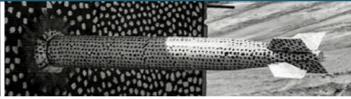
Rethinking the C++ / Python Boundary in Modeling and Optimization Tools



William E. Hart, Jose S. Rodriguez, John Siirola, Carl Laird

Purdue University Sandia National Laboratories

wehart@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Decomposition Algorithm (E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

Have we struck the right balance?

Python Code

Boundary - (currently file-based)

Compiled C / Fortran code

Decomposition Algorithm (E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

Have we struck the right balance?

- Concerns that Python is slow have motivated alternative AMLs (esp. JuMP).
- Pyomo meta-solvers written in Python have exhibited performance bottlenecks
- Callbacks to C/Fortran solvers cannot be used with file-based solver interfaces

Decomposition Algorithm (E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

- 1. Reimplementation of Pyomo expressions to support PyPy
- 2. PyNumero: Python framework for efficient numerical algorithms
- 3. Poek/Coek: Lightweight Python expressions that enable direct solver interfaces

Decomposition Algorithm (E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

- 1. Reimplementation of Pyomo expressions to support PyPy
- 2. PyNumero: Python framework for efficient numerical algorithms
- 3. Poek/Coek: Lightweight Python expressions that enable direct solver interfaces

Decomposition Algorithm (E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

- Reimplementation of Pyomo expressions to support PyPy
- PyNumero: Python framework for efficient numerical algorithms
- 3. Poek/Coek: Lightweight Python expressions that enable direct solver interfaces

Decomposition Algorithm (E.g. Progressive Hedging)

Algebraic Modeling Language
Pyomo

Optimization Problem

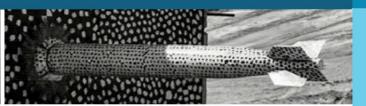
Core Expressions

Evaluation, Derivatives (AD)
ASL

Nonlinear Solver, Linear Algebra, HSL

- Reimplementation of Pyomo expressions to support PyPy
- 2. PyNumero: Python framework for efficient numerical algorithms
- 3. Poek/Coek: Lightweight Python expressions that enable direct solver interfaces

Support for the PyPy Python Interpreter



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

1. PyPy is a faster Python implementation

- 2. Pyomo 5.5 leverages recursion in many operations, including expression cloning.
- Even simple non-linear expressions can result in deep expression trees where these recursive operations fail because Python runs out of stack space.
- 3. Unexpected performance bottlenecks arise due to implicit expression cloning

```
M = ConcreteModel()
M.x = Var(range(100))
# This loop is fast.
e = 0
for i in range(100):
  e = e + M.x[i]
# This loop is slow (?!?).
e = 0
for i in range(100):
  e = M.x[i] + e
```

```
M = ConcreteModel()
M.p = Param(initialize=3)
M.q = 1/M.p
M.x = Var(range(100))

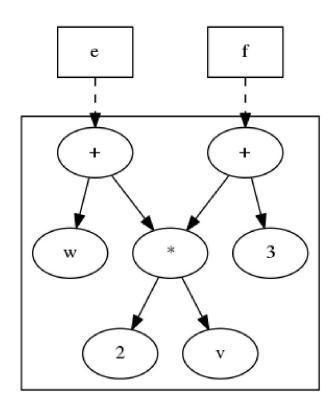
# M.q is cloned every time it is used.
e = 0
for i in range(100):
    e = e + M.x[i]*M.q
```

Expression Immutability

Pyomo 5.5 expressions are mutable, so they can be modified in place.

- Shared subtrees between expressions can lead to unexpected models.
- Pyomo 5.5 uses cloning and reference counts to detangle expressions.

Pyomo 5.6 ensures that expressions are immutable, so detangling is not necessary!



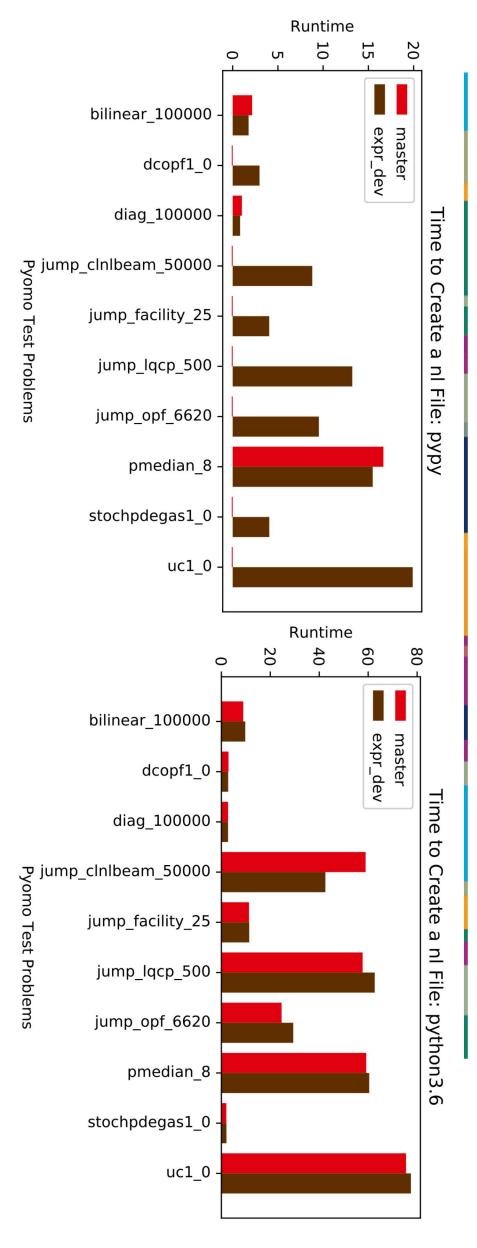
Testing Performance

There are at least four elements of Pyomo's performance that could be impacted by the new expression system:

- 1. Time to generate expressions
- 2. Time to generate the standard representation used for sending problems to a solver
- 3. Time to write problem files
- 4. Time to perform optimization

Our tests measured the time to construct and write models (1+2+3).

We expect that (3) will not be a factor for NL files, since the problem representation is effectively unchanged.

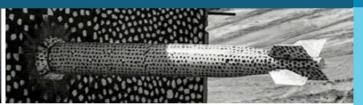


Pyomo now runs using PyPy

The median performance of the new expressions is 4% slower in CPython and 2.5x faster in PyPy (relative to CPython)

All cloning operations were eliminated, which eliminates a key source of "unexpected" performance bottlenecks

PyNumero: Python Numerical Optimization



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Pyomo is a Python-based, open-source optimization modeling language with a diverse set of optimization capabilities

It is built upon Python - a full programming language that allows Pyomo to be used in solutions ranging from simple scripting to high-level domain specific tools and meta-algorithms.

It is easy to build *on top* of Pyomo

Low-level solvers are implemented in compiled languages and interfaced with Pyomo

They are not aware of Pyomo models and structure

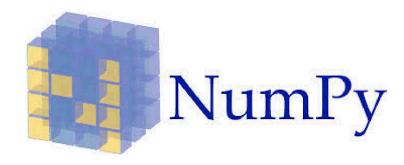
Maybe with the exception of suffixes

Pyomo has not supported (until now) a framework for low-level numerical treatment of Pyomo models

- Provide efficient numerical derivatives in "Pyomo" format (e.g., outer-approximation)
- New numerical methods (e.g., NLP algorithms, sensitivity, trust-region surrogate methods)
- Implementation of decomposition approaches that are natively aware of Pyomo model structure

What is PyNumero?

PyNumero: A high-level python framework focused on compatibility with NumPy/SciPy and Pyomo for rapid development of nonlinear algorithms without large sacrifices on computational performance.



Very similar goals to NLPy (provide high-level interface for building NLP algorithms)

Focused on compatibility with NumPy/SciPy and Pyomo

Impact:

- Dramatically reduce time required to prototype new serial and parallel numerical methods while minimizing the performance penalty
- Supports projects with novel numerical algorithm needs

Formulation

min
$$f(x)$$

s.t. $c(x) = 0$
 $d_L \le d(x) \le d_U$
 $x_L \le x \le x_U$

f(x) Objective

x Variables

c(x) Equalities

d(x) Inequalities

Solution

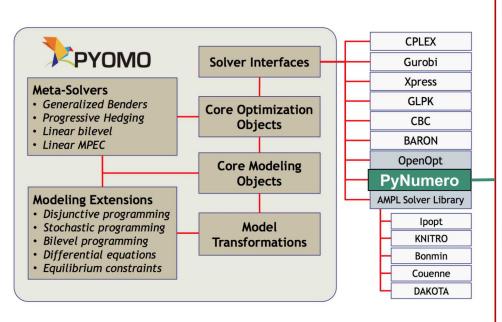
$$\nabla_{x} \mathcal{L}(x^{*}, y_{c}^{*}, y_{d}^{*}, z_{l}^{*}, z_{u}^{*}, v_{l}^{*}, v_{u}^{*}) = 0$$

$$c(x^{*}) = 0$$

$$d_{L} \leq d(x^{*}) \leq d_{U}$$

$$\vdots$$

Derivatives $\nabla_x f(x), J_c(x)...$ Sparse Algebra $\nabla^2_{xx} \mathcal{L}$ Solution of sparse systems Idea: PyNumero provides a new solver interface that can interact with models very efficiently



```
from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml
m = aml.ConcreteModel()
m.x = aml.Var([1, 2, 3], bounds=(0.0, None))
m.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)
m.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)
m.obj = aml.Objective(expr=m.x[1]**4-m.x[3]*m.x[2]**3)
def my algorithm(model):
    nlp = PyomoNLP(model)
    x = nlp.create vector x()
                                          NumPy
    c = nlp.evaluate c(x)
    Jc = nlp.jacobian_c(x)
```

Structure and Decomposition

Optimization with inherent structure is ubiquitous in engineering applications

- Stochastic programming
- Dynamic optimization
- Network optimization problems
- PDE optimization

Decomposition approaches allow for parallelization

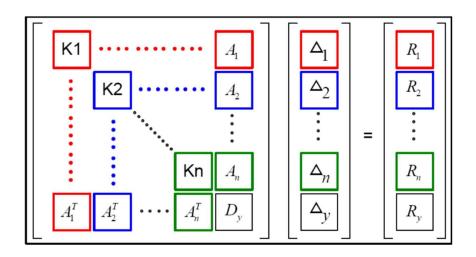
- Internal decomposition
 - Schur-complement decomposition
 - Cyclic reduction
- External decomposition
 - Alternating direction method of multipliers (ADMM)
 - Progressive Hedging (PH)

PyNumero provides data structures to develop external and internal decomposition approaches

- BlockMatrix, BlockVector
- mpi4py

$$\min_{x_i, z} \sum_{i \in \mathcal{P}} f_i(x_i)$$
s.t. $c_i(x_i) \ge 0, i \in \mathcal{P}$

$$A_i x_i + B_i z = 0, (y_i) \quad i \in \mathcal{P}$$



PyNumero is a flexible framework for prototyping and developing NLP algorithms in Python.

Basic interior-point implemented in 3 weeks solved 200 Cuter tests.

PyNumero exploits the Numpy ecosystem and C++ python extensions to achieve good performance.

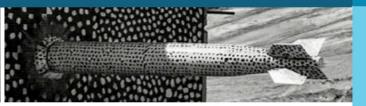
- Python interior-point implementation only 1.5 times slower than ipopt on a 100K variables/constraints problem
- Supports python calls to efficient linear solvers (e.g. MA27 and Mumps)
- Access to ASL from python
- Efficient interface to Cylpopt

PyNumero facilitates research of decomposition algorithms.

- Schur-complement decomposition
- Alternating direction method of multipliers
- Progressive hedging

PyNumero is distributed with Pyomo and conda-forge.

POEK: A Python Optimize Expression Kernel



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Idea: Pyomo expression kernels could be executed in C++

- COEK C++ expression library that interfaces to AD
- POEK Python expression library that interfaces to COEK
 - Overload operators on expressions objects: variables, constants, expressions
 - Each operator call results in a Python-C call to create a new expression

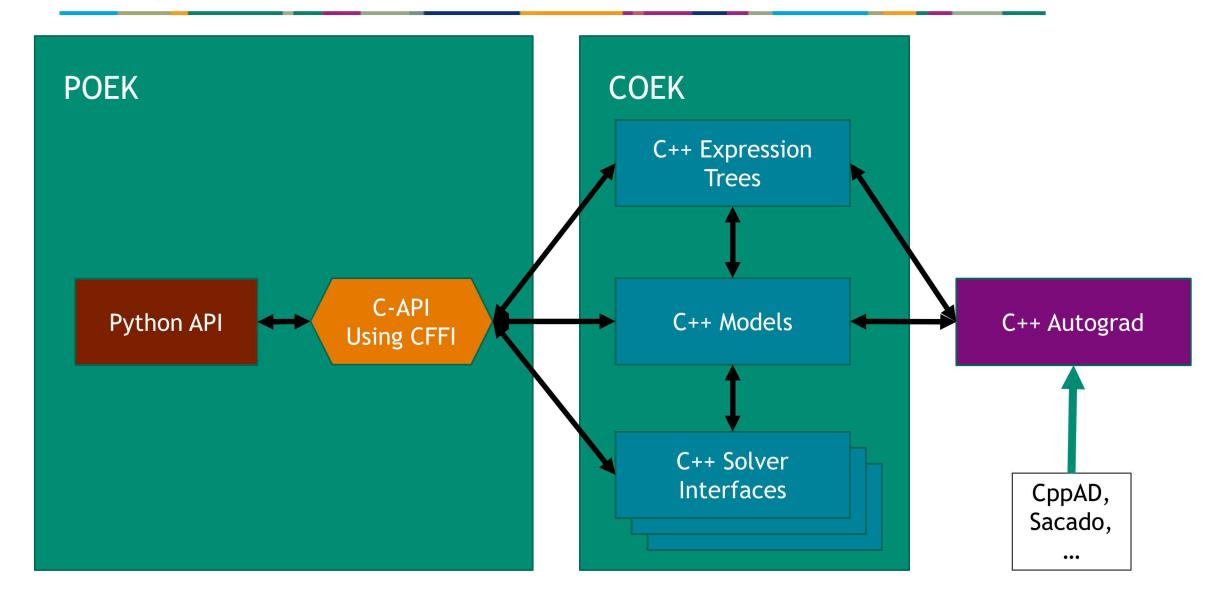
There are several obvious performance wins

- Create fewer Python objects for expressions
- Avoid creating Python expression objects with long lifetimes (which will help with memory)
- Avoid creating canonical expression representations
- Avoid file I/O (including expensive string manipulation for floating point numbers)

Many Performant Python frameworks move compute-intensive kernels into C

- Numpy/Pandas
- Tensorflow

Conceptual Design of POEK and COEK



```
x = \{\}
for n in range(N):
 for m in range(M):
    x[n,m] = variable(lb=0, ub=1, initialize=0)
y = variable(N, lb=0, ub=1, initialize=0)
d = \{\}
for n in range(N):
  for m in range(M):
    d[n,m] = random.uniform(0.0,1.0)
pmedian = model()
# objective
pmedian.add( sum(d[n,m]*x[n,m] for n in range(N) for m in range(M)) )
# single x
for m in range(M):
  pmedian.add( sum(x[n,m] for n in range(N)) == 1 )
# bound y
for n in range(N):
  for m in range(M):
    pmedian.add(x[n,m] - y[n] \le 0)
# num facilities
pmedian.add( sum(y[n] for n in range(N)) == P )
```

P-Median Model: Pyomo

```
model = ConcreteModel()
model.N = RangeSet(N)
model.M = RangeSet(M)
model.x = Var(model.N, model.M, bounds=(0,1), initialize=0)
model.y = Var(model.N, bounds=(0,1), initialize=0)
model.d = Param(model.N, model.M,
               initialize=lambda n, m, model : random.uniform(1.0,2.0))
def rule(model):
       return sum(model.d[n,m]*model.x[n,m] for n in model.N for m in model.M)
model.obj = Objective(rule=rule)
def rule(model, m):
       return sum(model.x[n,m] for n in model.N) == 1.0
model.single x = Constraint(model.M, rule=rule)
def rule(model, n,m):
       return model.x[n,m] - model.y[n] <= 0.0
model.bound y = Constraint(model.N, model.M, rule=rule)
def rule(model):
       return sum(model.y[n] for n in model.N) == P
model.num facilities = Constraint(rule=rule)
```

Preliminary Performance Results

Time to construct model and setup Ipopt

- P-median: N=M=640, P=1
- Cpython 3.6

	Pyomo	POEK	Speedup
Build Model	22.7	10.3	2.2x
Setup Ipopt	44.6	6.8	6.6x
TOTAL	67.3	17.1	3.9x

Observations & Conclusions

- CFFI interface is fast enough to justify many Python-C calls when constructing expressions
- Eliminating expression translation and file I/O in NL writer is a big win (NL files)
- Matrix/Vector expressions would make model build faster
- C++ expressions can be interrogated from Python using callbacks

FINAL THOUGHTS

Faster Pyomo Expressions

- PyPy provides a nontrivial speedup over Cpython
- However, PyPy is not commonly used
 - NOTE: PyPy can now be easily installed with Conda

PyNumero

- PyNumero's hybrid strategy is well-established in the Python community
- Is distributed with Pyomo and conda-forge making it easy to install and use
- Extends Pyomo to build hybrid solvers using python and C/C++

Poek/Coek

- This is a proof-of-concept
- But Poek already does a lot of the basics
- NOTE: Coek looks a lot like the AMPL Solver Library

 This work was conducted as part of the Institute for the Design of Advanced Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-Cutting Research, U.S. Department of Energy

Pyomo/POEK was tested with the following test problems:

Problem	Description
bilinear_100000	A model with large bilinear expressions
dcopf1_0	A DC OPF power grid model
diag_100000	A large diagonal model
jump_clnlbeam_50000	The JuMP clnlbeam test problem
jump_facility_25	The JuMP facility test problem
jump_lqcp_500	The JuMP lqcp test problem
jump_opf_6620	The JuMP opf test problem
pmedian_8	A large, dense p-median test problem
stochpdegas1_0	A large dynamic optimization problem
uc1_0	A unit commitment model