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Definition of Uncertainty Quantification(UQ)

U0 is the end-to-end estimation and analysis of uncertainty in:

models and their parameters

• assimilation of experimental/observational data

• model fitting and parameter estimation

model predictions

o forward propagation of parametric uncertainty to model outputs

o Analysis, comparison and selection among alternate plausible
models
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The Case for Uncertainty Quantification

UO is needed in:

o Assessment of confidence in computational predictions

o Validation and comparison of scientific/engineering models

o Robust design optimization under uncertainty

o Use of computational predictions for decision-support

o Assimilation of observational data and model construction

o Multiscale and multiphysics model coupling

NmElErrr-
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Uncertainty Quantification and Computational Science
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Uncertain y Quantification and Computational Science
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Probabilistic Forward UQ = f (x)

Represent uncertain quantities using probability theory

Random sampling, Monte Carlo

• Generate random samples fxiyiv_1 from the PDF of x, p(x)

• Bin the corresponding 0'1 to construct p(y)

e Not feasible for computationally expensive f (x)

- slow convergence of MC/QMC methods
very large A-required for reliable estimates

Build a cheap surrogate for f (x), then use Monte Carlo/others

o Collocation - interpolants

o Regression - fitting

o Galerkin methods

- Polynomial Chaos (PC) methods

SNL Najrn Comp 7/ 44



• Model uncertain quantities as random variables (RVs)

• Given a germ (c,i) = {-1, • •• , - a set of RVs

- where p() is uniquely determined by its moments

Any RV in P(S2, P) can be written as a PCE:

21(x C41) = f (x,t, Uk(X t)k f k((4)))

k=0

- (x, t) are mode strengths
- k 0 are multivariate functions orthogonal w.r.t. p()

SNL Najrn Cornp 8 / 44
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Essential Use of Polynomial Chaos Expansions in UQ

• Represent model parameters/solution as random variables

• Construct PCEs for uncertain parameters

• Evaluate PCEs for model outputs

Advantages:

• Computational efficiency

o Utility

o 2
Moments: E(u) = uo, var(u) =

k= 
P 

1 
ttk

o Global Sensitivities - fractional variances, Sobor indices
• Surrogate for forward model

Requirement:

o RVs in L2, i.e. with finite variance, on (S2, e(), P)

SNL Najrn Comp 9 / 44
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UQ in LES computal
with M. Khalil, G. Lacaze, & J. Oefelei

ions: turbulent blu
, Sandia Nat. Labs

f-body flame

o CH4-H2 jet, air coflow, 3D flow

o Re=9500, LES subgrid modeling

o 12 x 106 mesh cells, 1024 cores

o 3 days run time, 2 x 105 time steps

o 3 uncertain parameters (C8, Prt, Sct)

o 2nd-order PC, 25 sparse-quad. pts
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UQ in Ocean Modeling - Gulf of Mexic
A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.
A. Srinivasan. M. lskandarani. Univ. Miami; W.C. Thacker, NOAA

o Hurricane Ivan, Sep. 2004

o HYCOM ocean model (hycom.org) 28

o Predicted Mixed Layer Depth (MLD)
24

o Four uncertain parameters, i.i.d. U

- subgrid mixing & wind drag params 20

o 385 sparse quadrature samples

(Alexanderian et al , Winokur et

35

ProbiPALD>22)alt.150

90
Longitude

al., Comput. Geosci., 2012, 2013)
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High dime sionality s a major challeng in forward UQ

o High dimensionality is the result of

o Large number of uncertain parameters/inputs
o Large number of degrees of freedom in random field inputs

o PCE sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

o MC requires similarly large number of samples when the number of
important dimensions is very high

o Typically, physical model output quantities of interest are smooth

o Only a small number of inputs are important

o In this case, the way out is:

o Use global sensitivity analysis (GSA) with MC to identify
important parameters

o Use PCE sparse-quadrature on the reduced dimensional space
for accurate forward UQ

SNL Najnn Cornp 12 / 44
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Global Sensitivity Analysis (GSA)

o Random sampling-based

o Define parametric PDFs
o Sample them

- Monte Carlo (MC) sampling
- Quasi-Monte Carlo (QMC) methods

e.g. Latin Hypercube sampling (LHS)

o Run forward model for each sample
o Evaluate statistics/PDFs of output observables
o Sensitivity information

- Scatter plots; Correlation measures; Regression
- Importance Measures; Sobol' sensitivity indices

o Response surface construction based on samples

o followed by sensitivity and/or UQ

o Analysis of Variance (ANOVA)

o High Dimensional Model Representation (HDMR)
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Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to
com • utational costs:

• Reliable MC-estimation of sensitivity indices requires regularization

• Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

• Employ k i -norm constrained regression to discover a sparse PCE

- compressive sensing

• Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods

o Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

• Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space

SNL Najm Connp 14 /44



Learning from Li ited Sparse Noisy Data

• We often need to use data to estimate quantities of interest

• Experimental data can be inherently noisy

• Randomness in physical system
o Instrument noise

o It can also be sparse - data gaps

o e.g. data (x„ yi) on small subsets of some domain D

• Even when the data is from computations, it can be "noisy"

• Statistics computed from simulation outputs can be noisy due
to limited averaging time windows

• Discrepancies between computational simulation outputs and
some fit-model of interest can be treated as noise

o Generally, learning from small number of data points, especially
when sparse and noisy, can be a major challenge

o Little information available from data

SNL Najnn Comp 15 /44
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Learning from data with limited information

• Generally we address -Learning" in the context of estimation of
statistics, and fitting

• Consider data (4), , y(i)), i = 1, ••• , N

o x E [Rn are independent variables
• yeR is the dependent variable

• We might be interested in statistics s = (‘81, ••• s n)

- with, e.g., si = V[E(ylxi)]

• Or fitting function y = f (x; c), to estimate c = (co, ••• , cp)

- with, e.g. f (x; c) = kP 0 coF k(x)

- with either least-squares fitting, or Bayes

• In all cases, the accuracy of the estimate of c or s depends on the
"quality" of the data

• data noise, coverage, range, quantity

SNL Najrn Cornp 16/ 44
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Estimation f GSA Sobor Indices with P regularization

o When the number of samples is small, the GSA sensitivity indices
can be computed with improved accuracy, relying on regularization

• Use regression with MC samples to fit a Legendre-Uniform PCE to
the data

= CkWk

o Use PCE to evaluate Sobol Indices directly
Sargsyan, 2017

co Example results illustrate significant improvement over the direct
estimation from samples

SNL Najrn Cornp 17/44
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Estimation of SA Sobor Indices with P regularization

to°
ro

44

10-

d = 1

1-11 N = 300

N = 1500

1-11 N = 3000

MC 1 2 3
Surrogate order

4

Sargsyan, 2017
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Estima ion of GSA Sobor Indices with P regularization

100
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4

Sargsyan, 2017
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Estimation of GSA Sobor Indices with P
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PCfit

Need for re ularization in fitting/inversion

o Sometimes the fitting problem is ill-posed ... non-uniqueness

o Multiple values of c give the same f (x; c) over a range of x

o More often the problem is ill-conditioned

• The amount of information in the data is small relative to the
number of parameters we are interested in learning

- For example N << P + 1

• Ill-conditioning can manifest itself in sensitivity to

• Initial guess choice in least-squares fitting
o Prior choice in Bayesian fitting
• Specific choice of data set

• Ill-conditioning can lead to poor convergence in the iterative
solution or to poor mixing in MCMC

• Regularization is often useful to deal with these challenges

SNL Najrn Comp 19/44



Regularization in earning from Data

• Regularization involves adding some information into the problem

• Of course, the choice of the form of f (x; c), or the value of P, also
provide explicit regularization

• Regularization allows enforcement of desired traits in the solution

• Smoothness, positivity, ...
• Introduces bias, destroys consistency

o Example: Tikhonov-type regularization:

c = argrnin (x , c) — y + L (c' ))

o How to choose regularization form, L, a ? - Somewhat arbitrary

o L(t) := favor solutions with small f2 norm

o L (t) := 11 max x Vxf (x , t)1 favor smooth functions

o L (t) := favor solutions with small # of non-zero elements

- sparse solutions

SNL Najrn Comp 20/44
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Regularization in earning from Data

• Employing the fo constraint is a problem because the resulting
constrained optimization is not convex

o It turns out that it's possible to use the f 1-norm, with good sparsity
selection

• This problem is indeed convex

• Hence the use of the fl norm in sparse regression

- Compressive Sensing, LASSO
- Bayesian compressive sengin, Bayesian LASSO

SNL Najrn Cornp 21 / 44
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Sparse regr

Model:
K-1

y = f(x) E ck (X)

k=0

with x E Pn, klfk max order p, and K = (p + n)! Ip! In!

• N samples (xl, (xN,yN)

• Estimate K terms co, , s.t.

min I ly Aci

where y E PN , c E PK , Aik = tifk(;), 
A E ENxK

With N << K under-determined

• Need some form of regularization

SNL Najrn Comp 22 / 44
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egularization - Compressive Sensing (

o t2-norm — Tikhonov regularization; Ridge regression:

min — + 11c1

o ft-norm — Compressive Sensing; LASSO; basis pursuit

min { c

min { — Ac

min { c

discovery of sparse signals

1}

2 subject to 11011 < C
subject to — Ac < E
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Multilevel Multifideli y (MLMF) Method 1

We evolved MC estimation of the Sobol' sensitivity indices in two steps

o We introduced the fitting of a PCE as a primary step, before using
the PCE to estimate the sensitivity indices

- This helps, but more is needed

o We introduced the regularization of the PCE fitting by introducing a
norm of the solution vector into the objective function, or constraint

• t2 and norm

o (1-norm constrained regression facilitates the discovery of a sparse
PCE that has good fit to the data

- This helps, providing fitted sparse PCEs given available data

SNL NO-n Comp 24 / 44



Multilevel Multifidelity (MLMF) Method

In particular, when the computational model is quite expensive, we still
seek more reduction in the required number of samples

o Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

o Use many low resolution/fidelity model computations and a
minimal necessary number of high resolution/fidelity model
computations to achieve target accuracy with MC

SNL Najnn Cornp 25/44
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Supersonic Co busting Ramjet (scramjet)

Lamstar-to- nce
Transts, 

ShooktElounclary Layer .M

Interactions

Non

Vehicle
Bow-Shock

Conjugate Heal

Rasa. control RIO Transfer

\ Subsystem Radiation

Supers,. Mixing
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Shock Train Fuel Inject.

I r"obadv I rnrir I 'aa'ar I "ms"r"
l 
 Vooanare' I "s"r I

In flight Numerical model

711.2 mm

NJ-
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Scramjet-2 unc rtain parameters

Parameter Symbol Range
inflow boundary conditions
inlet
Stagnation pressure

Stagnation temperature

Mach number

Turbulence intensity

Turbulence intensity ratio

Turbulence length scak
Boundary layer thickness

Fuel injection (36%CH4, 64%C2 H4)

Mass flux

Static Temperature

Mach Number

Turbulence intensity

Turbulence length scale

PO,i
7'0i

M.;
7

Li = ra • /Ui
) i

L,. = v,i/tti
Li
ai

rhf

T f

M f

1

If = u f/Iff

L f

1.48 MPa ± 5%

1550 K ± 5%

2.51 + 10%

[0.0 — 0.05]

1.0
[0.0 — 8.0Imm
[2.0 — 6.0]mm

7.37 x 10-3 kg/s ± 10%

300.0 K± 5%

1.0 +5%

[0.025 — 0.075]

[0.02 — 1.0] mm

Wall boundary conditions
Wall Temperature T,,,„ Profile from KLE

Expansion (10 params)

Turbulence model parameters
Static Smagorinsky
Modified Smagorinsky constant
Turbulent Prandtl number
Turbulent Schmidt number

CR

Prt
Set

[0.01 — 0.016]
[0.5 — 1.7]
[0.5 — 1.7]
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Scram HiD OUU

LES Pe
Joe Oefelein

formed using RAPTOR Code Fr
- Sandia National Labs. - currently at Georgia Tech

mework

Theoretical framework ...
(Comprehensive physics)

- Fully-coupled, compressible
conservation equations

Real-fluid equation of state
(high-pressure phenomena)

Detailed thermodynamics,
transport and chemistry

Multiphase flow, spray
Dynamic SGS modeling
(No Tuned Constants)

Numerical framework ...
(High-quality numerics)

Staggered finite-volume
differencing (non-dissipative,
discretely conservative)

Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation)

Detailed treatment of geometry,
wall phenomena, transient BC's

Massively-parallel ... (Highly-scalable)

- Demonstrated performance on full hierarchy of
HPC platforms (e.g., scaling on ORNL CRAY XK7
TITAN architecture shown below)

Selected for early science campaign on next
generation SUMMIT platform (ORNL Center for
Accelerated Application Readiness, 2015 - 2018)
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GEE!. sensitivity analysis: Sobol indice

Global sensitivity analysis (GSA) (Saltetti:2004,2008)

o For a given quantify of interest (Qol)

o Qol variance decomposed into contributions from each parameter

o Sobol indices rank parameters by their contributions (Sobot.2003)

Total effect ST. 
Ex [VarA  ( f (A) Ai)]

=  
Var(f(A))

ST small low impact parameter fix value (i.e. dim. eliminated)

How to compute?

o Monte Carlo estimators (Sattelli.2002,2010) still prohibitive for LES

o Our approach: construct affordable surrogate models via
polynomial chaos expansion (PCE)
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o ynomial chaosexpansions

A Qol (output) random variable can be expanded as follows:

f(),(0) =
13Eg

c

o c 
f3' 

• PCE coefficients

• reference random vector (e.g., uniform, Gaussian)

• To: multivariate orthonormal polynomial (e.g., Legendre, Hermite)

o /3: multi-index, reflects order of polynomial basis

Orthonormality property
extract Sobol indices analytically from coefficients (no Monte Carlo!):

1
STi Var(f(A))

E e2
13eg:(3,>0

where Var(f(A)) = 2
CO

o*ocg-
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nomial chaos expa sions

Non-intrusive regression to compute expansion coefficients Gc = f:

To, (C)) ToN(e1))

tlfoN( (m))

G

Col

CoN

c

Challenges:

e Very few LES flow solves (data) available

• Large number of polynomial PCE basis
(e.g. total-order degree 3 in 24 dimensions: 2925 terms)

• Extremely under-determined system (N >> M)

Our approach: use compressed sensing to find sparse solution

1
mein —2 c111 + 711Gc f 122

discover and retain only basis terms with high magnitude coefficients
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Multilevel and m ltifdelity forms

In
cr
ea
si
ng
 m
od
el
 f
id
el
it
y 

Telescopic sum:

Increasing grid resolution level

model A
grid 1

model B
grid 1

model Z
grid 1

model A
grid 2

model A
grid 3

ff, (À) = fo + E
.e=1

model A
grid G

model Z
grid G

• Q indicates different grid levels or fidelity of models

• A.e indicates difference between models and — 1

L
Function approximation: fr, (À) c,„-, fL (À) = (À) E (À)

t=i
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High-D - ML/MF UQ Results

2D LES
Coarse Grid

2D LES
Fine Grid

3D LES
Coarse Grid

3D LES
Fine Grid

Two model forms and two mesh
discretization levels

O Model form: 2D (LF) and 3D (HF) LES

O Meshes: d/8 and d/16

The P1 problem is considered (24 inputs).
Five Qols extracted over a plane at x/d = 100.

• [E0,t stagnation pressure (Po,m,„„)

• [E0 RMSt stagnation pressure (P0,,,,,,,„)

• [E0,t Mach number (Mme„„)

• [E0,t turbulent kinetic energy (TKE„,,,„„)

• [E0,t scalar dissipation rate (x„,,e„,)

2D 3D Relative computational cost for the model
d/8 1 204 forms and discretization levels.
d/16 25.5 1844

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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GSA: uncertain + design parameter space (16d); 2D flow

Setup

• Design parameters:

• global equivalence ratio (cbG)
• ratio of equivalence ratios primary/secondary (c/)R)
• location of primary and secondary injectors (xinjm xinjs)
• angle of primary injector (ap).

• 220 simulations

Combustion Efficiency Stagnation Pressure Loss

* Inlet Mach number (M„) and stagnation temperature (To) remain dominant

o Location of the second injector important for ,AP„„g

SNL Najm Comp 35/44
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Instantaneous low Structure - 2D d32

T [K]
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SNL Najrn Cornp 36 / 44



Instantaneous Flow Structure — z-0-
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Instantaneous Flow Structure - z-inj cut - 3D d16

670 2.7e+03

P [bar] "64

0.6 1.4

0.15

JeVr*--1̀ i
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Optimization Under Uncertainty - strat gies

• Design parameters ch

• Uncertain parameters A

o OUU statement ... example

0* argmin [EA [f (0, A)]

s.t. EA [g(cb, A)] + 3V1 [g(cb, A)] < ce

Ex[h(0, A)] — 3' [h(O, A)] > /3

Many other statements, probabilistic, risk analysis, are possible

o Each step in the optimization strategy requires solving the forward
UQ problem for the given (15

• Inherits and magnifies all the difficulties of forward UQ in
high-dimensional complex models

SNL Najnn Comp 41/ 44



Scram HiD OUU

Elements o OUU in large scale models

• We rely on two software libraries under development

• DAKOTA - https://dakota.sandia.gov
• SNOWPAC - https://bitbucket.org/fmaugust/nowpac.git

o Offline GSA/PC-smoothing/CS/MLMF and dimensionality
reduction for uncertain parameters

• Reliance on surrogates and simplified models where possible

• Noise in objective function due to finite time-window averaging for
flow statistics of interest

o Code/model failures are often encountered when exploring
parameter spaces

o When noise is high and/or have failures, use MC/MLMC for forward
UQ - build a Gaussian process over 0 with MLMC - SNOWPAC

• If noise is small enough, and no failed samples, can use forward-UQ
with PCE adaptive sparse quadrature (ASQ) and MLMF - DAKOTA

o DAKOTA handles overall optimization strategy
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Intro PCfit Sparse MLMF Scrarn Clos HiD OUU

Optimiza iorlimIrer uncertainty workflow

All Uncertain
Parameters

Offline
dimensionality

reduction

OUU loop

Design
Parameters

Important
Uncertain

Parameters

orward UQ

LMC or ASQ MLM

RAPTOR

DAKOTA

+ SNOWPAC

Stati tical

Quantities

of Interest
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Intro PCfit Sparse MLMF Scram Clos

osu re

o Relevance of UQ in computational science

o Challenges

o High dimensionality
o Model complexity
o Optimization under uncertainty

o Discussed

o GSA, PC smoothing, CS, MLMC, MLMF
o OUU, finite averaging noise, code failures

o Ongoing application for UQ & OUU in Scramjet design

o A highly multidisciplinary enterprise - applied math, probability,
statistics, information theory, computations, data, physical modeling
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