquitous in engineering applications
> Stochastic programming

> Dynamic optimization

> Network optimization problems fgig Z fi(z;)

- PDE optimization 7 ep

S.t. CZ(ZUZ) >0,21€P

Decomposition approaches allow for parallelization
P PP P © Az, + Biz=0, (y;)

o Internal decomposition
> Schur-complement decomposition

1€P

> Cyclic reduction = =
> External decomposition | | wews prrmeerere )4
> Alternating direction method of multipliers (ADMM) k2 ]eereeene | 4
> Progressive Hedging (PH) . -

PyNumero provides data structures to develop external el 2
and internal decomposition approaches :
- BlockMatrix, BlockVector AT AL e A | 2

° mpidpy



21 I Summary

PyNumero is a flexible framework for prototyping and developing NLP algorithms in
Python.

- Basic interior-point implemented in 3 weeks solved 200 Cuter tests.

PyNumero exploits the Numpy ecosystem and C++ python extensions to achieve good
performance.

> Python interior-point implementation only 1.5 times slower than ipopt on a 100K
variables/constraints problem

o Supports python calls to efficient linear solvers (e.g. MA27 and Mumps)
> Access to ASL from python
o Efficient interface to Cylpopt

PyNumero facilitates research of decomposition algorithms.
> Schur-complement decomposition

> Alternating direction method of multipliers
> Progressive hedging

PyNumero is distributed with Pyomo and conda-forge.



POEK: A Python Op
Expression Kernel
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23 | IDEA/Motivation

ldea: Pyomo expression kernels could be executed in C++
> COEK - C++ expression library that interfaces to AD

> POEK - Python expression library that interfaces to COEK
> Qverload operators on expressions objects: variables, constants, expressions
- Each operator call results in a Python-C call to create a new expression

There are several obvious performance wins
> Create fewer Python objects for expressions

> Avoid creating Python expression objects with long lifetimes (which will help with memory)
> Avoid creating canonical expression representations
> Avoid file I/0 (including expensive string manipulation for floating point humbers)

Many Performant Python frameworks move compute-intensive kernels into C
> Numpy/Pandas

o Tensorflow



Conceptual Design of POEK and COEK

Python API
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25 | P-Median Model: POEK

X = {}
for n in range(N):
for m in range(M):
x[n,m] = variable(lb=0, ub=1, initialize=0)
y = variable(N, 1b=0, ub=1, initialize=0)
d = {}
for n in range(N):
for m in range(M):
d[n,m] = random.uniform(0.0,1.0)

pmedian = model()

# objective
pmedian.add( sum(d[n,m]*x[n,m] for n in range(N) for m in range(M)) )

# single x
for m in range(M):
pmedian.add( sum(x[n,m] for n in range(N)) == 1)

# bound_y
for n in range(N):
for m in range(M):
pmedian.add( x[n,m] - y[n] <= 0 )

# num_facilities
pmedian.add( sum(y[n] for n in range(N)) == P )



26 I P-Median Model: Pyomo

model = ConcreteModel()

model.N = RangeSet(N)

model.M = RangeSet(M)

model.x = Var(model.N, model.M, bounds=(0,1), initialize=0)
model.y = Var(model.N, bounds=(0,1), initialize=0)

model.d = Param(model.N, model.M,

initialize=lambda n, m, model : random.uniform(1.0,2.0))

def rule(model):
return sum(model.d[n,m]*model.x[n,m] for n in model.N for m in model.M)
model.obj = Objective(rule=rule)

def rule(model, m):
return sum(model.x[n,m] for n in model.N) == 1.0
model.single x = Constraint(model.M, rule=rule)

def rule(model, n,m):
return model.x[n,m] - model.y[n] <= 0.0
model.bound y = Constraint(model.N, model.M, rule=rule)

def rule(model):
return sum(model.y[n] for n in model.N) == P
model.num_facilities = Constraint(rule=rule)



27 | Preliminary Performance Results

Time to construct model and setup Ipopt
> P-median: N=M=640, P=1
> Cpython 3.6

| Pyomo| _____ POEK Speedup

Build Model 22.7 10.3 2.2x
Setup Ipopt 44.6 6.8 6.6x
TOTAL 67.3 17.1 3.9x

Observations & Conclusions
> CFFl interface is fast enough to justify many Python-C calls when constructing expressions
- Eliminating expression translation and file 1/0 in NL writer is a big win (NL files)
> Matrix/Vector expressions would make model build faster
o C++ expressions can be interrogated from Python using callbacks



28 I FINAL THOUGHTS

Faster Pyomo Expressions
> PyPy provides a nontrivial speedup over Cpython

- However, PyPy is not commonly used
- NOTE: PyPy can now be easily installed with Conda

PyNumero
> PyNumero’s hybrid strategy is well-established in the Python community

> |s distributed with Pyomo and conda-forge making it easy to install and use
> Extends Pyomo to build hybrid solvers using python and C/C++

Poek/Coek
> This is a proof-of-concept
> But Poek already does a lot of the basics
> NOTE: Coek looks a lot like the AMPL Solver Library
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30 | Questions?




31 I Test Problems

Pyomo/POEK was tested with the following test problems:

bilinear_100000
dcopf1_0

diag_100000
jump_clnlbeam_50000
jump_facility_25
jump_lqcp_500
jump_opf_6620
pmedian_8
stochpdegas1_0

uc1_0

A model with large bilinear expressions
A DC OPF power grid model

A large diagonal model

The JuMP clnlbeam test problem

The JuMP facility test problem

The JuMP lqcp test problem

The JUMP opf test problem

A large, dense p-median test problem
A large dynamic optimization problem
A unit commitment model



