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Introduction:
•We are investigating the relations between
mechanical response and microstructure in austenitic
stainless steels.

•Current work with hydrogen as baseline for upcoming
work to determine differing effects from tritium.

-Collaborating closely w/Mike Morgan, Dale Hitchcock
(SRNL) for tritium charged materials

•Talk by Joe Ronevich also in this session.
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Example: He bubbles in 304 weldment
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microstructure,
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Focus for this talk:
-Evolution of microstructure with strain
in forged 304L, with and without internal
hydrogen.

-Insights at multiple length-scales by
combining EBSD and advanced STEM
methods.

-dislocation and phase evolution.

-Brief discussion on steps toward
characterizing tritium-charged material
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As-forged microstructure: dense dislocation network
Diffraction Contrast Scanning Transmission Electron Microscopy

(DC-STEM)
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How does this microstructure evolve with plastic strain?

3



EBSD Measurements reveal global microstructural
evolution with strain.
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EBSD Measurements reveal global microstructural
evolution with strain.
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Qualitatively similar results for H-charged 304L
As-forged &
Charged 5 % Strain

Key Difference with H-
charging:

Increase in "non-FCC"
phases with strain
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Further insight from TEM: organization of
dislocations into dense cell walls with strain

As forged (non-charged)

Organization of dislocations into dense
walls, below EBSD resolution, may
explain apparent drop in GND density

5% strain (non-charged)
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Diffraction
Contrast STEM
(contrast inverted)
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Development of Shear Bands
As-forged and H-charged

(140 ppm H)

Dislocation cells and
extended stacking faults

Scanning
diffraction to
determine
interphase
crystallography at
nanometer-scale
resolution

5% strain
(140 ppm H)

Parallel bands of deformation
twins and c-martensite
(no a'-martensite observed)

Example
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20% strain
(140 ppm H)

Intersecting shear bands (twins,
s-martensite)
a' — martensite at intersections

Key techniques:
-Diffraction-Contrast STEM
-Scanning nano-beam diffraction
-Atomic-resolution STEM
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Orientions and phases in shear-bands can be v.) kills

distinguished through nanobeam diffraction

Austenite: Austenite & Austenite &

Austenite:
face-centered cubic (fcc)

c-martensite:
hexagonal close packed (hcp)
structure

ce-martensite:
body-centered cubic (bcc)
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E-martensite in shear bands: only in H-charged material
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5% HC HRSTEM
HR-STEM shows some
interface dislocations

(6(112 ) and 3 (111)) with no

dislocations observable
within twins, matrix, or E-
martensite.

Martensite is more common
here than twinning (typical
for HC samples).

Twins and E-martensite are
generally very thin (less
than —20 {ill} planes)
while spanning through
most of the grain. With
twins appearing as faulted
E-martensite.
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a' martensite at shear band intersections

DC-STEM,304
20% strain,
140 ppm H

Olsen & Cohen model for cf-martensite nucleation at
shearbands

b
Before intersection

Schematic from Bracke et al. Scripta
Materialia 2007

After intersection
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8- and ai-martensite at shear bands in
tensile-strained 304L stainless steel

(20% strain, 140 ppm H)
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matrix ---4"
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We are extending our electron microscopy work to
tritium-charged material
Sandia is collaborating closely with SRNL (Dale Hitchcock) and
PNNL (Bruce Arey)

Initial TEM Specimens of tritium-charged material have been prepared by
Focussed lon Beam (FIB) using the hot FIB at PNNL (Bruce Arey)

FIB preparation reduces radiological
concerns compared with traditional
electrochemical polishing.

-Smaller specimen volume
tritium activity (-nCi) sufficiently low
for specimens to be observed in the
Sandia TEM

However, must be cautious to avoid
FIB-induced artifacts.
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FIB specimen of tritium-charged 304L
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Challenge: Avoid induced artifacts induced by high
energy gallium beam in FIB.
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FIB can introduce fine-scale
crystallographic defect clusters
that would interfere with detailed
diffraction contrast imaging.

Example: Annealed 304 L
Thinned by FIB using a 30 keV
Ga beam
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We are developing FIB protocols to minimize Ga

damage for 3041
Example: Annealed 304L following low-voltage clean-up in FIB

(DC-STEM, contrast inverted, Weak-Beam diffraction conditions)

Top of liftout

We are in active communication with Bruce Arey (PNNL) who is
applying these methodologies to tritium charged 304L forged material
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Conclusions
• Complex, multiscale evolution of microstructure under
tensile strain in forged austenitic stainless steel.

-Organization of initial dislocation arrangements into dense
cell walls.

-Signature is transient drop in apparent GND density in EBSD

-Strain localization into shear bands
-Dense twinning in non-charged 304L
-Both twinning and martensite formation in H-charged 304L

£ m a rtensi te in shear-bands
a' martensite at intersections of shear-bands

•From these nanoscale and atomic-resolution observations, we
are working to test classical dislocation-based models for shear-
transformations in stainless steel.

•Work is providing base-line understanding for upcoming
observations on Tritium-charged stainless steel
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