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Ferroics Impact Power Conversion Volume and Weight

Passive elements and
thermal management
comprise the bulk of the
volume and mass of a
power converter

WBG/UWBG materials
enable higher switching
frequency and better
thermal management

Magnetics

Capacitors

. Neely, J. Flicker, B. Kaplar (SNL)

Thermal
management

Semiconductor
switches



3 | Ferroics

_ Ferromagnetic Ferroelectric Ferroelastic

=1um-10°nm Multidomain
II "
- i
=0.1um-10? nm Single Domain
)
=10nm-103 A Super-paramagnetic

=1nm-10A Paramagnetic
E. :
{ M

Newnham, R.E. “Size Effects in Ferroics”, Integrated Ferroelectrics, 1998, Vol.20, pp. 1-13

Multidomain
»
It

Single Domain

’

Super-Paraelectric

s

Paraelectric

-+

Multidomain

g2t

Single Domain

J£H

Super-Paraelastic
B, gt ‘
o

Paraelastic

I D e



+ | Soft Magnetics (lron Nitride)




: | Hard vs. Soft Magnets
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6 | Soft Magnet Energy Related Applications

Inductor cores Transformer cores

Lllron Alloy M Nonconductive Boundary

Electrical machines (motors & generators)




, | Soft Magnetic Material Development

soft magnetic composites (SMC)
nanocrystalline alloys (also Fe & Co based)
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Magnetic Material J, (T) | p(p€2-m)

VITROPERM (Vacuumschmelze) i) 1.15 High
Metglas 2605SC 1.60 1.37 High
Ferrite (Ferroxcube) 0.52  5x10° Low
1.87 0.05 Low
’-Fe,N 1.89 >200 Low
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. | Spark Plasma Sintering (SPS)

SPS Model: SPS-825S Dr. Sinter® at UC Irvine

Starting Powder in Die End Product

SPS
Chamber

Vacuum Charmbwer i




o | SPS consolidated Iron Nitride

First ever bulk y’-Fe,N! Net-shaped toroid

(no machining required)

Intensity

30 40 50 60 70 80
20

* Fe nitride powders well consolidated with little porosity

* Grain sizes 200 nm — 1 pm — fine grain size = low H,_

* v’-Fe,N primary phase

* Fe;N secondary phase from mixed phase starting material




.+ | Toroid Surface SEM and EDS

* Small variation in composition
between grain boundary and center

* Grain center stoichiometry = Fe,;N

* Grain boundary is ® 3 Atomic%
richer iniron

e lpm JEOL 11/10/2014
X 10,000 20.0kKV COMPO NOR WD 11.0mm 11:08:26

Fe (Atomic %) N (Atomic %)

Grain center 81.3 18.7
Grain boundary 84.2 15.8

*SEM/EDS analysis completed by
Dick Grant (SNL)




2 | y’-Fe,N Synthesis and Processing

U.S. Patent Issued (#9,963,344)

SPS Consolidation

Fluidized Bed Furnace

Spark Plasma Sintering
Fast sintering

L " Pressure and pulsed current assisted sintering process
Cryomilling
Severe Plastic
deformation

= Precision control over heat, pressure, and time
= Restrain grain growth
= Full densification




s | Magnetic Characterization

J (T)
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*SPSed at 550°C and 100 MPa
°J,=1.62T
*Theoretical J, =1.89 T
« (SiFe is 1.87 T)
*H_< 1000 A/m



« | SEM of SPSed FeN samples, (@5mm, 525°C, 200MPa)

W/ as-received FeN powder W/ milled FeN powder

 AccV SpotMagn Det WD Exp ————{ 104m

s :.:.vv-‘Acc.V 'Sp.utME‘lgn Det WD .EX|£I |—| 10#1'11 B
= 500kv30 2500x SE 46 1 SPS FeN AR, D5 525C 200MPa S

_ 500kv 3.0 2500x SE 44 1 SPS FeNMM, D5 525C 200MPa

Milled FeN powder produces more uniform and dense SPSed billets
— Higher packing density with smaller particle size
— Enhanced diffusion with smaller grain size of milled powder




Den5|ty of SPSed Fe,N samples

ptheory =17.212 g/cm3

7.1 1 M As-received
5 m Milled

6.9 1

6.8 1

6.7 1

6.6 1

Density (g/cm?3)

6.5 1

6.4

6.3

1 2 3 4

SPSed FeN Samples

* Density increases with increasing SPS temperature and pressure
* Milling improves both density and sample uniformity




16 | Grain Size, Domain Wall Motion, and Coercivity
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metallic alloys. The data of the nanocrystalline material refer ribbons," IEEE Transactions on Magnetics, vol. 37, pp. 2245-2247, 2001.

to ( o) FeNbSiB and (e) FeCuNbSiB [14], (€ ) FeCuVSiB [15],
(@) FeZrB [4] and (v) FeCoZr [16].

G. Herzer, Nanocrystalline Soft Magnetic Materials, J. Magn. Mag. Mat., 112, 258 (1992).
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s | Ferroelectrics (Barium Titanate)
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Capacitor Needs for Storage

Battery life P
extension

Power electronics,

Frequency
regulation

FACTS and
VAR support

Inverters

Transportable
storage




» | Benefits of Nanocrystalline Ferroelectrics

* Permittivity may increase with decreasing grain size down to a critical size dimension

(higher energy density)

* High frequency performance improves with decreasing grain size (maintain permittivity

and low loss to higher frequencies)

* Field and temperature dependence of permittivity may improve (i.e. lower TCC and VCC)

e

- e 5000 [ —e—set1
g 3 ‘ —o—set 2
% 12000 £ 4000
: ': m
8 ; 2
2 8000 | g 3000
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2 4000 - g o
Q E . < <
Eog A 1000
oF.‘ 1 1
0 200 400 600 ﬂ . . . )
Particle size (nm) 0 200 400 600 800 1000
Crystal Size (nm)
BaTiO, particles in solution ) .
3P Sintered BaTiO,

Wada et. al., Jpn. J. Appl. Phys. Vol. 42 (2003) 6188—6195
Ayguin et. al., J. Appl. Phys. Vol. 109 (2011) 034108

Most widely reported and
agreed upon behavior
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Frey, et. al., Ferroelectrics, Vols. 206-207, (1998) 337-353



» | Benefits of Nanocrystalline Ferroelectrics

e Nanocrystalline grain size provides high breakdown strength (BDS)

e Lower field-induced strain (i.e., better electromechanical performance)

2.000 = i ? BaTiO3
. 3

In (E)
——
i
/
/
/
/

Longitudinal strain x; ( X10-*)

1.000 | 5%—’
\ 1

2 3 —

1 !
7.5 15

=15
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Figure 2 Grain size dependence on dielectric strength. Numbers Fig. 3.28 Grain size dependence of the induced strain in PLZT ceramics.
indicate  sintering temperatures: (1) 1320°C, (2) 1330°C, (3)
1350 °C, (4) 1380 °C, (5) 1400 °C.
TUNKASIRI, JOURNAL OF MATERIALS SCIENCE from Kenji Uchino’s book, Ferroelectric Devices

LETTERS 15 (1996) 1767-1769



22 | Barium Titanate (BaTiO; or BTO)

BaTiO, (BTO)

Ti atom

displacement
T from the lattice

center results
in polarization

‘Ba‘O‘Tl

(Perovskite Structure)

* Ferroelectric in bulk at room
temperature

* High dielectric constant

e Wide variation in reported
nanoparticle dielectric
constants



3 | Device Fabrication
Sintering | I

=)

Spark Plasma Sintering die SNL BTO, grain size 100 — 200 nm

-E -




2 | Benefits of SPS
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Fig. 4. Comparison of sinfering profiles of BaTi0 ceranuics obfained by convenfional
sintering and by SP57 Figure 5 Temperatue dependence of the permuttivity at 1 kHz for SPS,
CH and SSR. BaTiO; pellets.

Hungria et. al., Adv. Eng. Mater. Vol. 11 (2009) 616.
Takeuchi et. al., J. Mater. Sci. Vol. 34 (1999) 917.

Dramatically shorter overall sintering times

* Lower sintering temperatures, shorter hold times
 Ability to limit/control grain sizes

» Porosity and oxygen defects minimized at same time
- Effective in removing resistive grain boundary component

« Improved frequency response



5 | Examples of SPSed BTO

5000

Dielectric constant

{1 -

« Uniform control over grain size allows additional tuning of properties difficult
to demonstrate via conventional sintering

 Field dependence of permittivity (VCC)
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Zhao et al., Phys. Rev. B Vol. 70 (2004) 024107.
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 Temperature dependence of permittivity (TCC)



2% | Commercial BTO Nanoparticles

EHT= 500y WD= Smm Signal A = InLens File Marme = TRL_BT_02 td

—

« NanOxide HPB-1000 from TPL

« BET surface area of 16.26 £ 0.0669 m?/g
 60-80 nm primary particle size

 1-20 um “soft” agglomerates

w5 aill

10pm |

£ 6050x

MAY 14 2010 13:15
BaTiOasrecd-5




27 | Abnormal Grain Growth
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28 | Abnormal Grain Growth
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» | SNL BTO Nanoparticle Synthesis

BaTi03—-080302 Hisl 1 I
Lambda l|_5405 Jlﬂi 1-5 Icyele IZ'?SE | lﬂbsd. ?nd Diflf. Profliles
o :
=3 | Rietveld refinement fits
i ‘ tetragonal phase best ]
~ 10 nm diameter s 200 300 400 500 600 700 800 900 100.0 110.0
Z2—-Theta, deg o |
* Ba(OH),-8H,0 and Ti(OPr), precursors at 80 °C
* Redesigned synthesis with air-free chemistry and improved control over water addition I
* Rietveld analysis fits tetragonal phase when particles synthesized with 0.5 and 0.6 mol H,O |

Yoon et. al., J. Am. Ceram. Soc. 90 311 (2007)



30 | BTO size effects as seen in XRD

Bragg Peaks: (002) & (200)

60000 -
50000M * Large BTO NPs (bUlk)
L_ioﬂ.n_r.n_____/‘\/\\___ have split peaks!

40000—- 300 nm ,/ g \
200 nm — G  Small BTO NPs have

30000 -

20000 ‘-...1_02.’1.“_..._._-—/\-——— singlet peaks!

[100m @) wmm="" N * 200 nm BTO NPs are on
0 -

the fence!

Intensity (with vertcal ofrrset) (counts)

| ¥ | I i I

44.0 44 4 44 .8 40.2 45.6 46.0
20 (degrees)

Shi, et al., “Barium titanate nanoparticles: Short-range lattice distortions with long-range cubic order," Phys. Rev. B., vol. 00, pp. 005400, 2018.



s | Particle Size Dependent Behavior

Synchrotron aPDF (atomic pair distribution function) Analysis

c/a Ratio o
Lo (from fits over 60 Angstroms) <120 °C(393.15K)
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1.002- —— 200 nm o g T
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Temperature (K)

COLUMBIA
UNIVERSITY

Synchrotron X-ray data collected at NSLS at Brookhaven National Lab

Tetragonal
(Ferroelectric)

Cubic
(Paraelectric)




3 | Raman of SNL BTO (unsintered)

Raman Scattered Intensity (arb. units)
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* 290 cm* and 710 cm™ persist above the Curie temp. (120 °C)

 Raman lines are very broad and sit above a temp.-dependent background |



s | Sintering of SNL BTO Nanoparticles

800 °C sintering temp.
* 1.4 GPa sintering pressure
* 5 hr. anneal at 700 °C
*p=5.98g/cm3

* 99.7% of theoretical

* 20 - 40 nm grain size




Permittivity vs. Temperature

Permittivity

1200

1000

800

600

400

200

—— 100 Hz

S+ 10 kHz
K, —— 100 kHz

-50

a0 100 150

Temperature [°C]

200

tan &

0.05

0.04

0.03 |

0.02 |

0.01 |

0

——100 Hz

—+—10 kHz
——100 kHz

S

-50

1 1 1 1
0 50 100 150

Temperature [°C]

« SNL BTO, ~23 nm sample (no cracks, data on cooling)

* No obvious transition at Curie temp. (125 °C)
* Loss generally low but not consistent
- Data trend agrees with existing literature
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35| Pvs. E

Polarization [pCfcmE]

« SNL BTO at 100 Hz and NanOxide powder at 1 Hz

_‘]5 1 1 1 1 1
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10

2006 Deng et al., Appl. Phys. Lett. 88, 252905

« Compares very favorably to work by Deng et al. from 2006

 Doubled polarization at equivalent fields

 Measured up to higher fields

Indicates likely a problem with breakdown in their sample

U.S.NAVAL

L RESEARCH.
LABORATORY



Polarization [|.|C:‘cm2]
=

Electric Field [kV/mm]

20.5 nm

Polarization [pC.’cmz]
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Electric Field [kV/mm]
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SNL BTO at 100 Hz and NanOxide large grain ceramic at 1 Hz
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., | Conclusions

* SPS is a useful tool for consolidating dense, fine grain materials with excellent
properties

* Tuning of desired response is possible through sintering parameters

* However, a high quality starting material cannot be overlooked!
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Benefits of a High Frequency Transformer

Trans-

l former
Energy Power & o
Sﬁmﬁfy?}e / electronics O

High frequency (20 kHz) transformer

S. Krishnamurthy, Half Bridge AC-AC Electronic
Transformer, IEEE, 1414 (2012).

= [ntegrate output transformer within power
conversion electronics

= Leverage high switching speed, voltage, and
temperature performance of WBG semiconductors

= Core materials for high frequency transformers
have been an afterthought

Material requirements:

= Low loss over 10-200 kHz frequency range
= low coercivity, high p

* High J, — high power density

= High temperature performance

= Scalable & Affordable

" Increased reliability and better SWaP



« | Magnetic Properties

M (MA/m)
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M. = saturation magnetization
M, = magnetic remnance

H. = coercivity

y; = initial susceptibility

K = permeability
K. = permeability

i _ -
0 50|00 10(|)00 15000 IJ'r - p'/l'l'O - 1 + x

H (A/m)



" | Previous Syntheses of y’-Fe,N

270 ML y’-Fe,N[100]

Fig. 1. STM image of a 270 monolayers (ML) thick y-Fe4N film grown
on Cu(100). The inset shows the corresponding LEED pattern (110eV).

D. Ecija, et. al., “Magnetisation reversal of epitaxial films of y’- S.K. Chen, et. al., “Synthesis and magnetic properties of Fe,N and (Fe,
Fe,N on Cu(100)”, J. Magn. Mag. Mat., 316, 321 (2007). Ni),N sheets”, J. Magn. Mag. Mat., 110, 65 (1991).

Up to 50 nm thick 25 um foils




: | BaTiO; (BTO) Nanoparticles Studied

Primary Particle Synthesis
Diameter (nm) Method

Sandia 80°C solution
Sakai KZM-50 50 hydrothermal
Sakai BT-01 100 hydrothermal
Sakai BT-02 200 hydrothermal
Sakai BT-03 300 hydrothermal
Sakai BT-04 400 hydrothermal
Sakai BT-05 500 hydrothermal

Sandia solution
synthesized BaTiO,

Sakai KZM-50



44 | Ti Displacement
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Synchrotron X-ray data collected at NSLS at Brookhaven National Lab




s | Size Dependent Behavior Observed with Raman

HARVEY
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COLLEGE

Raman-Scattered Intensity (arb. units)

500 nm BTO: tetragonal Raman lines disappear abruptly at 120°C
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* 50 nm BTO: tetragonal Raman lines persist above 120°C
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4 | Order Disorder Model
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FIG. 1, Unit cell of the perovskites BaTiO; and
KNbO; as proposed by Comes et al,

Chaves et. al., Phys. Rev. B. 13 207 (1976)



