
Rethinking the C++ / Python Boundary in

Modeling and Optimization Tools

William E. Hart, Jose S. Rodriguez, John
Siirola, Carl Laird

Purdue University
Sandia National Laboratories

wehart@sandia.gov

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2019-0453C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Rethinking the Software Stack within Pyomo
-

1 Decomposition Algorithm
(E.g. Progressive Hedging) I

1 Algebraic Modeling Language
Pyomo J

Optimization Problem m

v AEvaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, H

Have we struck the right balance?

Python Code

Boundary - (currently file-based)

Compiled
C / Fortran code

3 Rethinking the Software Stack within Pyomo
-

1 Decomposition Algorithm
(E.g. Progressive Hedging) I

1 Algebraic Modeling Language
Pyomo A

Optimization Problem Is
Core Expressions

v Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, H

Have we struck the right balance?

• Concerns that Python is slow have
motivated alternative AMLs
(esp. JuMP).

• Pyomo meta-solvers written in Python
have exhibited performance
bottlenecks

• Callbacks to C/Fortran solvers cannot
be used with file-based solver
interfaces

4 Rethinking the Software Stack within Pyomo
-

1 Decomposition Algorithm
(E.g. Progressive Hedging) I

1 Algebraic Modeling Language
Pyomo A

Optimization Problem Is
Core Expressions

v Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, H

Three Recent Efforts

1. Reimplementation of Pyomo
expressions to support PyPy

2. PyNumero: Python framework for
efficient numerical algorithms

3. Poek/Coek: Lightweight Python
expressions that enable direct solver
interfaces

5 Rethinking the Software Stack within Pyomo

1 Decomposition Algorithm
(E.g. Progressive Hedging)

-

11 Three Recent Efforts

1 1. Reimplementation of Pyomo 1
I I
I expressions to support PyPy i1 Algebraic Modeling Language

Pyomo A
r-

Optimization Problem Is
Om

1
1
L

Core Expressions am

1r Evaluation, Derivatives (AD)
ASL

IF Nonlinear Solver, Linear Algebra, H

2. PyNumero: Python framework for
efficient numerical algorithms

3. Poek/Coek: Lightweight Python
expressions that enable direct solver
interfaces

6 Rethinking the Software Stack within Pyomo

1
1
1
1
1
1
L

-

Decomposition Algorithm
(E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Ai
AEvaluation, Derivatives (AD)

ASL

111.- Nonlinear Solver, Linear Algebra, H

1
1
1
1
1
1
1

Three Recent Efforts

1. Reimplementation of Pyomo
expressions to support PyPy

1 2. PyNumero: Python framework for i
i iefficient numerical algorithms
I J

3. Poek/Coek: Lightweight Python
expressions that enable direct solver
interfaces

7 Rethinking the Software Stack within Pyomo

1
1
1
1
1
1
L

-

1 Decomposition Algorithm
(E.g. Progressive Hedging) I

1 Algebraic Modeling Language
Pyomo J

Optimization Problem ill
le Core Expressions II=

Ai
AllEvaluation, Derivatives (AD)

ASL

111.- Nonlinear Solver, Linear Algebra, H

Three Recent Efforts

1. Reimplementation of Pyomo
expressions to support PyPy

2. PyNumero: Python framework for
efficient numerical algorithms

1 1 3.
11
11
11

1
1
1

Poek/Coek: Lightweight Python i

expressions that enable direct solver :

Iinterfaces i

I

Support for the PyPy Python
Interpreter

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technotogy and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

9 Motivations

1. PyPy is a faster Python implementation

ti.4 -

7,02

5.61 -

4.21 .

231 -

1 .4-0 -

O.D0

05 4, 1,9 {,9 cz, (.)9 (.)1> 9 b9

0421 421 42i grr

Pid 411)

r.e IP IP IP q"C RCTFi. (rr

.71x

7.273(7.37xl

6.45x 6.44x
6.17x

5.9x711111--

5.24x

4.06x

3.62x

■

10 Motivations

2. Pyomo 5.5 leverages recursion in many operations, including expression cloning.
Even simple non-linear expressions can result in deep expression trees where these recursive
operations fail because Python runs out of stack space.

3. Unexpected performance bottlenecks arise due to implicit expression cloning

M = ConcreteModel()
M.x = Var(range(100))

This loop is fast.
e = 0
for i in range(100):

e = e + M.x[i]

This loop is slow (?!?).
e = 0
for i in range(100):

e = M.x[i] + e

M = ConcreteModel()
M.p = Param(initialize=3)
M.q = 1/M.p
M.x = Var(range(100))

M.q is cloned every time it is used.
e = 0
for i in range(100):

e = e + M.x[i]*M.q

11 I Expression Immutability

Pyomo 5.5 expressions are mutable, so they can be modified in place.
Shared subtrees between expressions can lead to unexpected models.

Pyomo 5.5 uses cloning and reference counts to detangle expressions.

Pyomo 5.6 ensures that expressions are immutable,
so detangling is not necessary!

M = ConcreteModel()
M.v = Var()
M.w = Var()

e = 2*M.v
f = e + 3

e += M.w

e

1
1

f

1
1

12 Testing Performance

There are at least four elements of Pyomo's performance that could be impacted by
the new expression system:

Time to generate expressions

Time to generate the standard representation
used for sending problems to a solver

3. Time to write problem files

4. Time to perform optimization

Our tests measured the time to construct and write models (1+2+3).

We expect that (3) will not be a factor for NL files, since the
problem representation is effectively unchanged.

Runtime

Li" O

bilinear 100000 -

dcopfl_O -

diag_100000 -

-0 jump_clnlbeam 50000
o

0
jump_facility_25 -

rD
,t
-0

jump_lqcp_500 -
0-
nT

jump_opf_6620 -

pmedian 8 -

stochpdegas1_0 -

ucl_O -

Runtime
0-) 00

O

bilinear 100000 I

dcopfl_O

diag_100000

-0 jump_clnlbeam_50000
0

jump_facility_25
rD
rt

0-
jump_lqcp_500

(IT

v.) jump_opf_6620

pmedian 8

stochpdegas1_0

uc1_0

I I
rD

(D

3

rr
lD

11.
1
2
 @
42
9.
.I
D
0
4
 @
W
U
_

-n

rD

T
E
U
O
L
I
4
A
d

:
@
I
H
 I

ll

2
 @
4
e
a
n
 0
1
 a
u
u
u

:
L
I
O
s
p
e
d
L
L
I
O
D
 a
D
u
a
L
u
o
p
a
d

14 Summary
=.

Pyomo now runs using PyPy

The median performance of the new expressions is 4% slower in CPython and 2.5x
faster in PyPy (relative to CPython)

All cloning operations were eliminated, which eliminates a key source of "unexpected"
performance bottlenecks

PyNumero: Python Numerical
Optimization

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technotogy and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

16 Motivation

Pyomo is a Python-based, open-source optimization modeling language with a diverse set of
optimization capabilities

It is built upon Python - a full programming language that allows Pyomo to be used in
solutions ranging from simple scripting to high-level domain specific tools and meta-
algorithms.

It is easy to build *on top* of Pyomo

Low-level solvers are implemented in compiled languages and interfaced with Pyomo

They are not aware of Pyomo models and structure
Maybe with the exception of suffixes

Pyomo has not supported (until now) a framework for low-level numerical treatment of
Pyomo models

Provide efficient numerical derivatives in "Pyomo" format (e.g., outer-approximation)
New numerical methods (e.g., NLP algorithms, sensitivity, trust-region surrogate methods)
Implementation of decomposition approaches that are natively aware of Pyomo model structure

17 What is PyNumero?

PyNumero: A high-level python framework focused on compatibility with NumPy/SciPy
and Pyomo for rapid development of nonlinear algorithms without large sacrifices on
computational performance.

4fPYOMO NumPy

Very similar goals to NLPy (provide high-level interface for building NLP algorithms)
Focused on compatibility with NumPy/SciPy and Pyomo

Impact:
Dramatically reduce time required to prototype new serial and parallel numerical methods
while minimizing the performance penalty
Supports projects with novel numerical algorithm needs

18 Nonlinear Optimization Algorithms

Formulation

f (x)

c(x)

dL < d(x) < du

xL GacGxU

IkPYOMO
Objective
Variables
Equalities
Inequalities

V xL

Solution

* „,*
Yd

* * 41
vl 7 vu) o
c(e)

d(e) < du

tirt NurnPy ASL

Derivatives V x (x), Je(x)
Sparse Algebra V x2 xe

Qolution of sparse systems

19 PyNumero and Pyomo

Idea: PyNumero provides a new solver interface that can interact with models very
efficiently

PYOMO
Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Solver Interfaces

Core Optimization
Objects

Core Modeling
Objects

Model
Transformations

CPLEX

Gurobi

Xpress

GLPK

CBC

BARON

OpenOpt

PyNumero
AMPL Solver Library

I popt

KNITRO

Bonmin

Couenne

DAKOTA

from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ aml

m = aml.ConcreteModel() Ar,
PYOMO

m.x = aml.Var([] bounds=(0.0, None))
m.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)
m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)
m.obj = aml.Objective(expr=m.x[]**4-m.x[3]*m.x[2]**3)

my_algorithm(model):
nlp = PyomoNLP(model)
x = nlp.create_vector_x()
c = nlp.evaluate_c(x)
3c = nlp.jacobian_c(x)
• • •

1

20 I Structure and Decomposition

Optimization with inherent structure is ubiquitous in engineering applications
Stochastic programming
Dynamic optimization
Network optimization problems
PDE optimization

Decomposition approaches allow for parallelization
Internal decomposition
0 Schur-complement decomposition
0 Cyclic reduction
External decomposition
Alternating direction method of multipliers (ADMM)
Progressive Hedging (PH)

PyNumero provides data structures to develop external
and internal decomposition approaches

BlockMatrix, BlockVector
mpi4py

min
x, ,z fi(xi)

iEP

s.t. ci(xi) > 0, i e P

Aixi + Biz = 0, (yi) i E P

r - _ - - _

K1 •••• •••• •••• 4 ,i R 1

••
••

K2 • • • • • . • • 02 R,

a
•

•
e
e

e

•
•

e a
e
••

• •
e

• a
•

• a.

e

•

•

• =

e

•

•

•

•
•

•
•

••
• •

Kn --1,, A
11

R,
1

- • • • • A v

21 Summary
=.

PyNumero is a flexible framework for prototyping and developing NLP algorithms in
Python.

Basic interior-point implemented in 3 weeks solved 200 Cuter tests.

PyNumero exploits the Numpy ecosystem and C++ python extensions to achieve good
performance.

Python interior-point implementation only 1.5 times slower than ipopt on a 100K
variables/constraints problem

Supports python calls to efficient linear solvers (e.g. MA27 and Mumps)

Access to ASL from python

Efficient interface to Cylpopt

PyNumero facilitates research of decomposition algorithms.
Schur-complement decomposition

Alternating direction method of multipliers

Progressive hedging

PyNumero is distributed with Pyomo and conda-forge.

POEK: A Python Optimize
Expression Kernel

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technotogy and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

23 IDEA/Motivation
•

Idea: Pyomo expression kernels could be executed in C++
COEK - C++ expression library that interfaces to AD

POEK - Python expression library that interfaces to COEK

(Overload operators on expressions objects: variables, constants, expressions

c Each operator call results in a Python-C call to create a new expression

There are several obvious performance wins
Create fewer Python objects for expressions

Avoid creating Python expression objects with long lifetimes (which will help with memory)

Avoid creating canonical expression representations

Avoid file 1/0 (including expensive string manipulation for floating point numbers)

Many Performant Python frameworks move compute-intensive kernels into C
Numpy/Pandas

Tensorflow

24 Conceptual Design of POEK and COEK
-

C++ Expression
Trees

I.
C++ Models

i.

C++ Solver
Interfaces

C++ Autograd

CppAD,
Sacado,

•••

25 P-Median Model: POEK

x = {}
for n in range(N):
for m in range(M)

x[n,m] = variable(1b=0, ub=1, initialize=0)
y = variable(N, 1b=0, ub=1, initialize=0)
d = {}
for n in range(N):
for m in range(M):

d[n,m] = random.uniform(0.0,1.0)

pmedian = model()

objective
pmedian.add(sum(d[n,m]*x[n,m] for n in range(N) for m in range(M)))

single_x
for m in range(M):

pmedian.add(sum(x[n,m] for n in range(N)) == 1

bound_y
for n in range(N):
for m in range(M):

pmedian.add(x[n,m] - y[n] <= 0)

num_facilities
pmedian.add(sum(y[n] for n in range(N)) == P)

)

26 I P-Median Model: Pyomo

model = ConcreteModel()

model.N = RangeSet(N)
model.M = RangeSet(M)
model.x = Var(model.N, model.M, bounds=(0,1), initialize=0)
model.y = Var(model.N, bounds=(0,1), initialize=0)
model.d = Param(model.N, model.M,

initialize=lambda n, m, model : random.uniform(1.0,2.0))

def rule(model):
return sum(model.d[n,m]*model.x[n,m] for n in model.N for m in model.M)

model.obj = Objective(rule=rule)

def rule(model, m):
return sum(model.x[n,m] for n in model.N) == 1.0

model.single_x = Constraint(model.M, rule=rule)

def rule(model, n,m):
return model.x[n,m] - model.y[n] <= 0.0

model.bound_y = Constraint(model.N, model.M, rule=rule)

def rule(model):
return sum(model.y[n] for n in model.N) == P

model.num facilities = Constraint(rule=rule)

27 Preliminary Performance Results

Time to construct model and setup lpopt
P-median: N=M=640, P=1

Cpython 3.6

Build Model 22.7

Setup lpopt 44.6

TOTAL 67.3

10.3 2.2x

6.8 6.6x

17.1 3.9x

Observations Et Conclusions
CFFI interface is fast enough to justify many Python-C calls when constructing expressions

Eliminating expression translation and file I/0 in NL writer is a big win (NL files)

Matrix/Vector expressions would make model build faster

C++ expressions can be interrogated from Python using callbacks

28 FINAL THOUGHTS
-

Faster Pyomo Expressions
PyPy provides a nontrivial speedup over Cpython

However, PyPy is not commonly used

NOTE: PyPy can now be easily installed with Conda

PyNumero
PyNumero's hybrid strategy is well-established in the Python community

Is distributed with Pyomo and conda-forge making it easy to install and use

Extends Pyomo to build hybrid solvers using python and C/C++

Poek/Coek
This is a proof-of-concept

But Poek already does a lot of the basics

NOTE: Coek looks a lot like the AMPL Solver Library

29 Acknowledgements

N This work was conducted as part of the Institute for the Design of Advanced
Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-
Cutting Research, U.S. Department of Energy

rrrrrrr
1
III

BERKELEY LAI
............Ss4444........

I DAES
Institute for the Design of
Advanced Energy Systems

Sandia
I National
P Laboratories

Carnegie Melloit
Wye WestVirginiaUniversity

30 I Questions?

31 Test Problems

Pyomo/POEK was tested with the following test problems:

Problem Description

bilinear_100000

dcopfl_O

diag_100000

jump_clnlbeam_50000

A model with large bilinear expressions

A DC OPF power grid model

A large diagonal model

The JuMP clnlbeam test problem

jump_facility_25

jump_lqcp_500

The JuMP facility test problem

The JuMP lqcp test problem

jump_opf_6620

pmedian_8

The JuMP opf test problem

A large, dense p-median test problem

stochpdegas1_0

ucl_O

A large dynamic optimization problem

A unit commitment model

