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Intro

Definition of Uncertainty Quantification (UQ)

UQ is the end-to-end estimation and analysis of uncertainty in:

models and their parameters

@ assimilation of experimental/observational data
@ model fitting and parameter estimation

model predictions

o forward propagation of parametric uncertainty to model outputs

@ Analysis, comparison and selection among alternate plausible
models
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Intro

The Case for Uncertainty Quantification

UQ s needed in:

@ Assessment of confidence in computational predictions

@ Validation and comparison of scientific/engineering models
@ Robust design optimization under uncertainty

@ Use of computational predictions for decision-support

@ Assimilation of observational data and model construction
@ Multiscale and multiphysics model coupling
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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Uncertainty Quantification and Computational Science
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Intro

Probabilistic Forward UQ

Represent uncertain quantities using probability theory

Random sampling, Monte Carlo

@ Generate random samples {27}~ | from the PDF of z, p(z)

@ Bin the corresponding {y} to construct p(y)

@ Not feasible for computationally expensive f(x)

- slow convergence of MC/QMC methods
= very large N required for reliable estimates

Build a cheap surrogate for f(z), then use Monte Carlo/others

@ Collocation - interpolants
@ Regression - fitting

@ Galerkin methods
- Polynomial Chaos (PC) methods
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Intro

Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVs)
o Givenagerm £(w) = {&;,-,&,,} —asetofiid RVs
- where p(&) is uniquely determined by its moments

Any RV in L?(Q, &(¢), P) can be written as a PCE:

w(z,t,w) = f(x,t,€) ~ Zukmt (w))

- uy(x,t) are mode strengths
- U, () are multivariate functions orthogonal w.rt. p(&)
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Intro

Essential Use of Polynomial Chaos Expansions in UQ

@ Represent model parameters/solution as random variables

@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

o Computational efficiency
e Utility
@ Moments: E(u) = u,, var(u) = ka:1 u(032), ...
@ Global Sensitivities - fractional variances, Sobol’ indices

@ Surrogate for forward model

@ RVsin L2, ie. with finite variance, on (2, &(¢), P)

O
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Intro

UQ in LES computations: turbulent bluff-body flame

with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

CH,-H, jet, air coflow, 3D flow

L4 T [K]
@ Re=9500, LES subgrid modeling 000
@ 12 x 105 mesh cells, 1024 cores 1228
@ 3daysruntime, 2 x 10° time steps Isoo
@ 3 uncertain parameters (C,, Pr,, Sc,) 28
e 2"?-order PC, 25 sparse-quad. pts

Mean axial velocity on centerline

RMS axial velocity on centerline
1 T T 1 T T

2
=
T

Main-Effect Sensitivity Index
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Main-Effect Sensitivity Indices

J. Oefelein & G. Lacaze, SNL
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Intro

UQ in Ocean Modeling - Gulf of Mexico

A. Alexanderian, J. Winokur, . Sraj, O.M. Knio, Duke Univ.
A. Srinivasan, M. Iskandarani, Univ. Miami; ~W.C. Thacker, NOAA

T2 w0 e % e

Prob(MLD > 22) att = 150

Hurricane Ivan, Sep. 2004
HYCOM ocean model (hycom.org)
Predicted Mixed Layer Depth (MLD)
Four uncertain parameters, i.i.d. U
- subgrid mixing & wind drag params
385 sparse quadrature samples
(Alexanderian et al., Winokur et. al., Comput. Geosci,, 2012, 2013)

-85
Longitude
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Intro

High dimensionality is a major challenge in forward UQ

@ High dimensionality is the result of

@ Large number of uncertain parameters/inputs
@ Large number of degrees of freedom in random field inputs

@ PCE sparse-quadrature requires an unfeasible number of model
evaluations for very high dimensional systems

@ MC requires similarly large number of samples when the number of
important dimensions is very high

@ Typically, physical model output quantities of interest are smooth
@ Only a small number of inputs are important

@ In this case, the way out is:
@ Use global sensitivity analysis (GSA) with MC to identify
important parameters
@ Use PCE sparse-quadrature on the reduced dimensional space
for accurate forward UQ
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Intro

Global Sensitivity Analysis (GSA)

@ Random sampling-based

@ Define parametric PDFs
@ Sample them

- Monte Carlo (MC) sampling
- Quasi-Monte Carlo (QMC) methods
e.g. Latin Hypercube sampling (LHS) ...

@ Run forward model for each sample
o Evaluate statistics/PDFs of output observables
@ Sensitivity information

- Scatter plots; Correlation measures; Regression
- Importance Measures; Sobol’ sensitivity indices

@ Response surface construction based on samples
o followed by sensitivity and/or UQ

@ Analysis of Variance (ANOVA)
@ High Dimensional Model Representation (HDMR)
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Intro

Hi-dimension with large-scale computational models

When the number of feasible samples for GSA is highly limited due to
computational costs:

@ Reliable MC-estimation of sensitivity indices requires regularization

@ Presuming smoothness, use MC samples to fit a PCE, which is
subsequently used to estimate the sensitivity indices

@ Employ ¢;-norm constrained regression to discover a sparse PCE
- compressive sensing

@ Employ Multilevel Monte Carlo (MLMC), as well as Multilevel
Multifidelity (MLMF) methods
@ Optimal combination of coarse/fine mesh and low/high fidelity
models to minimize computational costs for a given accuracy

Similarly for forward PC UQ:

@ Employ generalized adaptive non-isotropic sparse quadrature with
MLMF methods on reduced dimensional input space
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Learning from Limited Sparse Noisy Data

We often need to use data to estimate quantities of interest

Experimental data can be inherently noisy

@ Randomness in physical system
@ Instrument noise

It can also be sparse - data gaps
@ eg data (z;,y;) on small subsets of some domain D
@ Even when the data is from computations, it can be "noisy”

@ Statistics computed from simulation outputs can be noisy due
to limited averaging time windows

@ Discrepancies between computational simulation outputs and
some fit-model of interest can be treated as noise

Generally, learning from small number of data points, especially
when sparse and noisy, can be a major challenge

@ Little information available from data
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PCfit

Learning from data with limited information

Generally we address “Learning” in the context of estimation of
statistics, and fitting
Consider data (¢, -, 2}, y@), i =1, ,N

@ x € R" are independent variables

@ y € Ris the dependent variable

We might be interested in statistics s = (s, 5,,)
- with,eg, s; = V[E(y|z;)]
Or fitting function y = f(x; ¢), to estimate ¢ = (cy, -, cp)

- with,e.g. f(z;¢) = Zi):o ¥ (2)
- with either least-squares fitting, or Bayes

In all cases, the accuracy of the estimate of ¢ or s depends on the
“quality” of the data

@ data noise, coverage, range, quantity

Najm Comp
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PCfit

Estimation of GSA Sobol Indices with PC regularization

@ When the number of samples is small, the GSA sensitivity indices
can be computed with improved accuracy, relying on regularization

@ Use regression with MC samples to fit a Legendre-Uniform PCE to

the data
u(§) = Z Vi (§)

@ Use PCE to evaluate Sobol Indices directly
Sargsyan, 2017

@ Example results illustrate significant improvement over the direct
estimation from samples

Najm Comp
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Estimation of GSA Sobol Indices with PC regularization
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Estimation of GSA Sobol Indices with PC regularization
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Estimation of GSA Sobol Indices with PC regularization
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PCfit

Need for regularization in fitting/inversion

Sometimes the fitting problem is ill-posed ... non-uniqueness
@ Multiple values of ¢ give the same f(z; c) over a range of =

More often the problem is ill-conditioned

@ The amount of information in the data is small relative to the
number of parameters we are interested in learning

- Forexample N << P +1
@ lll-conditioning can manifest itself in sensitivity to

@ Initial guess choice in least-squares fitting
@ Prior choice in Bayesian fitting
@ Specific choice of data set

Ill-conditioning can lead to poor convergence in the iterative
solution or to poor mixing in MCMC

Regularization is often useful to deal with these challenges

Najm Comp
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PCfit

Regularization in Learning from Data

@ Regularization involves adding some information into the problem

@ Of course, the choice of the form of f(z;¢), or the value of P, also

provide explicit regularization
Regularization allows enforcement of desired traits in the solution

@ Smoothness, positivity, ...
@ Introduces bias, destroys consistency

Example: Tikhonov-type regularization:
¢ = argmin /(2. ¢) — ylj + aL(c'))

How to choose regularization form, L, o 7 — Somewhat arbitrary

L(t) := ||t|3 = favor solutions with small £, norm

L(t) :== | max, V, f(x,t)|3 = favor smooth functions

L(t) := |t||, = favor solutions with small # of non-zero elements
- sparse solutions

Najm Comp
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Regularization in Learning from Data

@ Employing the ¢, constraint is a problem because the resulting
constrained optimization is not convex

@ It turns out that it's possible to use the ¢, -norm, with good sparsity
selection

@ This problem is indeed convex
@ Hence the use of the ¢, norm in sparse regression

- Compressive Sensing, LASSO
- Bayesian compressive sengin, Bayesian LASSO
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Sparse
Sparse regression

Model: _
y=fl)=> ¥ (z)
k=0

with z € R, ¥, max order p,and K = (p + n)!/p!/n!

° Nsamples (xlvyl)w-- ) <$N7yN>
@ Estimate K terms ¢, ..., cx_1, St

min ||y — Acl[3
wherey € RN, c e RX, A, = ¥, (z,), A € RVK

With N << K = under-determined
@ Need some form of regularization
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Sparse

Regularization - Compressive Sensing (CS)

@ /,-norm — Tikhonov regularization; Ridge regression:
min {[ly — Ac3 + |le|3}
@ ¢ -norm — Compressive Sensing; LASSO; basis pursuit

min {ly — Ac|3 + || }
min {|y — Ac|2} subjecttoc|; <e
min {|lc[,} subjectto|y— Ac|3 <e

= discovery of sparse signals \i‘} K
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MLMF

Multilevel Multifidelity (MLMF) Methods - 1

We evolved MC estimation of the Sobol’ sensitivity indices in two steps

@ We introduced the fitting of a PCE as a primary step, before using
the PCE to estimate the sensitivity indices

- This helps, but more is needed

@ We introduced the regularization of the PCE fitting by introducing a
norm of the solution vector into the objective function, or constraint

@ /,and ¢, norm

@ (,-norm constrained regression facilitates the discovery of a sparse
PCE that has good fit to the data

- This helps, providing fitted sparse PCEs given available data
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MLMF

Multilevel Multifidelity (MLMF) Methods - 2

In particular, when the computational model is quite expensive, we still
seek more reduction in the required number of samples

@ Multilevel Multifidelity (MLMF) methods allow further savings by
combining information judiciously from low/high-resolution and
how/high-fidelity models

@ Use many low resolution/fidelity model computations and a

minimal necessary number of high resolution/fidelity model
computations to achieve target accuracy with MC

Najm Comp
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MLMF

Heat equation—MLMF vs. MLMC vs. plain MC

70 T T T 10
MLMC' ++-3¢---=
65 MLMF —e— |
exact
60 4
55 | ! , ] ol
g 1 5
o5 | g
EE 3T CTTE S S ot d
40 0.1
35
30 - 1
25 + * 0.01
10 100 1000 10000 100000 1e+06 1e+07 10 100 1000 10000 100000 1e+06 1e+07
N N
Expected Value Accuracy ¢
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Scram Hi U

Supersonic Combusting Ramijet (scramjet)

Laminar-to-Tugbeffence
Altbody

Conjugate Heat

Radiation

Stipersonic Mixing

Vehicle 2, ‘and Combustion
Bow-Shock =
hock Train Fuel Injection”
Forebody | Internal | Isolator |Combusler| Internal | Aftbody A

inlet Nozzle

In flight ' Numerical model

711.2mm
Fiow
- / \ . FE
B Lox e .
/ E . . I3
- H
7 2 | 2 | =
o .
Computation  Primary Secondary
domeln injectors injoctors
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o 5 o : g
= te zvl 1= Gnit Probiem Domain ] 158
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0 P e 25 50401 410 THimm ] . 3 s T !
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Scram

Scramjet—-24 uncertain pa

SNL

Parameter Symbol Range
Inflow boundary conditions
Inlet
Stagnation pressure PO 1.48 MPa+ 5%
Stagnation temperature Ty 4 1550K+5%
Mach number M; 2.514+10%

/
Turbulence intensity I;,= “}'/Ui [0.0 — 0.05]
Turbulence intensity ratio Ip=wv;/u; 1.0
Turbulence length scale L; [0.0 — 8.0Jmm
Boundary layer thickness 84 [2.0 — 6.0jmm
Fuel injection (36% C H 4, 64%C o H )
Mass flux s 7.37x 10 3 kg/s + 10%
Static Temperature Ty 300.0K+5%
Mach Number Mg 1.0+5%

7
Turbulence intensity Ip=uy/Up [0.025 — 0.075]
Turbulence length scale Ly [0.02 — 1.0] mm
Wall boundary conditions
Wall Temperature T Profile from KLE

Expansion (10 params)

Turbulence model parameters
Static Smagorinsky
Modified Smagorinsky constant Cr [0.01—-0.016]
Turbulent Prandtl number Pry [0.5—-1.7]
Turbulent Schmidt number Scy [0.5—-1.7]

Naj

Comp




Scram HID OuU

LES Performed using RAPTOR Code Framework

Joe Oefelein - Sandia National Labs. - currently at Georgia Tech

* Theoretical framework .. « Massively-parallel ... (Highly-scalable)
(Comprehenswe Phys'cs) — Demonstrated performance on full hierarchy of
— Fully-coupled, compressible HPC platforms (e.g., scaling on ORNL CRAY XK7
conservation equations TITAN architecture shown below)
— Real-fluid equation of state — Selected for early science campaign on next
(high-pressure phenomena) generation SUMMIT platform (ORNL Center for

— Detailed thermodynamics, Accelerated Application Readiness, 2015 — 2018)

transport and chemistry
— Multiphase flow, spray 150000 100
— Dynamic SGS modeling

(No Tuned Constants)

+ Numerical framework ... 195

(High-quality numerics)

— Staggered finite-volume
differencing (non-dissipative,
discretely conservative)

— Dual-time stepping with
generalized preconditioning
(all-Mach-number formulation) o Near linear scalability

— Detailed treatment of geometry, 5 beyond 100,000 cores
wall phenomena, transient BC’s 1k 4 g 180

1 50000 100000 150000
Number of Cores

100000 -
= 490

50000 1es

Algorithmic Speedup
[
\

Parallel Efficiency, %
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Scram HiD OuU

Global sensitivity analysis: Sobol indices

Global sensitivity analysis (GSA) (saltell:2004,2008)

@ For a given quantify of interest (Qol) ...
@ Qol variance decomposed into contributions from each parameter
@ Sobol indices rank parameters by their contributions (sobol:2003)
Ey_,[Vary, (f(A)[A)]
Total effect Sp = —= :
" Var(f(}))

S, small = low impact parameter = fix value (i.e. dim. eliminated)

How to compute?
@ Monte Carlo estimators (saltell:2002,2010) still prohibitive for LES

@ Our approach: construct affordable surrogate models via
polynomial chaos expansion (PCE)
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Scram HiD OuU

Polynomial chaos expansions

A Qol (output) random variable can be expanded as follows:

FONE) =D egWs(€)
Bed
@ c;: PCE coefficients

@ & reference random vector (e.g., uniform, Gaussian)
@ V4 multivariate orthonormal polynomial (e.g., Legendre, Hermite)
@ [ multi-index, reflects order of polynomial basis

Orthonormality property

= extract Sobol indices analytically from coefficients (no Monte Carlo!):

1
Sp=——_ E c? where Var(f(\)) = E c?
T; Var(f(N)) Bed:B;>0 a () 0+8ed .

Najm Comp
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Scram HiD OuU

Sparse polynomial chaos expansions

Non-intrusive regression to compute expansion coefficients Gc = f:

U (€M) o Wan(EW) 1 [c@l 1 [ f(MS”)) 1

W (€00) o wan(€0) ] Lepe I L o))
G c f
Challenges:

@ Very few LES flow solves (data) available

@ Large number of polynomial PCE basis
(e.g. total-order degree 3 in 24 dimensions: 2925 terms)

@ Extremely under-determined system (N > M)

Our approach: use compressed sensing to find sparse solution
1 2
min 3 el + 7] Ge = fl,

discover and retain only basis terms with high magnitude coefficients

Najm Comp
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Scram HiD OuU

vel and multifdelity forms

Increasing grid resolution level

model A |

model A |
grid 2

grid G

model A |
grid 3

model A |

grid 1
model B
& grid 1
model Z . model Z
grid 1 grid G
L

Telescopic sum: FLO) = fo(0) + ZfAz</\)
=1

model fidelity

i

@ /indicates different grid levels or fidelity of models
@ A, indicates difference between models ¢ and ¢ — 1

Function approximation: (\) ~ f, (\) = fy(\) + Z Fa, (V)
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Scram Lall

High-D - ML/MF UQ Results

2D LES Multifidelity 3D LES
Coarse Grid Coarse Grid . i .
The P1 problem is considered (24 inputs).
Five Qols extracted over a plane at «/d = 100.

® [, , stagnation pressure (Py ., can)

[9AJ[IMIAL

[ T—_— ] o @ [, RMS, stagnation pressure (Pg ., 5)
Fine Grid Fine Grid
@ [, , Mach number (M, cq )
Two model forms and two mesh @ [, , turbulent kinetic energy (TKE,,, . )
discretization levels @ [, . scalardissipation rate (X, cqn)
@ Model form: 2D (LF) and 3D (HF) LES
@ Meshes: d/8and d/16
2D 3D Relative computational cost for the model
d/8 1 204 forms and discretization levels.

d/16 | 255 1844

Optimize statistical accuracy given a limited number of high fidelity model evaluations by
leveraging cheaper lower fidelity simulations.
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Scram HiD ¢

GSA: uncertain + design parameter space (16d); 2D flow

@ Design parameters:

@ global equivalence ratio (¢ )

@ ratio of equivalence ratios primary/secondary (¢ r)

@ location of primary and secondary injectors (zinj p, xinjg)
@ angle of primary injector (a p).

@ 220 simulations

Combustion Efficiency Stagnation Pressure Loss
07
0. EEm 2Dd08
0. B 2Dd08-+design
=0.4
~_03
0.2
0.1
o0 J n |
SEP O QTR o o et

@ Inlet Mach number (M) and stagnation temperature (T',) remain dominant

@ Location of the second injector important for AP, , .
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Scram HiD OuU

Instantaneous Flow Structure — 2D d32

T [K]
| .
250 3.21e+03
- ~ . - » _ - i ‘ - < = -
Mach [-]
1 2 3
| -
0.00346 3.63
e
YC2H4 [-] ——
0.2 0.4
[

YCo2 [-]

0.04 0.08 0.12 0.16
— -
0 0.19
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Scram HiD OuU

Instantaneous Flow Structure — z-O-cut - 3D d16

— o
670 2.7e+03

S SIS A S aot :W@ RisA P T B -_4“‘ ‘

_
0.6

Y CO2 [-]

— ! | ommm
0 0.15
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Scram HiD OuU

Instantaneous Flow Structure — z-inj-cut - 3D d16

Y COo2 [-]
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Scram HD O

MC-Predicted Uncertainty in Mean Flow Quantities - 3D

Temperature [K]

mean(7) . 5‘ E
S ——————— — e —————— ]

Pressure [bar]

-
mean(P) 2

| stdev(P)

Mach Number

mean(Al)

stdev(M)
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Scram HiD OuU

MC-Predicted Uncertainty in Mean Flow Quantities - 3D

Ethane

stdev(0,)

Carbon Dioxide

mean(CO,)

stdev(CO,)
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Scram HID OuU

Optimization Under Uncertainty - strategies

@ Design parameters ¢
@ Uncertain parameters A
@ OUU statement ... example
¢ = argminE,[f(6,\)
¢
st E\g(9, M) +3V:[g(e, )] <a
Exlh(6, 2)] =32 [h(6, )] > B

Many other statements, probabilistic, risk analysis, are possible

@ Each step in the optimization strategy requires solving the forward
UQ problem for the given ¢

@ Inherits and magnifies all the difficulties of forward UQ in
high-dimensional complex models
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\F Scram HID OuU

Elements of OUU in large scale models

@ We rely on two software libraries under development

@ DAKOTA - https://dakota.sandia.gov
@ SNOWPAC - https://bitbucket.org/fmaugust/nowpac.git

e Offline GSA/PC-smoothing/CS/MLMF and dimensionality
reduction for uncertain parameters

@ Reliance on surrogates and simplified models where possible

@ Noise in objective function due to finite time-window averaging for
flow statistics of interest

@ Code/model failures are often encountered when exploring
parameter spaces

@ When noise is high and/or have failures, use MC/MLMC for forward
UQ - build a Gaussian process over ¢ with MLMC - SNOWPAC

@ If noise is small enough, and no failed samples, can use forward-UQ
with PCE adaptive sparse quadrature (ASQ) and MLMF - DAKOTA

@ DAKOTA handles overall optimization strategy
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Scram HID OuU

Optimization under uncertainty workflow

DAKOTA
+ SNOWPAC

OUU loop

All Uncertain .
Parameters Design
Parameters
Y
Statistical
Importa.nt Quantities
Uncertain of Interest
Parameters
Offline
dimensionality
reduction
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Clos
Closure

@ Relevance of UQ in computational science

@ Challenges

@ High dimensionality
@ Model complexity
@ Optimization under uncertainty

@ Discussed

@ GSA, PC smoothing, CS, MLMC, MLMF
@ OUU, finite averaging noise, code failures

@ Ongoing application for UQ & OUU in Scramijet design

@ A highly multidisciplinary enterprise - applied math, probability,
statistics, information theory, computations, data, physical modeling
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